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NUMERICAL ANALYSIS OF UNSTEADY MOTION OF A RAREFIED GAS
CAUSED BY SUDDEN CHANGE OF WALL TEMPERATURE
WITH SPECIAL INTEREST IN THE PROPAGATION OF DISCONTINUITY
IN THE VELOCITY DISTRIBUTION FUNCTION

Kazuo Aoki, Yoshio Sone, Kenji Nishino, and Hirdshi'Sugimoto '

(BEA—4£, &REX, ®HRE, Exk)

Department of Aeronautical Eubmeelms, Kyoto University, Kyoto 606, Japan
(HK-I-#0%E)

An unsteady gas motion induced in a semi-infinite expanse of a rarefied gas by
sudden heating (or cooling) of the plane wall bounding the gas is analyzed numerically
on the basis of the Boltzmann-Krook-Welander equation and the diffuse reflection.
The time development of the disturbance in the gas is pursued, for various cases of
heating and cooling, over a long time {from the initial moment when the heating or
cooling occurs. In particular, the propagation and attenuation of the dxscontmulty n
the velocity dlstrxbutlon functlon are analyzed acculately

I. INTRODUCTION

Consider a semi-infinite expanse of a rarefied gas in a uniform equilibrium state at rest,
bounded by a plane solid wall. Provided that the wall temperature changes suddenly, a gas
motion is induced owing to expansion or contraction of the gas by heating or cooling and the
disturbances propagate into the gas. This simple initial and boundary value problem is of physical
interest because it exhibits the fundamental feature of the transition from the free molecular to
the continuum behavior of the gas. For a small temperature change, a systematic analysis based
on the linearized equation was carried out, and analytical results for short and long time behavior
were obtained.! For a large temperature change, the problem was studied by a moment method,
but the result showed some unphysical behavior.?

In the present study, we will carry out an accurate numerical analysis of the problem for
arbitrary temperature changes to obtain the behavior of the gas precisely over a long time from
the initial moment when the wall temperature changes, with special emphasis on the following
point. In the present problem, the velocity distribution function is discontinuous on the wall at
the initial moment, and the discontinuity propagates into the gas, decaying owing-to molecular
collisions. This situation cannot be described correctly by the standard finite-difference method,
such as used in Refs. 3-5. In the recent study of unsteady strong evaporation form a plane
condensed phase,®” Sone and Sugimoto developed a numerical method (finite-difference method
on the characteristic coordinates) describing the discontinuity in the velocity distribution function
correctly. On the basis of their idea, we try to construct a more eflicient method to capture the
behavior of the discontinuity.

II. PROBLEM AND BASIC EQUATION

Problem: Consider a semi-infinite expanse of a rarefied gas (X; > 0, X;: rectangular space
coordinates) in contact with a stationary plane wall (X; = 0, temperature Tp) and in a uniform
equilibrium state at rest (temperature Tp, pressure pp). Suppose that the wall temperature changes
discontinuously to another uniform temperature 77 at time ¢ = 0 and is kept at 77 for all ¢ > 0.
Investigate the unsteady behavior of the gas for ¢ > 0 on the basis of the kinetic theory.

We analyze the problem under the following assumptions: (i)The behavior of the gas is de-
scribed by the Boltzmann-Krook-Welander equation; (ii)The gas molecules are reflected diffusely
on the wall.

The Boltzmann-Krook-Welander equation in the present spatially one—dunensxonal case is
written in the following form.
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where f(X1,t,&) is the velocity distribution function, &; is the molecular velocity, p(X1,t) is the

gas density, v;(X;,1) = (v1(X1,1),0,0) is the gas flow velocity, T(X1,t) is the gas temperature,

p(X1,1) is the gas pressure, R is the gas constant per unit mass, A, is a constant (A.p is the

collision frequency of the gas molecules), and the domain of integration is the whole space of &;.
The diffuse-reflection boundary condition on the wall is
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The boundary condition at infinity and the initial condition are
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where pg = po(RTp) ™! is the gas density at the initial state.

According to Ref. 8, we can reduce the system (1)-(6) to that for g and & defined below,
where £; and &; are eliminated. That is, with ®(z,{,¢) = [g, k], the basic equation (1) with (2),
(3) is reduced to
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£o is the mean free path of the gas molecules at the initial equilibrium state at rest at temperature
Tp and pressure pg, and {g is the corresponding mean free time multiplied by 2//7. The boundary
condition at X; =0, (4), is reduced to

P=V(p=o0,v=0,T=T), for (>0, at z =0, (11)

o _zf( )-”2 / ¢9(0,, C)dC. (12)

The boundary condition at infinity and the initial condition, (6), are reduced to
@:‘I’(p:pé,vl =0,T = To), (for { <0, as * — co) and (for all {, at £ =0) . (13)

We solve this system numerically by a finite-difference method for various values of
T1 /Ty, which is the only parameter of the problem.

III. NUMERICAL ANALYSIS

For ¢ > 0, the velocity distribution function ® is discontinuous at (=,%) = (0,0) ‘J(point Oin
Fig. 1), ie, ‘lirr(xj $(0,%,¢) lin%)(ﬁ(:c,(], (), from the initial and boundary data (11), (13){\. This

:discontinuity propagates into the gas along each characteristic line z = ¢{ of (7), depending on ¢,
as time goes on. Therefore, ® is discontinuous on the surface x = (f (¢ > 0) in the (z,?, ¢) space.
On the other hand, @ is continuous for ( < 0. The nlacroscopic variables, M, are continuous in
ithe (z,?) plane. The discontinuity in ® is expected to decay rapidly with time (exponentially in
1) owing to molecular collisions.

In Refs. 6, 7, and 9, the characteristic coordinate system is used in describing the above
type of discontinuity of the initial stage. llere in order to improve the efliciency of computation
we introduce a hybrid system which is basically a standard implicit finite-dillerence scheme with
auxiliary characteristic coordinates.
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Fig. 1. The (z,?) plane.

(i)Scheme for the initial stage

Let (20),1(*) ¢(D) be the lattice points in the (z,%,{) space. We take lattice points
A: (20 #(), B: (2,11, C: (20-D, 1), ¢': (2U+1),1") in the (z,) plane and denote
the intersection of the characteristic line z = ¢V with { = (™) by P,, and that with z = (9 by Q;
(Fig. 1). For simplicity the set of arguments (z,7) in ¢ and M will be represented by the symbol
of the corresponding point, i.e., #(A), M(B), etc.

(2)The case where ¢ > 0 and the characteristic line = ("1 does not intersect the segment
CAB, or the case where () < 0: A standard implicit scheme with first-order accuracy is used.
‘That is, in (7) we replace 8&/97 by the finite difference [®(A) — ®(B)]/({"™ — i{*~V)) and 09 /0=
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Fig. 2. The case where z = ¢((V{ Fig. 3. The case where z = ({0
(¢ > 0) intersects CA . (¢ > 0) intersects AB .

by [®(A) — &(C)]/(z — z¢~D) for ¢V > 0 or [®(C') — (A)}/ (20 — 20)) for () < 0 and
assume that ® = ®(A), M = M(B) on the right-hand side. Then, ®(A) is determined from ®(B),
®(C), and M(B) for ¢() > 0 and from ®(B), &(C’), and M(B) for ¢V < 0.

(b)The case where z = (V% (¢V > 0) intersects the segment CA (Fig. 2): In scheme
(a), the 8®/0= term, [®(A) — ®(C)]/(z) — 2(~V), is replaced by [®(A) — &+(P,)]/Az, where
Az = z0) — (i) and &*(P,) is the limiting value of & as (z,?) — P, with 22¢V7 (the upper
or lower signs go together). Then, if ®*(P,) is known, ®(A) is determined from ®*(P,), ®(B),
and M(B).

(c)The case where z = ¢ (¢ > 0) intersects the segment AB (Fig. 3): In scheme
(a), the 8®/0% term, [D(A) — ®(B)]/({™) — {(*~1)), is replaced by [®(A) — &~ (Q:)])/Al, where
At = 1) — (2 /(D) and &~ (Q;) is computed by the linear interpolation from ®~(P,) and
&~ (P,_1). Therefore, if ®~(P,) is known, $(A) is determined from ®(C), ®~(P,), and M(B).

(d)Evaluation of ® on both sides of the characteristic, ®*(P,,) and & (P,)): The ®at { = i)
on both sides of the characteristic line z = (7, i.e., 8*(P,,), are obtained from the finite difference
equation along the characteristic z = ()%, which are obtained by replacing (9®/8%) + ((8®/0=)
by [@*(P,) — ®*(P,_y)]/(f() —i(*~1), & by ®*(P,,), and M by M(P,,_;) in (7). The M(P,_1)
is approximated by the linear interpolation from M at the neighboring lattice points on  =¢*~1)
since M is continuous in z and 7. _

Applying the above scheme (a)-(d) to the first time step 7 = i{(1), we determine ® at t = {(1)
from large to small z for ¢(() < 0 with the aid of the initial condition and the boundary condition
at infinity (13) and from small to large z for ¢(* > 0 with the aid of the initial condition (13) and
the boundary condition on the wall (11). We repeat this process to obtain ® at the subsequent
time steps.

(i1)Scheme for subsequent time ,

After the discontinuity in & essentially disappears, we switch the scheme to a standard finite-
difference scheme with second-order accuracy [(20a, b) and (22a, b) in Rel. 5 with the time
derivative term replaced by the standard finite diflerence of second-order accuracy (the lattice
division is different)], which is more straightforward and is efficient for long-time computation, and
continue the computation by the similar process to that of the initial stage.

The appropriate combination of the two different schemes (i) and (ii) makes it possible to
evaluate the velocity distribution function accurately at any instant.



IV. RESULT

Finally, we summarize the main result of the numerical analysis.
A. The case of sudden heating (71 /Tp > 1)

We show the time development of the profiles of the temperature T, pressure p, and flow
velocity vy for T1/Tp = 2 in Figs. 4a (0 < /1o < 16), 4b (10 < /iy < 100), and 4c (100 < t/tg <
10000), where the scales of the ordinates, common to the three figures, are shown in Fig. 4a. In
Table I, we give the corresponding time evolution of the values of the energy flow H;, normal stress
p11, temperature T, and pressure p at the wall, where H; is the energy flow vector (Hy = H3 = 0)
and p;; is the stress tensor (p12 = p13 = pa3 = 0) defined, respectively, by

= %/E!éffd£1d62d£3) /(Et -9 (6) vJ)fd£1d€2d£3 (14)

The pressure rise near the wall by sudden heating pushes the gas away from the wall and sends
out a compression wave (shock wave) toward infinity in the gas. Then, the density near the wall
begins to decrease because tliere is no mass injection from the wall to compensate the gas flow.
This leads to a pressure decrease since the energy supply-from the wall, which decreases with the
temperature rise near the wall, is insuflicient, and an expaunsion wave is sent out to run after the
shock wave. The expansion wave finally overtakes the shock wave and weakens it. For:large t/1o,
the amplitude of the shock wave decreases very slowly, and its propagation speed approaches the
sound speed at the equilibrium state at rest with temperature 1y and pressure pg. As regards the
temperature field, only a small part of the disturbance propagates as the shock wave; and the rest
diffuses slowly. The velocity profile behind the shock wave has a shoulder. The region near the wall
where the slope of the profile is larger corresponds to the diffusion region. The gas is heated by
diffusion and is pushed outward there. The heating and piston eflect gets weaker as time goes on.
Correspondingly, expansion waves are continuously sent out to accommodate the diffusion region
and the region behind the shock wave. Thus, the region between the shoulder and shock wave
is the region of expansion waves. Since a wave sent out at later time is weaker, the variation of
physical quantities in the expansion wave region is larger farther away from the wall, that is, the
variation is largest just behind the shock wave (see Fig. 4c). In the limit of ¢/t{g — oo, the state
of the gas approaches the uniform equilibrium state at rest with temperature 17 and pressure pg.

For T /1o = 2, the reduced velocity distribution function g at ¢/tg = 0.5, 2, and 10 is shown
in Fig. 5 as a function of (ZRTO)‘I/zfl The discontinuity of g in the gas attenuates rapidly with
time due to molecular collisions and is invisible at /1y = 10. The discontinuity at the wall decays
slowly.

In Fig. 6 and Table I, we give some results for a small temperature rise, i.e., T1/Tp = 1.1,
The feature of the flow ﬁeld is very similar to that for T} /Tp = 2 except that the amphtude of the
disturbance is small*. In Table I, the analytical results! of the temperature and pressure for short
time and long time based on the linearized equation, supplemented by more recent and accurate
datal? for the numerical coeflicients, are also shown for-comparison.

B. The case of sudden cooling (73 /Tp < 1)

For Ty /To = 0.5, we show the time development of the profiles of T', p, and v; in Figs. 7a, b, ¢
and the time evolution of the values of Hy, p11, T, and p at the wall in Table II. In contrast to
the case of heating, sudden cooling gives rise to a pressure decrease near the wall, which causes
a gas flow toward the wall and sends out an expansion wave. Owing to the gas flow, the density
near the wall begins to increase. This leads to the pressure rise, and a compression wave is sent
out. The compression wave overtakes the preceding expansion wave and weakens it. Only a small
part of the disturbance in the temperature propagates as the expansion wave, and the rest diffuses
slowly. In Fig. 8, we show the reduced velocity distribution function g at ¢/t = 0.5, 2, and 10 for
T1/To = 0.5.

The results for a small temperature drop, i.e. T1/70 = 0.9, are shown in I‘1g 9 and Table II,
where some results of the linearized analysis! are also given. The pattern of the time development
of the disturbance is very similar to that for 77 /Ty = 0.5.

* Even in the case of T /Ty = 2, the amplitude of the shock wave is small (see Fig. 4).



The lattice system used in the computation is as follows (the dimensionless variables =z, 1, ¢
are used below). The molecular velocity ¢ is limited to the finite interval =7 < (< 7 with Z =6
(11/16 < 1) or 7 (11/15 > 1), which is divided into 120 nonuniform sections with the minimum
- width 2.68x1072 ~ 3.07x10~2 around ¢ = 0 and the maximum width 0.305 ~ 0:373 around
¢ = +Z. The space coordinate z is limited to the finite interval 0 < a2 < D, where the subregion
0 <z <Dy (D =21) is divided into Ny nonuniform sections with the minimum width A,,
around z = 0 and the maximum width Aps around =z = Dj, and the rest D; < o < D is divided
into Ny uniform sections with the width Apr. For 0 <7 <100, D 22 21 ~ 133, N, = 1500 ~ 375,
N; =0 ~ 1125, A,, = 0.0025 ~ 0.01, and A = 0.025 ~ 0.1; for 100 < { < 2000, D = 283 ~
2383, Ny = 188 ~ 24, N, = 1312 ~ 1476, A,, = 0.02 ~ 0.16, and Apy = 0.2 ~ 1.6; and for
2000 < 7 < 10000, D = 15983, N, = 24, N, = 9976, A,,, = 0.16, and Apr = 1.6. The time step
in { is changed, according as time, from the minimum step 0.0025 (0 < < 100) to the maximum
step 0.1 (2000 < ¢ < 10000).

Let us denote the lattice system described above by L1. For an accuracy test, we prepared
two coarser lattice systems L2 and L3, i.e., L1 with double the time step intervals (L2) and L1
with double the space lattice intervals (L3), and carried out the computation until # = 100. To
show the data, we introduce )

S(z,t) = max(|M(L1) — M(L2)|,|M(L1) — M(L3)]),

" (for each lattice point in (z,7) common to L1,L2,and L3),

where M represents the macroscopic variables Ty ' T, pg 'p, etc. and M(L1), etc. indicate the M
computed on the basis of lattice L1, etc. Then, S(0,1) for py'(2R15)~Y2 1y, p3'pu1, Ty T, and
Po 1y are, respectively, less than the following (cf. Tables I and 1I):
3.0x10%, 1.8x10~%, 3.7x10~4, and 3.2x10~%, (T3 /To = 2),
3.1x107%, 1.4x10~5, 3.0x10~5, and 1.7x10~%, (T} /Ty = 1.1),
4.0x107%, 1.4x1074, 3.0x107*%, and 1.9x10~%, (T} /To = 0.5),
3.2x10-5,.1.5x10~5, 3.0x10~5, and 1.9x10~5, (T} /Tp = 0.9),
S(10m) (m = 1,2,-++,10) for Tg''T, py'p, and (2R7T5)~"/?v, are, respectively, less than the fol-
lowing:
1.4x10~2, 2.0x10~3, and 9.9x10~%, (T1/Tp = 2),
5.9x105, 1.1x10~4, and 6.1x10~S, (T3/Tp = 1.1),
» (
» (

0.1 <7< 100.

9.0x107%, 8.8x10™%, and 5.2x10™*, (T1/Tp = 0.5),
5.8x107%, 1.1x10™*%, and 6.1x10~%, (T}/To = 0.9).
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