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Abstract

A concept of approximate factorization of multivariate polynomials is introduced and an algorithm for ap-
proximate factorization is presented. The algorithm handles polynomials with complex coefficients represented
approximately, hence it can be used to test the absolute irreducibility of multivariate polynomials. The algorithm
works as follows: given a monic square-free polynomial F(z,y, ..., z), it calculates the roots of F(z, yo, ..., z0)
numerically, where yo,..., 2o are suitably chosen numbers, then it constructs power series Fi,..., F, such that
F(z,y,...,2) = Fi(z,y,...,2) - Fa(z,y,...,z) (mod $°**), where n = deg_(F), S = (y — ¥o,...,2 ~ 20), and
e = max{deg,(F'),..., deg, (F)}; finally it finds the approximate divisors of F' as products of elements of { F1,..., Fn}.

1 Introduction

Consider, for example, the polynomial
F(z,y)=z>+3.0y2% + 2.29> — 1.T)z — 2.9y.
Although F'(z, y) is irreducible, we can decompose it as
F(z,y) = (z*+ 1.3yz — 1.7)z + 1.7y) — 0.01y%z — 0.01y.

We call this kind of decomposition approximate factorization of accuracy ~ 10~2,

Factorization of polynomials has been studied by many persons. Some of the older algorithms are described in
[vdW37]. The more modern ones which are practical but have exponential time-complexity in the worst case were
devised by [Ber67, Zas69, WR75, WR76], etc. (see [Kal82a] for rather complete bibliography), and [LLL82, Kal82b,
vzGK83, Len84], etc., have presented algorithms of polynomial time-complexity. Furthermore, several authors have
studied factorization over an algebraically closed field and absolute irreducibility testing [HS81, CG82, Kal85, YNT90].
However, all of these studies deal with the exact factorization, hence the algorithms proposed are not applicable to
polynomials with coefficients of floating-point numbers, for example.

On the other hand, scientists and engineers do often desire to “factorize” multivariate polynomials with coefficients
of approximate numbers. According to their view, both (22 — 10000) and (z2 — 10000.5), for example, are almost the
same and “factorized” as

(=% — 10000.5) ~ (z2 — 10000) = (z + 100)(z — 100).

Thus, we are naturally led to extend the concept of factorization to the approximate one. This kind of extension is
desirable not only for factorization but also for many other algebraic operations. In fact, recently one of the authors
(T.S.) and his collaborators developed algorithms for approximate GCD, univariate and multivariate, and applied them
to solving numerically ill-conditioned problems [SN89, SS90, ONS]. They called such algonthms the approximate
algebraic algorithms which include algorithms for approximate factorization, too.

Since most of the conventional factorization algorithms employ the exact numerical arithmetic (to our knowledge,
only [Len84] and [Kal85] employ the approximate numerical arithmetic), we cannot apply them to approximate
factorization, and we need a new idea. Our idea is to use the fact that monic square-free polynomial F(z,y) has the
roots ¢ = p;(y),i = 1,...,deg, (F), of the form ¢;(y) = c; o +¢i 1y + c;yzyz + . ... We thought that this fact had not been
used in the conventional factorization algorithms, but we found that [Kal85] utilized this fact in a rather restricted way.
However, we realized that the above-mentioned fact can be utilized more widely and elegantly than as used in [Kal85].

After giving some preliminaries in 2, we reformulate in 3 the generalized Hensel construction which we will use to
calculate the roots of F(z, ) in the form of formal power series in y. The principle of (approximate) factorization is
proved in 4, and a primitive version of the algorithm is presented. The primitive version is, although complete, quite
inefficient unless the degree of the polynomial is low. So, in 5, we present a simple method for making the algorithm
practical.
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2 Preliminaries

In this section, we define notations, explain preprocessing of polynomlals and introduce notions on approximate
factorization by referring to [SN89, SS90].

The field of complex numbers is denoted by C. By Clz,y,...,z] and C{y, ..., 2}[z] we mean, respectively, the
polynomial ring over C in variables z, y, . . . , z, and the ring of polynommls in z with coefﬁcncms of formal power series
iny,...,z over C. In this paper, « mueatedasmemamvanable

Let F(z,y,...,2) beanelement of C[z,y,...,2] and
F@,y,...,2)= fa, ..., 2)2" + fo1@,..., 202" 4 & foly,...,2), fn#O 2.1)

The degree of F w.r.t. z is denoted by deg, (F') or simply by deg(F): deg(F') = n. Similarly, the degree of F' w.r.t. y is
denoted by deg, (F'). The leading coefficient of F wx.t. z is f, and denoted by Ic-(F") or simply by Ic(F): 1c(F) = fn.
Let f be a polynomial/power series in a smgle variable. By | f],, we mean the sum of all the terms, of f, of degrees not
less than e: if f = ag + a1y +agy® +- - -, then | f|, = a.y® +acny®* +--

Polynomial F is called monic w.r.t. z if Ic.(F) = 1. Any polynomxal can be transformed into a monic polynomial
by the following transformation

F@y,...,2) = F'(z,y,...,2) = fi7 F &/ fnyy,. .. 2). (2
The F(z,y,...,z)can be decomposed as
F(x»y)'--az)=Fr'r?(z’y’“-)z)Fm:ll(z)y,---az)"'Fl(x;ys--wz):
each F; has no multiple factor, ¢ =1,...,m, (2.3)
ged(F;, F;) =1 for i #3j.

This decomposition is called square-free decomposition and each F; is called square-free. Let by, ..., b, be numbers in
C.If wechoose by, ..., b, arbitrarily then F'(z,b,, ..., b,) is mostly square-free. ’ : :

Remark 2.1 With the above preprocessing, we may assume without loss of generality that F'(z,y, ..., z) is monic and
both F(z,y,...,2)and F(z,0,...,0) are square-free, O

Definition 2.1 [maximum magnitude coefficient]. The maximum magnitude numerical coefficient of F' is denoted by
mmc(F). (mmc(F') is nothing but the infinity norm |F|.) O

Definition 2.2 [numbers of similar magnitude]. Let a and b be numbers in C, and b # 0. By a = O(b), we mean that
1/¢ < |a/b] < ¢ where ¢ > 1 is a positive number not much different from 1. (Usually, “O” denotes Landau’s notation,
and we are using it in a somewhat different meaning.) O

Definition 2.3 [normalization of polynomial]. Normalization of polynomial F isthe scale transformation FF — F' = F,
n € C, sothat mmc(F')=1. 0O

Now, we define approximate factorization.

Definition 2.4 [approximate factorization of accuracy €]. Let ¢ be a small positive number, 0 < ¢ < 1. Let
F(z,y,...,z)beanormalized polynomial in Clz,y, ..., 2]). If

F=GH +AF, mmc(AF)=0(), .4

where G and H are non-constant elements of Clz,y, ... . 2], then G (and H) is called an approximate divisor of F* of
accuracy €. Finding G and H satisfying (2.4) is the approximate factorization, of accuracy ¢, of F'. O

Remark 2.2 If F is not approximately factorizable with accuracy less than O(¢) then F' is irreducible and, in fact,
absolutely irreducible because we are handling coefficients in C. O
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3 Hensel construction in C{y}[x]

The Hensel construction is the p-adic univariate polynomial expansion technique devised by Hensel in ~1900, and it is
generalized by Wang and Rothschild [WR75] to the expansion of multivariate polynomials. In this section, we formulate
the generalized version in C{y}[z], for simplicity.

We assume that F'(z, y) is a monic polynomial in C{y} [z] and F'(z, 0) is square-free. Let deg, (F') = n and the roots
ofF(a:,O)beul, ceeyUnl

FE,0)=(@—uy)---(x—uy), y;€C, i=1,...,n. @3.1)
By assumption, u; ¥ u; fori # j. We put

F..(o)=z—u,-, i=1,...,n (3.2)

Lemma 3.1 For integer1,0 < | < n — 1, there exists a set of numbers {w?", ..., w®} satisfying
wOFP ... FOIFO1+ .. 2 wQFQ. .. FO/FO) = 2. (3.3)

Proof Each term of the Lh.s. of this equation is a polynomial of degree n — 1. ‘Hence, we can determine w",
i=1,...,n,uniquely by evaluating the above equation at n distinct points. Evaluating (3.5)atz = uy,...,2 = u,, we
find
n
w.g'):’ui-/ H (u,--u,-), i=1,...,1’l. (34)
j=1, A ‘
o

If H(z) = hp12"~1 +- .. + hoz, then (3.4) gives

Z why = H )/ 1'[ (@i — u)). | 35

j=l,%

Lemma 3.2 [generalized Hensel’s lemma). Let Fi(z, y) be deﬁned as above. For any positive integer k, there exists a
set of polynomials {F{®, ..., F®Y satisfying

F@y) = FPey- FOEy) (mody*), (3.6)
F‘.(k)(a:, Y = r—ui+c Y+ + c,-y;,y", i=1,...,n, (3.7
wherec;;, j=1,...,k, are numbers in C.

Proof By mathematical induction: Eqs.(3.6) and (3.7) are valid for k£ = 0. Assuming the validity of Eqs.(3.6) and (3.7),
we consider the case of k + 1. Put

FED=FP + AFFD, AFFD =0 mody), i=1,...,n.
We determine AF®*D,i =1,...,n, so that they satisfy
F=FP+AFFD)...(F® + AFF*Y) (mod y**?)

We can rewrite this equation as _

AF®D = F_F®. . F® (mod y**?). (3.8)

AFFDFED . FOIFO 4. ..+ AFEOFD ... FOFO).
By the induction assumption, the Lh.s. of this equation can be expressed as
AF®HD = yku(fn_lzn—l Foord fo) (mod ylwz). 3.9

Hence, by Lemma 3.1, we can determine AF**" as
n—1 - . .
AFED =18l f), i=1,.. 0. (3.10)

The F**V constructed is of the form of (3.7). O
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Lemma 3.3 (proof omitted). Let F (z,y) be defined as above. Let

F(-’B,y)=G(3,y)'H(3,y), 3.11)

where G and H are monic and elements of C{y}[z] in general. Then, the Hensel construction of F by the above
mentioned method is equivalent to the Hensel constructions of G and H. O

4 Algorithm of approximate factorization

We first consider power series by Hensel construction. For simplicity, we confine ourselves to be in C{y}{z]. Let F’,
G® and H® be elements of C{y}[z]. If

F'z,y) = Gz, )H®(z,y) (mod y**), “.1n
for any positive integer k, we represent the case of k = oo as
F'(z,y) = G(z,y)H (z,y), : “4.2)

where G = limg .o G®), H = lim;—.oo H®). We have seen in 3 that any polynomial F'(x,y) which is monic w.r t.
and for which F(z, 0) is square-free, is factorized in C{y}[z] as

F(z,y) = Fi(z,y) - Falz,y), 4.3)
Fi(z,y) = a:—u‘-+c;,1y+-'-+c;ykyk+-~-, i=1,...,n, ’
where u;, ¢; 1, . .., Ci k, ... are numbers in C. In this and following sections, we define
e = deg, (F). 4.4)

We want to calculate every irreducible polynomial divisor G of F, where G € C[z, y], in terms of F, ..., F,. This
is assured by the following theorem.

Theorem 4.1 (proof omitted). Let F and F;,i = 1,. .., n, be defined as above. Any polynomial divisor of F' is a product
of elements of {Fy, ..., F,}, and each element F; is contained in only one irreducible polynomial divisor of F. 0

Theorem 4.2 Let ¢ be a small positive number, 0 < € < 1. Let F, G, H be normalized monic polynomials in Clz,y]
such that F(z,0) is square-free and

F(z,y) G(z,y)H (z,y) + AF, @.5)
F(z,0) G(z,0H(z,0), mmc(AF) = O(c). :

LetFy,..., F, bedefined as in (4.3). Then, some elements of {Fy, ..., Fp}, let thembe F, . .., F,, withm < n, satisfy

G(z:y)=Fl(z)y)'"Fm(z:y)‘{'AG(x’y): (4.6)
AG(z,0)=0, mmc(AG) = O(). :

Proof Put F =GH,G =G — AGand H = H — AH, where
G=Fl"'Fma ﬁ=Fm+l"‘Fn'

Substituting these into (4.5), we have
AG-H+AH -G+ AF = AG - AH. “.7n

Formula (3.10) shows that the correction terms AF,-('M), i = 1,...,n, are linearly proportional to the coefficients of

AF®*D_ This means that AF**D, i = 1,...,n, go to zero uniformly as AF goes to zero, and so are AG and AH.
Hence, (4.7) means that

O(mmc(AG)) = O(mmc(AH)) = O(mmc(AF)) =¢.
ul

I£G = F - -- Fyy is a polynomial divisor of F, then G = F® ... F®) (mod y**!), where F{¥,i =1,...,n, are the
finite power series constructed by Hensel’s method. In order to test whether G is an (approximate) divisor of F or not,
we have only to setk > e (= degy(F)) and perform the trial division of F' by G. Since deg(F;) =1,i=1,...,n, wecan
find all the irreducible (approximate) factors of F' by testing all the combinations of F1, .. ., F,, successively from low
to high degrees.

This observation leads us to the following primitive algorithm which is applicable to F'(z, y, . .., z) € Clz,y, ..., z].
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Algorithm: Approx-Factorization (primitive versicz)
Input: anormalized monic and approximately square-free polynomial F(z,y, . .., 2),
¢ = the accuracy of approximation, 0 < ¢ < 1.

Output: {Gi,...,G:}, where each G; is an irreducible approximate factor, of acccuracy less than ¢, of F'.

1. Choose constants yo, . . ., zo such that F'(z, yo, . . ., 2¢) is approximately square-free, and calculate the roots
of F(z,yo, - . - , 20) numerically:

F(z,y0,...,20) =(x — u1) - (& — uy).

II. Put S = (y — ¥0, ..., 2 — 20), an ideal generated by y — yo, ..., 2 — zo. Using the generalized Hensel
algorithm, construct F1, ..., Fy, such that :

F(x’yi---sz)EFl(zryv---’z)"'Fn(‘r’y)--'?z) (mOdS>e+2)7
where e = max{deg, (F),...,deg,(F)}. i=1,...,n.

II. Put " := ¢ (null set) and let I* be an ordered set of all the distinct factors of F| - - - F,,, of degrees less than
or equal to n/2, arranged in low-to-high degree order:

f‘ = (Fl, .o .,Fn,Fle, .. .,Fn-an,FleFb, .. .),
deg(element of I') < n/2.

While [ # ¢ do
( G := [the first element of I*];
if mmc(remainder(F, G)) < O(¢)
then I' := I U {G} and delete all the multiples of linear factors of G from I,
else .= - {G}).

IV. Return I". O

5 Efficient selection of the relevant combinations

The factorization algorithm given in 4 is, although complete, quite inefficient unless n = deg(F) is small. The
time-consuming step is step IIL: in the worst case, we must check 27! different combinations of Fy, ..., F,. In this
section, we present a simple and efficient method for finding the relevant combinations of Fy, ..., Fy,. Here, only a brief
description of the method is presented, and the detailed analysis will be given elsewhere. Furthermore, we discuss in this

paper only the properties of exact polynomial factors and the discussion from the viewpoint of approximate factorization
will be given in another paper. ‘

We assume again that F' is in C{z, y] and, define Fy,..., F,; asin (4.3)and e as
e = deg, (F'(z,y)). .1

The key point of our method is the investigation of the coefficients of higher degree terms in F, ..., F,. The existence
of such terms is assured by the following lemmas.

Lemma 5.1 (proof omitted). Let F(z,y) € Clz,y) and F = GH , where G and H are monic and elements of C{y}(z].
If G is a finite power series iny, or G € Clz,y], then G and H are polynomial divisors of F. (If G contains a term cy®,
k > e, then G is an infinite power series in y). O

Our method of finding the relevant combinations is to utilize several kinds of linear relations satisfied by the
coefficients of the power series factors of polynomials. The first relation is as follows.

Lemma 5.2 Let F and Fy, ..., F,, be defined as in (4.3). If
G=Fi - Fpn=2™ +gm1@z™ 1+ +g0(¥)

is an element of Clz, yl, then
c1 g+ +emp =0 for any integer k>e. (5.2)
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Proof Put Fi(z,y) =z — pi(¥), i =1,...,n, then p1(y), ..., pm(y) are roots of G(z,y) = 0. Hence, from the
relationship between roots and coefficients, we have

Y #i@) = —gm-1®). (5.3)

i=l

‘Observing the y*-term of this equation, we obtain (5.2). O

Terminology If F,...,F, satfsfy (5.2), we say {F, ..., Fy,} satisfies zero-sum relation. O
Let M{® be the following matrix constructed from the coefficients of F;,i = 1,...,n:

Cle+l Cle+2 Cle+3

CZ,?+1 Ce+2  C2e+3

M® = (5.4)

Cn,e+l Cne+2 Cnes3

Then, Lemma 5.2 leads to the following theorem.

Theorem 5.1 The rank‘ of matrix M 1(” is equal to or less than n — r, where r is the number of irreducible polynomial
divisorsof F. O

Corollary. If the rank of M) is n — 1 then F" is irreducible over C, i.¢., absolutely irreducible. O

If F contains irreducible factors of degree > 2, then some rows of M 1(’) are nonnull by Lemma 5.1 and we can find
nonzero elements of M fe) by constructing F,-", i=1,...,n, upto k > 2e. Therefore, in order to find the zero-sum
relations, we need not calculate infinite power series but have only to calculate finite terms of Fj, i = 1,...,n

In many cases, we can find the relevant combinations of {F,..., F,} by finding the zero-sum relations for row
vectors of M{*). We first define non-overlapping relations.

Definition 5.1 [non-overlappingrelations]. Letv;,. .., v, be vectorsin C"',wheren <n’,andR :ajvi+ - -+a,v, =0
and R' : ajv; +- - + al, v, = 0 be linear relations on vy, ..., v,, wherea; € Canda; € C,i=1,...,n. Rand R are
called non-overlapping if laiai| +- - - +|agal| =0. O

If there are r linear relations which are linearly independent, then the relations form an r-dimensional vector 'space.

Since the polynomial divisors of F' of the form z — ¢(y) can be found easily, we assume without loss of generality
that every row of M{® is nonnull. Let M = (»y, ..., v,)7, then our problem is to find non-overlapping linear relations
of the form a,v; + - - - + a, v, = 0, where each a; is either 1 or 0. The non-overlapping relations can be found by the
following algorithm which finds all the linear relations first by neglecting the condition on e; and then decomposes the
relations to non-overlapping ones if possible. Note that there may not exist such non-overlapping relations.

Algorithm: Find-Relations

Input: Vectors vy,...,v, in C"f,n <n';
Let R be the vector space of linear relations on vy, . .., v,, and let r = dim(R).

Output: If there exist » non-overlapping relations {R,, ..., R,} then {Ry, ..., R} else NOT.

I. Find all the linear relations on vy, .. ., v,, by the Gaussian elimination.
Let the relations obtained be

R;: anvi+---+ainv, =0, 1=1,...,r.

II. Form the matrix A as follows:
ay ... Qin — R1

A= Do, : (5.5)

Arp ... Gpq — R,
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1. Eliminate the columns of A, from the 1st to (r — 1)st, by the Gauss method (Gaussian elimination), then
eliminate the columns backward, i.e., from the rth to 2nd.
Let the resulting matrix be A which is of the form

an 0 G141 ... d1n — R}
A= : S : ©(5.6)

0 Grr Gppe1 ... Gpn ~ R
IV. If A consists of mutually non-overlapping row vectors then return the row vectors, else return NOT. O

Theorem 5.2 Let vy, ..., v, and r be defined as in algorithm Find-Relations. Then, the algorithm Find-Relations
is correct, i.e., it finds all the non-overlapping linear relations on v, ..., v, provided that the number of such
non-overlapping relations is r.

Proof After the Gaussian elimination in Step I, ail nonnull vectors calculated are linearly independent of each other,
and r = dim(R) where R is the vector space of linear relations on vy, ..., vn. Next, we consider the matrix A in (5.6).
Note that @1 # 0, ..., &~ # 0, because pivoting is made in Step I if necessary. We denote the ith row of A by R},
i = 1, R

Suppose that there exist r non-overlapping linear relations R;, ..., B, on vy, ..., v,. Then, we must have
{Ri,...,R.} = {Ry,.. .,R,}, where the proportionality constants are omitted. In order to see this, suppose, for
example, that By : @11v) +- - + 81,9, =0and R, # R}. Then, R, is expressed as R; = R} + bR} + - - -, where at least
oneof b;,i =2,...,r, is not zero. Suppose b, # 0, then Ry is of the form B, : &;3v, +bydgvy + - - = 0. Therefore,

by assumption, I?/z ..., R,, must not contain R} and R so they must be expressed in terms of Rg, ., R}, which is
impossible because Rl, .., R, are linearly mdependent of each other. O

We show an example of factorization using the zero-sum relations for M f”.

Example 5.1 F(z,y) =z*+(y — 2z® - (y + )z? +(y2+2):|: -
By Hensel construction, we obtain

Fi = @-0-y/2-9*/8-1y*/16 - 54*/128+. .,
F, = z-1)~-y/2-9y*/8+0+1*/128+..-,
F; = (z-2+y/2+y*/8+y°/16+5y%/128+ - .-,
Fy = @+1)—y/2+y%/8+0—~y*/128+--..

Coefficients of terms y*, k > 2, give the matrix
(—1/8 -1/16 -5/128 ...\ —

M(z) = -—1/8 0 1/128 — v
1 1/8 1/16 5/128 ... — v
1/8 0 -1/128 ... — P4

-1/8 -1/16 -5/128 ... — v

0 1/16 6/128 — V2 — V1

- 0 0 0 ... | — wvi+vy

\ © 0 0 ...) — wvi+vy

We see that {Fy, F3} and {F;, F,} satisfy the non-overlapping zero-sum relations, thus F}F3 and F;F, are good
candidates for polynomial divisors of F'. In fact,

Gi=hFh=2*-2c-y, Gi|F,
G25F2F4=$2--y£—- 1, Gz‘F

Finally, let us consider the case in which, although we may determine some zero-sum relations, the above-mentioned
column elimination operation on M, ©) does not give us other zero-sum relations uniquely or some zero-sum relations
are overlapping. In this case, we cons1der the zero-sum relations on the powers of roots. Let ;(y) be the ith root of
F(z,y)=0:

Fi@y) =2~ o), o) =wi—ciy—cigy’~---, i=1...,n. 67
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We calculate ¢!,1 =2, ..., n, and represent them as

1 ", .0 @,k l

pi=ciotci iyt te Yt 4, 1=2,...,n. (5.8)

Without loss of generality, we assume that G = F; - - - Fy,, is a polynomial divisor of F. Then, ¢} + ¢} +--- + ¢!,
can be represented by elementary symmetric polynomials in ¢, . .., ¢,, and the degrees, w.r.t. y, of such symmetric
polynomials are not greater than le. Hence, we have

m
Z l.‘PiJ(e,,l =0, 1=2,... y N (59)

§=]
Thus, we again have zero-sum relations. Since the above relations must hold for each value of | independently, the above
relations can be unified to the zero-sum relations on the combinations
tipi+tapl 4 +tapl, i=1,0m, : (5.10)

where 4, 12, . . ., t,, are arbitrary parameters.
Let M®e)t,, ...,t,) be the following matrix:
1 1
2;‘-1 t'cg,)neﬂ Z;‘-l t‘cg,)nuz
MOy, ..., t,) = : : (5.11)

no, 0 no, M
Zl=1 t'cn,neﬂ ZI=1 t Cone+2

Theorem 5.3 If F has an irreducible divisor in Clx,yl, letitbe G = F;, --- F; ,then{F;,,..., F;_} satisfies the zero-

sum relation for M®)(t,, .. .,t,). Conversely, if {F;,, ..., F;,} satisfies the zero-sum relation for M®(t1, .. ., t,),
thenG = Fy, - -- F;_ is a polynomial divisor of F'.

Proof The first half of the theorem is obvious from the above discussion, so we prove only the second half.
By assumption, we see that for each I, 1 < 1 < n, ¢} +¢} +---+¢! is a polynomial in y. By decomposing
o+l +-- 40t ,I=1,...,n, into elementary symmetric polynomials in ¢;,, ..., ¢;,, , we see that the symmetric
expressions are again polynomials in y. Hence, all the coefficients of G = (x — ¢;,(¥)) - - - (= — ., (¥)) are polynomials
iny and G must be a polynomial divisor of F' by Lemma 5.1. O

Example 5.2

F(z,y)=z%— (12— 12y + 3y®)z* + (36 — 102y + 6632 — 30y> + 9y*)z2
— (81 — 198y + 247y — 154y° + 49y).

This example is constructed as F' = G1G,, where
Gi=@ 24y —(Q+y+y?+9%), Ga=(+2-y) +(1+y+y*+y).
Letw;, j = 1,...,6, be the six different roots of 26 — 1 =0:
wj =cos((f — Dr/3)+isin((G — Dx/3), j=1,...,6.

Thus, we have w; + w4 =0, wa +ws =0, w3 + we=0. Let @ be

A +y+y+y)/3
1+y/3+202/3% +14y% /3% — 46y% /3% + 10y° 438 + - ...

@

Let the roots of Gy (z, y) and Ga(z, y) in C{y}[z] be {1, p3, ps} and {p2, 4, e}, respectively:

pj=2—y+w;p, j=13,5
pj=—Q2-y+w;p, i=2,4,6.

Thus, we have the relations
pr1+pa=0, p2+p5=0, p3+pe=0.
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The F;,t=1,...,6, constfucted from F' by Hensel’s method are

Fiz,y)=z—pi(y), i=1,...,6.

Therefore, the rank of matrix Ml(z) is 1 and the row vectors of Mfz’ satisfy three zero-sum relations v, + v4 = 0,
vy +vs =0, v3 + vg = 0, as well as zero-sum relations v; + v3 + vs =0, v + v4 + v = 0. However, only the latter two
relations correspond to irreducible polynomial factors of F* and the former three relations do not. Note that the above
zero-sum relations are overlapping. (Applying the column elimination procedure mentioned above to M ) we obtain
wyvy — v2 =0, w3v) — v3 =0, ..., wsv; — vg = 0. These relations cannot be split into mutually non-overlapping linear
relations by algorithm Find-Relations.)

On the other hand, we have

=Q2-yP+w12— Y@ +wi1@?,
Pr=p2=Q2—y) — w2~ )P +ws @,
03 =k =2 -y +wi2 — y)@ +ws@.

Hence, eliminating the columns of matrix M ®)(t,, 5,0, .. ., 0), we obtain only zero-sum relations
V1 +v34+v5=0, vy+v4+v6=0.

From these, we see that Gy = F F3Fs and F,F4Fg are good candidates for polynomial divisors of F', and in fact G;|F
and GzIF .0

6 Concluding remarks

In this paper, we have introduced the concept of approximate factorization, presented a primitive version of the algorithm
of approximate factorization, and proposed a method which will make the algorithm practical. However, we have not
fully analyzed the algorithm yet; a mathematical as well as computational analysis will be given elsewhere. In particular,
we will show that finding the zero-sum relations on the matrix M ®€)(t,, . . ., ¢,,) will determine the relevant combinations
of {Fi,..., Fy} uniquely to give all the irreducible polynomial divisors of F' [SSH91].

The basic principle of our factorization algorithm is quite simple, and we think the idea will be applicable to exact
factorization over integers, etc. We are now pursuing such possibilities, too.
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