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Variations of Structured Broyden Families for Nonlinear Least
Squares Problems

HEEMAY - T¥8  K#H ¥ (Hiroshi Yabe)

1 Introduction

In this paper, we consider methods for finding a local solution, z* say, to a nonlinear least
squares problem

. 1 &
(1) minimize f(z) = 3 Z(Tj(ﬂ)))z,
j=1
where 7 : R* = R, j = 1,...,m(m > n) are twice continuously differentiable. Such problems
arise widely in data fitting and in the solution of well-determined and over-determined systems
of equations. Among many numerical methods, structured quasi-Newton methods seem very
promising, which use the structure of the Hessian matrix of f(z) such as

@) V25(z) = J(@)T(2) + 3 1,(x)VPrs(a).

i=1

These methods were proposed by Broyden and Dennis and were developed by Bartholomew-
Biggs[2], Dennis, Gay and Welsch[6]. Recently several studies have been suggested, e.g., Al-Baali
and Fletcher[1], Dennis, Songbai and Vu[7], Dennis, Martinez and Tapia[8], Fletcher and Xu[9],
Martinez[10], Xu[12].

For structured quasi-Newton methods, there are two types of strategies. One is a line search
descent method and the other is a trust region strategy. This paper is concerned with the former
which generates the sequence {zx} by

(3) Tk41 = Tk + ody,
where oy is a step length and a search direction dj is given by solving the Newton equation
(4) (J% T + Ax)di = — Ty,

r(z) = (r1(2), - - -, Tm(2))T, r& = r(zx), Jk = J(zx) (Jacobian matrix of r) and a matrix Ay is the
approximation to the second part of the Hessian matrix. Since the coefficient matrix of (4) does
not necessarily possess the hereditary positive definiteness property, Yabe and Takahashi[15),
[17] proposed to compute the search direction by solving the linear system of equations

(5) (L + )T (Lx + Ti)dx = —JF 7y,

where the matrix L is an m X n correction matrix to the Jacobian matrix such that (L +
J)T(Lg + Ji) is the approximation of the Hessian and overcomes the difficulty of the Gauss-
Newton method. Since the coefficient matrix is expressed by the factorized form, the search
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direction may be expected to be a descent direction for f. Following to [4], we dealt with the
secant condition

(6) (Lr41 + Joa1)T (L1 + Tia1)sk = 2k,
where
(7) sk = Tra1 — Tk, 2k = (Jht1 — Jk) T i1 + Ty Jeta sk

We called this method the factorized quasi-Newton method and obtained two updatmg formulae
for Lj, which corresponds to the BFGS and the DFP updates.

On the other hand, Sheng Songbai and Zou Zhiong[11] have studied factorized versions of
the structured quasi-Newton methods independently of us. They pitoposed the approximation
of r(z) around zj as follows:

’I‘(ka -+ d) ~ r(:ck) + (Jk + Lk)d,

and obtained a search direction by solving the linear least squares problem

1
(8) minimize §||7‘k+(.7k-§-Lk)d||2 with respect to d,
where || || denotes the 2 norm. In the case of Lk‘ = 0, the above implies the Gauss-Newton
model. The normal equation of (8) is represented by
(9) | (Jx + L)T(Jx + Li)d = —(Jx + L) 7.

Since the above dose not correspond to the Newton equation(5), Sheng Songbai et al. imposed
the condition Lgrk = 0 on a matrix Lg, in addition to the secant condition (6) and obtained an
BFGS-like update.

Now we present an algorithm of factorized quasi-Newton methods.

(Algorithm of factorized quasi-Newton methods)
Starting with a point £; € R and an m x n matrix L; ( usually I; = 0), the algorithm proceeds, .
for k =1,2,..., as follows:

Step 1. Having zx and Ly, find the search direction dj by solving the linear system of equations
(10) (Ly + 7)) (L + Tp)d = —JTrg.

(or, following to Sheng Songbai and Zou Zhihong, find the search direction dj by solving
the normal equation of (8)

(11) Lk + T Lk + T)d = —(Le+ Je)Tre.)
Step 2. /Choose a steplength o; by a suitable line serach algorithm.
Step 3. Set Tx41 = Tk + opdk.
Step 4. If the new point satisfies the convergence criterion, then stop; otheiwise, go to Step 5.

Step 5. Construct Lyy1 by using a suitable updating formula for Lj.

The idea of Sheng Songbai et al. seems very interesting to us and some numerical experiments
given in [16] suggest the efficiency of their method. So, in this paper, we generalize the update
of Sheng Songbai et al. and propose a new update which corresponds to the Broyden family.
Further, in Section 5, we introduce the structured Broyden family given by Yabe and Yamaki
[18] and obtain a family for Aj. This family for Ay corresponds to the structured secant update
from the convex class proposed by Martinez [10]. Throughout the paper, for simplicity, we drop
the subscript k¥ and replace the subscript ¥ + 1 by ”+”. Further || || denotes a 2 norm.
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2 Notations and Basic Properties

The conditions which Sheng Songbai and Zou Zhihong imposed on a m X n matrix Ly are the
secant condition ’

(12) Ly + ) (Ly + Jy)s =2
and the condition ,
(13) Iry =0,

which connects the Newton equation (5) and the normal equation (9). Letting Y = L, + J,
and h = Y's, the conditions (12) and (13) can be written by the matrix equations of ¥

(14) CY=D, Ys=h,
where r r

h z
) e EIEEA]

By using Chapter 2 in 3], we have the following theorem.

Theorem 2.1 The matriz equations (14) have a common solution if and only if each equation
separately has a solution and
(16) Ch = Ds,

where the matriz equation CY = D is consistent if and only if CCUD = D and CCHVC = C
for some CY, and the matriz equation Ys = h is consistent if and only if hsVs = h and
ssMg =g for some s, In which case, for these c and s the general solution of (14) s

(17) Y =CWD 4+ (1 -cWC)hsV + (I - C~C)B(I - s57),

where C™ is an arbitrary matriz such that CC~C = C, s~ is an arbitrary vector such that
§s7s=s and D is an arbitrary m X n matriz.

Note that the matrix C)D 4 (I — C(DC)hs() is a particular solution of the inhomogeneous
equation (14) and that (I — C~C)®(I —ss™) is a general solution of the homogeneous equations
CY = 0 and Ys = 0. The above theorem suggests that we just consider the equation (14) for a
vector h which satisfies Ch = Ds, i.e.,

hTh =357z and rzh = r_{.]+s.
In the below, we use the following notations

Q=T p__gog_ Tt

Il lIr+11?”
N=PL+J,, B'=NTN=(PL+J)"(PL+J,),
T T
Pl = NTPN, Q'=NTQN =X i ot

lirell?
Suppose the assumptions:
(A1) r4 is independent of A.
(A2) h satisfies ”Th = sT2 > 0 and rTh = rTJ,s.
Now we present the following properties which are usefull in the construction of updating
formulae for L. The proof of this is shown in [14].
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Theorem 2.2 (1) The matriz CCT is nonsingular and det(CCT) = ||r4|?||PR|)* > 0.
(2) sTz' > 0.

(3) I-C'C)h =0 and (I-CIC)ry =0 hold, where C! denotes the Moore-Penrose
generalized inverse of C.

(4) If rank N = n, the following statements are equivalent:

(a) P! is nonsingular.
(b) FIN(NTNY N Try # [ira 2.

(c) r4+ can not be spanned by the column vectors of N.

3 Construction of Partucular Solutions

In the general solution (17), setting C and C~ to the Moore-Penrose generalized inverses C1,
and letting ® = N, the result (3) in Theorem 2.2 yields

Y=N+CY{(D-CN)-(I-C!C)Nss™.

Since
1 lirg][2 —hTr [T - TN
| R + + - —
09 0= e el | S, T ] peew= [T,
we have Ph
(19) Y=N+ <WP_hH—2) (z— NTh)T —(I - C'C)Nss™.

In the below, we obtain a vector h satisfying the assumption (A2). First, we have a general
form of h satisfying the condition r1h = 'r{ J4s as follows

Tyt (, T TN Ty < T4 rers )
o= (r )l rides) + (T~ (rp)!(ri)u’ = Ir+11? re+ (1 - lIr+l1? u

T T
T+T4 T+T3 Y !
Ns+(1— )u = @QNs+ Pu,
e [k

where u' is an arbitrary vector satisfying the condition hTh = sT2. Secondly, setting u = v’
and choosing a parameter 7 such that

1
RTh = sTQls + —2-||Pu||2 = 572,
T

we have ;
h=QNs+ ;Pu,

where 7 satisfies 1
-1:'5”Pu||2 =577~ sTQls = sT 21,

Note that the result (2) in Theorem 2.2 guarantees the positiveness of the righthand side of the
above expression. ‘
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Since 1 1
—_ 2 _ 2 _.T
Ph= —Pu, ||PhI[" = —l|Pull=s oA,

Ph 1/ Pu Pu T 1
— = - (== === —NThp =t - -NTP
PhIP - (sma) ’<||Pu||2)’ F=Nh=s - 2N Py,

finally, it follows from (19) that
[Particular solution 1]

T

(20) Y=N+- (;}%‘T) (z' - N7 Pu) —(I-ClC)Nss™,
and
[Particular solution 2]

/ P 1 T
(21) Y=N+r71 (IIP_:IP) (z' - ;NTPu) —(I-CiC)Nss™,
where 1
(22) ' h=QNs+ ;Pu,
u is an arbitrary vector such that Pu # 0 and 7 is given by

2 _ 1Pyl

(23) T =TT

From (22), we have the following corollary. The proof of this is shown in [14].

Corollary 8.1 (1) The linear independence of r4+ and h are equivalent to the linear indepen-
dence of r4+ and u. ’

(2) - CtClu=0.

4 SZ-Broyden Family

In this section, we construct a BFGS-like update, which corresponds to the formula of Sheng

Songbai and Zou Zhihong, and a DFP-like update by using the particular solutions given in the

previous section. Further we propose a structured family, which corresponds to the Broyden
family.

In (20), set

: y= Ns.

Then Corollary 3.1 implies (I — C'C)Ns = 0 and we have

Tpl
2_ .Tpt o 8" Pls
|Pu|l* = 8" P's, 7°= T
So the solution (20) yields
1 (PNs 1 T PNs
N L[S (g Lyt — LN\ 4 ptayT,
(24) Y=N+ - (stl> (z 7_N PNs) N+ (sTPfs) (r2* — Pls)
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Setting Y = L4 + J4 and N = PL + J4, we have

PNs

i (25

) (2} — PYs)T,

which is the updating formula of Sheng Songbai and Zou Zhihong.
Here, setting B, = YTY gives

1T pit b T
B+=(P,_Pss P +z(z) )-}-Q’.

sTPls sT 2t

The above corresponds to a BFGS update from P! to B, except for Q!, so we call this a
SZ-BFGS update. We summarize as follows;
(SZ-BFGS update)

PNs T
BFGS _
(25) L] = PL+ (m) (rz“ - P's) ,
T pt
2 _ 8 Pis
(26) T - stu ’
PlssTpt (N7
BFGS _ 1_ i
(27) By = (P Tpis T o1 ) T9
_ g PissTPv Zh(H)T
- sTPls sTat -

In the below, we assume that the matrix P! is nonsingular. In (21), setting

sTzt

A4 \"
‘u= N(P") 1z and s":( ) ,

we have
s _ (NI (PH1at

IPullP = (HF(PY S, WTPu=4f, 72= 2l

The result (3) of Theorem 2.2 means
0=(I-cto) (Ns —~ PNs+ %PN(P‘)‘lz‘)

and
(I-ClC)Ns = —(I - CIC)PNb, b= %(P”)“lz“ s

Noting that C'CPNb = (b 2!)(Pu/||Pu|]?), we have

u A \T u
N +(r-1) (ﬁl—i) ()T + PNb (S—T;,-) —(r-1 (”—%I—z) (h*

Y

(28)

i\
o[ 2
vorn(2)

So setting Y = Ly + J4 and N = PL+ J4, we have a SZ-DFP update:
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(SZ-DFP update)

T
1 2t
DFP _ Z(PH=1t =
(29) Ly = PL+ PN (T(P) z s) (stx) )
T pty—14
2 _ (&) (PHs
(30) = g o
Phs(zh)T + AT P sTPls\ (T
DFP _ . i
1) s - (P sTz! i sTzt 8Tl +Q
Pls(z)T 4 24T Pt sTPhs\ 24(zH)T
— b
= B sTat it sT a2l sTzt -

Note that the expression (31) corresponds to a DFP update from P! to By except for Q.

It is well known that the standard Broyden family for general nonlinear optimization can
be expressed by the linear combination of the standard BFGS update and the standard DFP
update[5]. Further, Yabe[13], Yamaki and Yabe[19] have studied the factorized versions of
the standard Broyden family. Yabe constructed the factorized version of the standard Broyden
family by using the convex combination of the factorized BFGS and the factorized DFP updates.
In the remainder of this section, we construct a new structured family which corresponds to the
Broyden family, by using the same technique as Yabe[13]. For a parameter 7, let

- PNs

BFGS _ i _ pl\T

(32) L7 = PL+ <_—5TP’5) (r2' — P's)",
2t T

TDFP __ iy—1_ 4
(33) LY = PL+4+PN(r(P") "zt —3) (stﬂ)
and R ~
(34) Ly =(1-8)L37% + /3 I7F,

where ¢ is a parameter such that 0 < ¢ < 1. Setting
By = (Lt +J) (L4 + J4)
gives
By = (1—VB)ATEFES 4 1,)T(TEFOS 4 1)+ p(IRFP + 1,)T(TDFP 4 1)
+(1 = VWS LTETCT + T (IZFP + 74) + (ZEFF + T)T (X595 + 74))
= (- IFFP+ I T + 7))+ (TRFF + T)TAZFP + 7).

Choosing a parameter 7 such that

5Tz (HT(PH—12
[(1 - ¢)8TP53 + sT ol =1,

the secant condition B,s = z is satisfied and we have

PlssT pl z'(z”)T
— i _
By = (P sT ptg sT 2t

+ ¢(sTP”s)v'(v*)T) + QY

where
{ Pig PL
P = e e,
sTPls  sTsl

7
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Now we obtain a new family, called a SZ-Broyden family, as follows:
(SZ-Broyden family)

where '

(36) 0<¢<1, [(1 ) ST;:S + ¢(ZE)T£f:n)—1zﬂ] P

D Be = (P - P:f«j:fl z:(f:.f + ¢(sTP“s)v“(v‘)T) + Q!
= (1-¢)BY"9 +¢BY"?,

(38) | g = Pls 2

sTPls T’

and the matrices BZFYS and BPFP are given in (27) and (31), respectively.

Note that the expression (37) corresponds to a Broyden family from P! to B, except for
Q'. Setting ¢ = 0 and ¢ = 1 yields the SZ-BFGS update (25) and the SZ-DFP update (29),
respectively.

5 Other types of Structured Broyden Family

In the previous section, we propose the SZ-Broyden family based on the idea of Sheng Songbai
and Zou Zhihong. The subjects of this section are to introduce the structured Broyden family
given by Yabe and Yamaki[18] and to consider the relationship between our family and the
structuted secant update from the convex class proposed by Martinez[10].

Consider the case where we do not impose the condition L£r+ = 0 on the matrix L for the
SZ-BFGS update. Since P = I, we have

N=L+Jsy, Q=0, Q'=0, =2 P =8B

Thus the update (25) is reduced to the BFGS-like update given by Yabe and Takahashi[15]:

L+J
(39) L, = L+ (%Tﬂ-,:)s) (72 — Bus)T,
T pt
(40) P o= S50 B= (L4 )+ ),
BlssTBt  2,T
B, = B'-
(41) + sTBts + sTz

Here we can regard the matrices (L + J4 )7 (L + J4) and (L4 + J4 )T (L4 + J4) as the matrices
JIJ.,. + A and J_{J.{. + A4, respectively. So, setting

(42) ' BV =JTJ,+4, and By=JTJ: 4 AL

in (41), we have an updating formula for A

T T

ww Z2Z

(43) Ay =A- w=(JTJ; + A)s,

sTw ' Tz’

8
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whish is the structured BFGS update given by Al-Baali and Fletcher[l]. Thus the expression
(39) corresponds to the factorized form of the structured BFGS update of Al-Baali and Fletcher.

Consider the case where we do not impose the condition L£7‘+ = 0 on the matrix L4 for the
SZ-DFP update. Then the update (29) is reduced to the DFP-like update given by Yabe and
Takahashi[15]:

1 ' T
(44) Ly = L+(L+Jy) (;(B‘)_lz - 3) (s—%) )
2T(BYHY1z
(85) S
BlszT 4+ 25T B! sTBls\ 227
(46) B, = B'- 7 +(1+ - );—T-;

Substituting (42) for (46), we have an updating formula for 4

g —A3)2T +2(g - As)T  sT(q - AS) 7,

(47) Ay = A+( s (sT2)?

(T4 = )Ty,

which is the revised update of Dennis, Gay and Welsch[6]. Thus the expression (44) corresponds
to the factorized form of the DGW update.

Further, consider the case where we do not impose the condition L?;m. = 0 on the matrix
L4 for the SZ-Broyden family. Then the family (35) is reduced to the structured Broyden family
given by Yabe and Yamaki[18]:

Il

q

(48) Iy = L+(1—-3) ( s ) (rz — Bls)
T
I+ IEY -9 ()
BlssTB! 2T
— gt _ T gl Ny, T
(49) By = B Tl + T, + ¢(s* Bls)vv",
where |
1 Bis z
50 2= - Z_
(50) r sTz 2ZT(BY 1z’ T TBIs Ty
7 ( ¢) TB‘ + ¢ STZ
As the same way of the above, substituting (42) for (49), we have an updating formula for A
ww? 22T
(51) A.J. =A- m‘ ST + d)(s ’LU)’U’U s
w z
=T~ Ty w=(J{J++A4)s, 0<¢<1,

which is the structured secant update from the convex class proposed by Martinez[10]. Thus
the expression (48) corresponds to the factorized form of the structured secant update from the
convex class.

Finally, we apply sizing techniques given by Bartholomew-Biggs[2], Dennis, Gay and Welsch[6]
to the above and obtain the following sized family: '

T 2T
(52) A+_—:ﬁA—ﬂ+ o + ¢(sTw)vo T,
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w z

IA
©-
IA

—t

v = , w=(JIJy+ pA)s, 0

sTw 8Tz
Here B is defined by the Bartholomew-Biggs’ parameter

T
="
(53) :8‘— TTT
or by the DGW parameter
54 § = min [|L|, 1
(54) N sTAs|’ ’
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