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Variations of Structured Broyden Families for Nonlinear Least
Squares Problems

東京理科大学・工学部 矢部 博 (Hiroshi Yabe)

1 Introduction

In this paper, we consider methods for finding a local solution, $x^{*}$ say, to a nonlinear least
squares problem

(1) minimize $f(x)= \frac{1}{2}\sum_{j=1}^{m}(r_{j}(x))^{2}$ ,

where $r_{j}$ : $R^{n}arrow R,$ $j=1,$ $\ldots,$
$m(m\geq n)$ are twice continuously differentiable. Such problems

arise widely in data fitting and in the solution of well-determined and over-determined systems
of equations. Among many numerical methods, structured quasi-Newton methods seem very
promising, which use the structure of the Hessian matrix of $f(x)$ such as

(2) $\nabla^{2}f(x)=J(x)^{T}J(x)+\sum_{j=1}^{m}r_{j}(x)\nabla^{2}r_{j}(x)$ .

These methods were proposed by Broyden and Dennis and were developed by Bartholomew-
Biggs[2], Dennis, Gay and Welsch[6]. Recently several studies have been suggested, e.g., Al-Baali
and Fletcher[l], Dennis, Songbai and Vu[7], Dennis, Martinez and Tapia[8], Fletcher and Xu[9],
Martinez [10], Xu[12].

For structured quasi-Newton methods, there are two types of strategies. One is a line search
descent method and the other is a trust region strategy. This paper is concerned with the former
which generates the sequence $\{x_{k}\}$ by

(3) $x_{k+1}=x_{k}+\alpha_{k}d_{k}$ ,

where $\alpha_{k}$ is a step length and a search direction $d_{k}$ is given by solving the Newton equation

(4) $(J_{k}^{T}J_{k}+A_{k})d_{k}=-J_{k}^{T}r_{k}$ ,

$r(x)=(r_{1}(x), \ldots, r_{m}(x))^{T},$ $r_{k}=r(x_{k}),$ $J_{k}=J(x_{k})$ (Jacobian matrix of r) and a matrix $A_{k}$ is the
approximation to the second part of the Hessian matrix. Since the coefficient matrix of (4) does
not necessarily possess the hereditary positive definiteness property, Yabe and Takahashi[15],
[17] proposed to compute the search direction by solving the linear system of equations

(5) $(L_{k}+J_{k})^{T}(L_{k}+J_{k})d_{k}=-J_{k}^{T}r_{k}$ ,

where the matrix $L_{k}$ is an $mxn$ correction matrix to the Jacobian matrix such that $(L_{k}+$

$J_{k})^{T}(L_{k}+J_{k})$ is the approximation of the Hessian and overcomes the difficulty of the Gauss-
Newton method. Since the coefficient matrix is expressed by the factorized form, the search
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direction may be expected to be a descent direction for $f$ . Folowing to [4], we dealt with the
secant condition
(6) $(L_{k+1}+J_{k+1})^{T}(L_{k+1}+J_{k+1})s_{k}=z_{k}$ ,

where
(7) $s_{k}=x_{k+1}-x_{k}$ , $z_{k}=(J_{k+1}-J_{k})^{T}r_{k+1}+J_{k+1}^{T}J_{k+1}s_{k}$ .

We caJled this method the factorized quasi-Newton method and obtained two updating formulae
for $L_{k}$ , which corresponds to the BFGS and the DFP updates.

On the other hand, Sheng Songbai and Zou Zhiong[ll] have studied factorized versions of
the structured quasi-Newton methods independently of us. They pfoposed the approximation
of $r(x)$ around $x_{k}$ as folows:

$r(x_{k}+d)\approx r(x_{k})+(J_{k}+L_{k})d$ ,

and obtained a search direction by solving the linear least squares problem

(8) minimize $\frac{1}{2}||r_{k}+(J_{k}+L_{k})d||^{2}$ with respect to $d$ ,

where II I denotes the 2 norm. In the case of $L_{k}=0$ , the above implies the Gauss-Newton
model. The normal equation of (8) is represented by

(9) $(J_{k}+L_{k})^{T}(J_{k}+L_{k})d=-(J_{k}+L_{k})^{T}r_{k}$.

Since the above dose not correspond to the Newton equation(5), Sheng Songbai et al. imposed
the condition $L_{k}^{T}r_{k}=0$ on a matrix $L_{k}$ , in addition to the secant condition (6) and obtained an
BFGS-like update.

Now we present an algorithm of factorized quasi-Newton methods.

(Algorithm of factorized quasi-Newton methods)
Starting with a point $x_{1}\in R^{n}$ and an $mxn$ matrix $L_{1}$ (usuaUy $L_{1}=0$ ), the algorithm proceeds,
for $k=1,2,$ $\ldots$ , as follows:

Step 1. Having $x_{k}$ and $L_{k}$ , find the search direction $d_{k}$ by solving the linear system of equations

(10) $(L_{k}+J_{k})^{T}(L_{k}+J_{k})d$ $=$ $-J_{k}^{T}r_{k}$ .
(or, following to Sheng Songbai and Zou Zhihong, find the search direction $d_{k}$ by solving
the normal equation of (8)

(11) $(L_{k}+J_{k})^{T}(L_{k}+J_{k})d$ $=$ $-(L_{k}+J_{k})^{T}r_{k}$ . )

Step 2. Choose a steplength $\alpha_{k}$ by a suitable line serach algorithm.

Step 3. Set $x_{k+1}=x_{k}+\alpha_{k}d_{k}$ .
Step 4. If the new point satisfies the convergence criterion, then stop; otherwise, go to Step 5.

Step 5. Construct $L_{k+1}$ by using a suitable updating formula for $L_{k}$ .

The idea of Sheng Songbai et al. seems very interesting to us and some numerical experiments
given in [16] suggest the efficiency of their method. So, in this paper, we generalize the update
of Sheng Songbai et al. and propose a new update which corresponds to the Broyden family.
Further, in Section 5, we introduce the structured Broyden family given by Yabe and Yamaki
[18] and obtain a family for $A_{k}$ . This family for $A_{k}$ corresponds to the structured secant update
from the convex class proposed by Martinez [10]. Throughout the paper, for simplicity, we drop
the subscript $k$ and replace the subscript $k+1$ by $”+$ . Further II II denotes a 2 norm.
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2 Notations and Basic Properties

The conditions which Sheng Songbai and Zou Zhihong imposed on a $m\cross n$ matrix $L+are$ the
secant condition
(12) $(L_{+}+J_{+})^{T}(L_{+}+J_{+})s=z$

and the condition
(13) $L_{+}^{T}r_{+}=0$ ,

which connects the Newton equation (5) and the normal equation (9). Letting $Y=L++J+$
and $h=Ys$ , the conditions (12) and (13) can be written by the matrix equations of $Y$

(14) $CY=D$, $Ys=h$ ,

where

(15) $C=\{\begin{array}{l}h^{T}r_{+}^{T}\end{array}\}$ , $D=\{\begin{array}{l}z^{T}r_{+}^{T}J+\end{array}\}$ .

By using Chapter 2 in [3], we have the following theorem.

Theorem 2.1 The matrix equations (14) have a common solution if and only if each equation
separately has a solution and
(16) $Ch=Ds$ ,

where the matrix equation $CY=D$ is consistent if and only if $CC^{(1)}D=D$ and $CC^{(1)}C=C$

for some $C^{(1)}$ , and the matrix equation $Ys=h$ is consistent if and only if $hs^{(1)}s=h$ and
$ss^{(1)}s=s$ for some $s^{(1)}$ . In which case, for these $C^{(1)}$ and $s^{(1)}$ , the general solution of (14) is

(17) $Y=C^{(1)}D+(I-C^{(1)}C)hs^{(1)}+(I-C^{-}C)\Phi(I-ss^{-})$ ,

where $C^{-}$ is an arbitrary matrix such that $CC^{-}C=C,$ $s^{-}$ is an arbitrary vector such that
$ss^{-}s=s$ and $\Phi$ is an arbitrary $mxn$ matrix.

Note that the matrix $C^{(1)}D+(I-C^{(1)}C)hs^{(1)}$ is a particular solution of the inhomogeneous
equation (14) and that $(I-C^{-}C)\Phi(I-ss^{-})$ is a general solution of the homogeneous equations
$CY=0$ and $Ys=0$ . The above theorem suggests that we just consider the equation (14) for a
vector $h$ which satisfies $Ch=Ds$ , i.e.,

$h^{T}h=s^{T}z$ and $r_{+}^{T}h=r_{+}^{T}J_{+}s$ .
In the below, we use the following notations

$Q= \frac{r_{+}r_{+}^{T}}{||r_{+}||^{2}}$ , $P=I-Q=I- \frac{r_{+}r_{+}^{T}}{||r_{+}||^{2}}$ ,

$N=PL+J_{+}$ , $B^{1}=N^{T}N=(PL+J_{+})^{T}(PL+J_{+})$ ,

$P^{I}=N^{T}PN$ , $Q^{[}=N^{T}QN= \frac{J_{+}^{T}r+r_{+}^{T}J+}{||r_{+}||^{2}}$, $z^{\#}=z-Q^{1}s$ .

Suppose the assumptions:
(A1) $r+is$ independent of $h$ .
(A2) $h$ satisfies $h^{T}h=s^{T}z>0$ and $r_{+}^{T}h=r_{+}^{T}J_{+}s$ .

Now we present the following properties which are usefull in the construction of updating
formulae for $L$ . The proof of this is shown in [14].
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Theorem 2.2 (1) The matrix $CC^{T}$ is nonsingular and $det(CC^{T})=||r_{+}||^{2}||Ph||^{2}>0$ .

(2) $s^{T}z^{\int}>0$ ,

(3) $(I-C^{\uparrow}C)h=0$ and $(I-C^{\uparrow}C)r+=0$ hold, where $C^{\uparrow}$ denotes the Moore-Penrose
generalized inverse of $C$ .

(4) If $r$ ank $N=n$ , the following statements are equivalent:

(a) $P^{t}$ is nonsingular.

(b) $r_{+}^{T}N(N^{T}N)^{-1}N^{T}r+\neq||r_{+}||^{2}$ .
(c) $r+can$ not be spanned by the column vectors of $N$ .

3 Construct ion of Partucular Solut ions

In the general solution (17), setting $C^{(1)}$ and $C^{-}$ to the Moore-Penrose generalized inverses $C^{\uparrow}$ ,
and letting $\Phi=N$ , the result (3) in Theorem 2.2 yields

$Y=N+C^{\uparrow}(D-CN)-(I-C^{\uparrow}C)Nss^{-}$

Since

(18) $C^{\uparrow}= \frac{1}{||r_{+}||^{2}||Ph||^{2}}[h, r_{+}]\{\begin{array}{ll}||r_{+}||^{2} -h^{T}r_{+}-h^{T}r+ h^{T}h\end{array}\}$ , $D– CN=\{\begin{array}{l}z^{T}-h^{T}N0\end{array}\}$ ,

we have
(19) $Y=N+( \frac{Ph}{||Ph||^{2}})(z-N^{T}h)^{T}-(I-C^{\uparrow}C)Nss^{-}$

In the below, we obtain a vector $h$ satisfying the assumption (A2). First, we have a general
form of $h$ satisfying the condition $r_{+}^{T}h=r_{+}^{T}J_{+}s$ as follows

$h$ $=$ $(r_{+}^{T})^{\uparrow}(r_{+}^{T}J_{+}s)+(I-(r_{+}^{T})^{\uparrow}(r_{+}^{T}))u’= \frac{r_{+}^{T}J+s}{||r_{+}||^{2}}r++(I-\frac{r_{+}r_{+}^{T}}{||r_{+}||^{2}})u’$

$=$ $\frac{r_{+}r_{+}^{T}}{||r_{+}||^{2}}Ns+(I-\frac{r_{+}r_{+}^{T}}{||r_{+}||^{2}})u’=QNs+Pu’$,

where $u’$ is an arbitrary vector satisfying the condition $h^{T}h=s^{T}z$ . Secondly, setting $u=\tau u’$

and choosing a parameter $\tau$ such that

$h^{T}h=s^{T}Q^{t}s+ \frac{1}{\tau^{2}}||$ Pu $||^{2}=s^{T_{Z}}$ ,

we have
$h=QNs+ \frac{1}{\tau}$Pu,

where $\tau$ satisfies
$\frac{1}{\tau^{2}}||Pu||^{2}=s^{T}z-s^{T}Q^{\mathfrak{j}}s=s^{T}z^{[}$ .

Note that the result (2) in Theorem 2.2 guarantees the positiveness of the righthand side of the
above expression.
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Since
$Ph= \frac{1}{\tau}$Pu, $||Ph||^{2}= \frac{1}{\tau^{2}}||Pu||^{2}=s^{T}z^{1}$ ,

$\frac{Ph}{||Ph||^{2}}=\frac{1}{\tau}(\frac{Pu}{s^{T}z^{1}})=\tau(\frac{Pu}{||Pu||^{2}})$ , $z-N^{T}h=z^{1}- \frac{1}{\tau}N^{T}Pu$,

finally, it follows from (19) that
[Particular solution 1]

(20) $Y=N+ \frac{1}{\tau}(\frac{Pu}{s^{T}z^{1}})(z^{1}-\frac{1}{\tau}N^{T}Pu)^{T}-(I-C^{\dagger}C)Nss^{-}$,

and
[Particular solution 2]

(21) $Y=N+ \tau(\frac{Pu}{||Pu||^{2}})(z^{1}-\frac{1}{\tau}N^{T}Pu)^{\mathcal{T}}-(I-C^{\uparrow}C)Nss^{-}$,

where
(22) $h=QNs+ \frac{1}{\tau}$Pu,

$u$ is an arbitrary vector such that $Pu\neq 0$ and $\tau$ is given by

(23) $\tau^{2}=\frac{||Pu||^{2}}{s^{T}z^{1}}$

From (22), we have the following corollary. The proof of this is shown in [14].

Corollary 3.1 (1) The linear independence of $r+andh$ are equivalent to the linear indepen-
dence of $r+andu$ .

(2) $(I-C^{\uparrow}C)u=0$ .

4 SZ-Broyden Family

In this section, we construct a BFGS-like update, which corresponds to the formula of Sheng
Songbai and Zou Zhihong, and a DFP-like update by using the particular solutions given in the
previous section. Further we propose a structured family, which corresponds to the Broyden
family.

$h(20)$ , set
$u=Ns$ .

Then Corollary 3.1 implies $(I-C^{\uparrow}C)Ns=0$ and we have

11 $Pu||^{2}=s^{T}P^{\mathfrak{j}}s$ , $\tau^{2}=\frac{s^{T}P^{1}s}{s^{T}z^{1}}$

So the solution (20) yields

(24) $Y=N+ \frac{1}{\tau}(\frac{PNs}{s^{T}z^{l}})(z^{\mathfrak{j}}-\frac{1}{\tau}N^{T}PNs)^{T}=N+(\frac{PNs}{s^{T}P^{1_{S}}})(\tau z^{\mathfrak{j}}-P^{1}s)^{T}$ .
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Setting $Y=L++J+andN=PL+J+$ , we have

$L_{+}^{BFGS}=PL+( \frac{PNs}{s^{T}P^{1}s})(\tau z^{1}-P^{t}s)^{T}$ ,

which is the updating formula of Sheng Songbai and Zou Zhihong.
Here, setting $B+=Y^{T}Y$ gives

$B+=(P^{[}- \frac{P^{1}ss^{T}P^{1}}{s^{T}P^{1_{S}}}+\frac{z^{1}(z^{1})^{T}}{s^{T}z^{1}})+Q^{[}$ .

The above corresponds to a BFGS update from $P^{1}$ to $B+except$ for $Q^{\downarrow}$ , so we call this a
SZ-BFGS update. We summarize as follows;
(SZ-BFGS update)

(25) $L_{+}^{BFGS}$ $=$ $PL+( \frac{PNs}{s^{T}P^{1_{S}}})(\tau z^{\}}-P^{[}s)^{T}$ ,

(26) $\tau^{2}$

$=$
$\frac{s^{T}P^{1_{S}}}{s^{T}z^{1}}$

(27) $B_{+}^{BFGS}$ $=$ $(P^{[}- \frac{P^{1}ss^{T}P^{1}}{s^{T}P^{t_{S}}}+\frac{z^{1}(z^{1})^{T}}{s^{T}z^{1}})+Q^{\#}$

$=$
$B^{1}- \frac{P^{1}ss^{T}P^{1}}{s^{T}P^{1_{S}}}+\frac{z^{1}(z^{1})^{T}}{s^{T}z^{1}}$ .

In the below, we assume that the matrix $P^{1}$ is nonsingular. In (21), setting

$u=N(P^{1})^{-1}z^{1}$ and $s^{-}=( \frac{z^{1}}{s^{T}z^{1}}I^{T}$ ,

we have
$||Pu||^{2}=(z^{[})^{T}(P^{\mathfrak{j}})^{-1}z^{1}$ , $N^{T}Pu=z^{t}$ , $\tau^{2}=\frac{(z^{1})^{T}(P^{t})^{-1_{Z}\#}}{s^{T}z^{1}}$ .

The result (3) of Theorem 2.2 means

$0=(I-C^{\dagger}C)(Ns-PNs+ \frac{1}{\tau}PN(P^{1})^{-1}z^{\mathfrak{j}})$

and
$(I-C^{\uparrow}C)Ns=-(I-C^{\uparrow}C)PNb$, $b= \frac{1}{\tau}(P^{\int})^{-1}z^{\#}-s$ .

Noting that $C^{\uparrow}CPNb=(b^{T}z^{[})(Pu/||Pu||^{2})$ , we have

$Y$ $=$ $N+( \tau-1)(\frac{Pu}{||Pu||^{2}})(z^{[})^{T}+PNb(\frac{z^{1}}{s^{T}z^{1}})^{T}-(\tau-1)(\frac{Pu}{||Pu||^{2}})(z^{\#})^{T}$

(28) $=$ $N+PNb( \frac{z^{1}}{s^{T}z^{1}}I^{T}$

So setting $Y=L++J+andN=PL+J+$ , we have a SZ-DFP update:

6



162

(SZ-DFP update)

(29) $L_{+}^{DFP}$ $=$ $PL+PN( \frac{1}{\tau}(P^{\{})^{-1}z^{\mathfrak{j}}-s)(\frac{z^{1}}{s^{T}z\#}I^{T}$ ,

(30) $\tau^{2}$

$=$
$\frac{(z^{1})^{T}(P^{t})^{-1}z^{1}}{s^{T}z^{1}}$

(31) $B_{+}^{DFP}$ $=$ $(P^{\#}- \frac{P^{t}s(z^{1})^{T}+z^{\mathfrak{p}}s^{T}P^{t}}{s^{T}z^{1}}+(1+\frac{s^{T}P^{t_{S}}}{s^{T}z\#})\frac{z\#(z^{t})^{T}}{s^{T}z\#})+Q\#$

$=$ $B^{\downarrow}- \frac{P^{\{}s(z^{t})^{T}+z^{1}s^{T}P^{1}}{s^{T}z\#}+(1+\frac{s^{T}P^{t_{S}}}{s^{T}z^{1}})\frac{z\#(z^{\oint})^{T}}{s^{T}z\#}$

Note that the expression (31) corresponds to a DFP update from $P^{\mathfrak{p}}$ to $B+except$ for $Q^{\#}$ .
It is well known that the standard Broyden family for general nonlinear optimization can

be expressed by the linear combination of the standard BFGS update and the standard DFP
update[5]. Further, Yabe[13], Yamaki and Yabe[19] have studied the factorized versions of
the standard Broyden family. Yabe constructed the factorized version of the standard Broyden
family by using the convex combination of the factorized BFGS and the factorized DFP updates.
In the remainder of this section, we construct a new structured family which corresponds to the
Broyden family, by using the same technique as Yabe[13]. For a parameter $\tau$ , let

(32) $\hat{L}_{+}^{BFGS}$ $=$ $PL+( \frac{PNs}{s^{T}P^{1_{S}}})(\tau z^{[}-P^{t}s)^{T}$ ,

(33) $\hat{L}_{+}^{DFP}$ $=$ $PL+PN( \tau(P\#)^{-1}z^{\#}-s)(\frac{z\#}{s^{T}z\#}I^{T}$

and
(34) $L_{+}=(1-\sqrt{\phi})\hat{L}_{+}^{BFGS}+\sqrt{\phi}\hat{L}_{+}^{DFP}$ ,

where $\phi$ is a parameter such that $0\leq\phi\leq 1$ . Setting

$B_{+}=(L_{+}+J_{+})^{T}(L_{+}+J_{+})$

gives

$B+$ $=$ $(1-\sqrt{\phi})^{2}(\hat{L}_{+}^{BFGS}+J_{+})^{T}(\hat{L}_{+}^{BFGS}+J_{+})+\phi(\hat{L}_{+}^{DFP}+J_{+})^{T}(\hat{L}_{+}^{DFP}+J_{+})$

$+(1-\sqrt{\phi})\sqrt{\phi}\{(\hat{L}_{+}^{BFGS}+J_{+})^{T}(\hat{L}_{+}^{DFP}+J_{+})+(\hat{L}_{+}^{DFP}+J_{+})^{T}(\hat{L}_{+}^{BFGS}+J_{+})\}$

$=$ $(1-\phi)(\hat{L}_{+}^{BFGS}+J_{+})^{T}(\hat{L}_{+}^{BFGS}+J_{+})+\phi(\hat{L}_{+}^{DFP}+J_{+})^{T}(\hat{L}_{+}^{DFP}+J_{+})$ .

Choosing a parameter $\tau$ such that

$[(1- \phi)\frac{s^{T}z^{1}}{s^{T}P^{1_{S}}}+\phi\frac{(z^{1})^{T}(P^{1})^{-1}z^{t}}{s^{T}z^{1}}]\tau^{2}=1$,

the secant condition $B_{+}s=z$ is satisfied and we have

$B+=(P^{t}- \frac{P^{t}ss^{T}P^{1}}{s^{T}P^{1_{S}}}+\frac{z^{1}(z^{1})^{T}}{s^{T}z^{1}}+\phi(s^{T}P^{[}s)v^{t}(v^{[})^{T})+Q^{\#}$ ,

where
$v^{I}= \frac{P^{1_{S}}}{s^{T}P^{1_{S}}}-\frac{z^{[}}{s^{T}z^{1}}$ .
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Now we obtain a new family, called a SZ-Broyden family, as follows:
(SZ-Broyden family)

(35) $L+=PL+(1- \sqrt{\phi})(\frac{PNs}{s^{\mathcal{T}}Pt_{S}})(\tau z^{\#}-P^{1}s)^{T}+\sqrt{\phi}PN(\tau(P^{\#})^{-1}z^{\#}-s)(\frac{z\#}{s^{T}z\#})^{T}$

where

(36) $0\leq\emptyset\leq 1$ , $[(1- \phi)\frac{s^{T}z^{t}}{s^{T}P^{1_{S}}}+\phi\frac{(z^{1})^{T}(P\#)^{-1_{Z}\#}}{s^{T}z\#}]\tau^{2}=1$ ,

(37) $B+$ $=$ $(P^{t}- \frac{P^{1}ss^{T}P^{t}}{s^{T}P^{t_{S}}}+\frac{z^{1}(z^{1})^{T}}{s^{T}z\#}+\phi(s\tau P\# s)v^{t}(v^{t})^{T})+Q\#$

$=$ $(1-\phi)B_{+}^{BFGS}+\phi B_{+}^{DFP}$ ,

(38) $v^{t}$
$=$

$\frac{P^{1}s}{s^{T}P^{t_{S}}}-\frac{z^{t}}{s^{T}z\#}$ ,

and the matrices $B_{+}^{BFGS}$ and $B_{+}^{DFP}$ are given in (27) and (31), respectively.
Note that the expression (37) corresponds to a Broyden family from $P\#$ to $B+except$ for

$Q^{t}$ . Setting $\phi=0$ and $\phi=1$ yields the SZ-BFGS update (25) and the SZ-DFP update (29),
respectively.

5 Other types of Structured Broyden Family

In the previous section, we propose the SZ-Broyden family based on the idea of Sheng Songbai
and Zou Zhihong. The subjects of this section are to introduce the $structu\iota ed$ Broyden family
given by Yabe and Yamaki[18] and to consider the relationship between our family and the
structuted secant update from the convex class proposed by Martinez[10].

Consider the case where we do not impose the condition $L_{+}^{T}r+=0$ on the matrix $L+for$ the
SZ-BFGS update. Since $P=I$, we have

$N=L+J+$ , $Q=0$ , $Q^{\#}=0$ , $z^{\#}=z$ , $P^{\#}=B\#$ .

Thus the update (25) is reduced to the BFGS-like update given by Yabe and Takahashi[15]:

(39) $L+$ $=$ $L+( \frac{(L+J_{+})s}{s^{T}B^{1}s})(\tau z-B^{1}s)^{T}$,

(40) $\tau^{2}$

$=$
$\frac{s^{T}B^{[}s}{s^{T_{Z}}}$ $B\#=(L+J_{+})^{T}(L+J_{+})$ ,

(41) $B+$ $=$ $B^{1}- \frac{B^{1}ss^{T}B^{t}}{s^{T}B^{1_{S}}}+\frac{zz^{T}}{s^{T}z}$ .

Here we can regard the matrices $(L+J_{+})^{T}(L+J_{+})$ and $(L_{+}+J_{+})^{T}(L++J_{+})$ as the matrices
$J_{+}^{T}J_{+}+A$ and $J_{+}^{T}J_{+}+A_{+}$ , respectively. So, setting

(42) $B^{\mathfrak{j}}=J_{+}^{T}J++A$ , and $B+=J_{+}^{T}J++A+$

in (41), we have an updating formula for $A$

(43) $A+=A- \frac{ww^{\mathcal{T}}}{s^{T}w}+\frac{zz^{\prime r}}{s^{T_{Z}}}$, $w=(J_{+}^{T}J_{+}+A)s$ ,
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whish is the structured BFGS update given by Al-Baali and Fletcher[l]. Thus the expression
(39) corresponds to the factorized form of the structured BFGS update of Al-Baali and Fletcher.

Consider the case where we do not impose the condition $L_{+}^{T}r+=0$ on the matrix $L_{+}$ for the
SZ-DFP update. Then the update (29) is reduced to the DFP-like update given by Yabe and
Takahashi[15]:

(44)
$|$

$L+$ $=$ $L+(L+J_{+})( \frac{1}{\tau}(B^{1})^{-1}z-s)(\frac{z}{s^{T_{Z}}})^{T}$ ,

(45) $\tau^{2}$

$=$ $\frac{z^{T}(B^{1})^{-1}z}{s^{T}z}$

(46) $B+$ $=$ $B^{\mathfrak{j}}- \frac{B^{1}sz^{T}+zs^{T}B^{1}}{s^{T}z}+(1+\frac{s^{T}B^{1}s}{s^{T}z})\frac{zz^{T}}{s^{T}z}$

Substituting (42) for (46), we have an updating formula for $A$

(47) $A+$ $=$ $A+ \frac{(q-As)z^{T}+z(q-As)^{T}}{s^{T_{Z}}}-\frac{s^{T}(q-As)}{(s^{T}z)^{2}}zz^{T}$ ,

$q$ $=$ $(J_{+}-J)^{T}r+$ ,

which is the revised update of Dennis, Gay and Welsch[6]. Thus the expression (44) corresponds
to the factorized form of the DGW update.

Further, consider the case where we do not impose the condition $LTr+=0$ on the matrix
$L_{+}$ for the SZ-Broyden family. Then the family (35) is reduced to the structured Broyden family
given by Yabe and Yamaki[18]:

(48) $L+$ $=$ $L+(1- \sqrt{\phi})(\frac{(L+J_{+})s}{s^{T}B^{1_{S}}})(\tau z-B^{1}s)^{T}$

$+ \sqrt{\phi}(L+J_{+})(\tau(B^{\mathfrak{j}})^{-1}z-s)(\frac{z}{s^{T_{Z}}})^{T}$ ,

(49) $B+$ $=$ $B^{1}- \frac{B^{1}ss^{T}B^{[}}{s^{T}B^{1}s}+\frac{zz^{T}}{s^{T_{Z}}}+\phi(s^{T}B^{1}s)vv^{T}$ ,

where
(50)

$\tau^{2}=\frac{1}{(1-\phi)\frac{s^{T_{Z}}}{s^{T}B^{1_{S}}}+\phi\frac{z^{T}(B^{1})^{-1}z}{s^{T_{Z}}}}$

, $v= \frac{B^{I_{S}}}{s^{T}Bt_{S}}-\frac{z}{s^{T_{Z}}}$.

As the same way of the above, substituting (42) for (49), we have an updating formula for $A$

(51) $A+=A- \frac{ww^{T}}{s^{q}’ w}+\frac{zz^{T}}{s^{T_{Z}}}+\phi(s^{T}w)vv^{T}$ ,

$v= \frac{w}{s^{T}w}-\frac{z}{s^{T_{Z}}}$ , $w=(J_{+}^{T}J_{+}+A)s$ , $0\leq\emptyset\leq 1$ ,

which is the structured secant update from the convex class proposed by Martinez[10]. Thus
the expression (48) corresponds to the factorized form of the structured secant update from the
convex class.

FinaUy, we apply sizing techniques given by Bartholomew-Biggs[2], Dennis, Gay and Welsch[6]
to the above and obtain the following sized family:

(52) $A+= \beta A-\frac{ww^{T}}{s^{T}w}+\frac{zz^{T}}{s^{T_{Z}}}+\phi(s^{T}w)vv^{T}$ ,

9
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$v= \frac{w}{s^{T}w}-\frac{z}{s^{T_{Z}}}$ , $w=(J_{+}^{T}J_{+}+\beta A)s$ , $0\leq\phi\leq 1$ .

Here $\beta$ is defined by the Bartholomew-Biggs’ parameter

(53) $\beta=\frac{r_{+}^{T}r}{r^{T}r}$

or by the DGW parameter

(54) $\beta=\min(|\frac{s^{T}q}{s^{T}As}|,$ $1)$ .
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