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THE METHOD OF SPLITTING FOR
MULTIDIMENSIONAL INTEGRATION
WITH SINGULARITIES

HIDETOSI TAKAHASI
KEIO UNIVERSITY

1. INTRODUCTION

Numerical integration of function with one or more singularities always poses some problem.
Foe example, one-dimensional integration, however, the method of transforination of variables
has been shown to be satisfactory for most cases. In multidimensional integration, the same
technique does not help much unless the domain of integration is a sphere (or infinite as a special
cases) and the singular point is situated at its center. When the boundary is rectangular, for
example, no simpletransformation can be found that eliminate the singularity or map it to
infinity and still retain a simple form of the boundary.

One conventional approach that can be imagined is to divide the domain to a sphere and
the remaining part (i.e. a rectangular body with a spherical hole). Then the integral for
the spherical part can be easily evaluated using polar coordinate, but the integration over the
remaining domain willbe intractable owing to its awkward shape.

Lyness[1] has proposed a.method to be used for such problems. It is essentially the method
of extrapolation like the well known Romberg method. From the knowledge of the type of the
singularity one can find out the general form of the asymptotic expansion of the quadrature error
as function of mesh size. Then one can determine the unknown cocflicients of the expansion,
together with the true value of the integral, by solving a system of simultancous equations
obtained from the results of numerical quadrature fro several different iesh sizes. His method
has been shown to give satisfactory results for a number of test problems. Ilowever, ornie
drawback of the method is the loss of significant figures due to the ill condition of the equation,
as is often encountered in curve fitting using a family of more or less monotone basis functions.

The method I am going to present is much more straightforward and elementary. It somewhat
resembles the method of the division of the domain. But, instead of dividing the domain into
disjoint parts separated by a sharp boundary, we try to split the integrand into two parts, so
that one part is a function regular over the entire domain and the other part is virtually zero
outside a spherical region lying in the domain. In some sense, this may be regarded as an
effective division of the domain, but the boundary is “blurred” by use of continuous weighting
functions. '

With this “splitting”, the first part is easily evaluated using any known method of dealing
with multiple integrals. Since the domain of integration for the second part is actually a sphere,
it can be integrated using polar coordinate.
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\section{Introduction}
Numerical integration of function with one or more singularities always

poses some problem. Foe example, one-dimensional integration,

however, the method of transformation of variables has been shown to be
satisfactory for most cases. In multidimensional integration,

the same technique does not help much unless the domain of integration
is a sphere (or infinite as a special cases) and the singular

point is situated at its center. When the boundary is rectangular,

for example, no simpletransformation can be found that eliminate the
singularity or map it to infinity and still retain a simple form of
the boundar{. \par

One conventional approach that can be imagined is to divide the domain
to a sphere and the remaining part (i.e. a rectangular body with

a spherical hole). Then the integral for the spherical part can be
easlly evaluated using polar coordinate, but the integration over the
remaining domain willbe intractable owing to its awkward shape.\par

Lyness\cite{lyness) has proposed a method to be used for such problens.
It is essentially the method of extrapolation like the well known
Romberg method. From the knowledge of the type of the singularity

one can find out the general form of the asymptotic expansion of

the quadrature error as function of mesh size. Then one can determine
the unknown coefficients of the expansion, together with the true value
of the integral, by solving a system of simultaneous equations obtained
from the results of numerical quadrature fro several different mesh
sizes. His method has been shown to give satisfactory results for a
number of test problems. However, one drawback of the method is the
loss of significant figures due to the ill condition of the equation,
as 1s often encountered in curve fitting using a family of more

or less monotone basis functions.\par

The method I am going to present is much more straightforward and
elementary. It somewhat resembles the method of the division of

the domain. But, instead of dividing the domain into disjoint parts
separated by a sharp boundary, we try to split the \underbar(integrand)
into two parts, so that one part is a function regqular over the entire
domain and the other part is virtually zero outside a spherical region
lying in the domain. 1In some sense, this may be regarded as an
effective division of the domain, but the boundary is blurred"''

by use of continuous weighting functions.\par

with this ~“splitting'', the first part is easily evaluated using

any known method of dealing with multiple integrals. Since the domain
of integration for the second part is actually a sphere, it can be
integrated using polar coordinate. ‘
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2 HIDETOSI TAKAHASI KEIO UNIVERSITY

2. WEIGHTING FUNCTION

To make the argument more specific, we assume with Lyness that the integrand has a form

) J@r=rar)

where g(r) is a polynomial or otherwise a regular function of the cartesian coordinates z;, z3,
. +Zn, which means that it has a convergent power series expansion around the origin. The
above mentioned splitting can then be realized by splitting the “singular part” r® as

(2) r® = ¢i(r) + ¢2(r)

so that

(1) &(r) is a regular, even function of r, and
(2) ¢2(r) tends to zero rapidly as r tends to infinity, so ¢3(r) is negligible for » > rg.

Then we have the intcgral as a sum of two integrals I and I3, each defined by

(3) I =/¢1(r)g(1')d1'
) L= [ ga(rigtriar
respectively. |

<< omission >>

3. NuMERIcAL EXAMPLES

The accompaying figures show the results of the method applied to few examples which are
similar to those used by Lyness. They are:

1L
' 2)2!

N w

f(r)y=r° -exp(-—?:v:2 - yz), a=—
1

. r— . i
J)=r"z, a= 2,1.
The figures show the dependence of the error on the number of mesh points used. The errors
for I} and I are also shown. Lyness’ method was also tested and its results are shown for
comparison.

So far as one can see from these figures, our method does not compare favorable to Lyness’
methd. However, it must be stressed that our method gives results which are correct almost to
the working accuracy, as constrasted to Lyness’ method.

It will be seen from the figures that most of the computing cost concerns the first part /. It
should also be noticed that contribution of the second part I; to the results strongly depends
on the exponent in the singularity. When « = —3/2, I3 is comparable in magnitude to Iy, but
it is two orders of magnitude below I; when a = 1/2.

To summarize, it will be said that the method of splitting offers an alternative way to evaluate
the special type of multiple integrals as dealt with by Lyness, which is at lcast as efficient as
his method as to the amount of computation.

11
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\section[Weighting Function}

To make the argument more specific, we assume with Lyness that the
integrand has a form

\begin{equation)

\int (\mbox [\boldmath$r$})= \mbox [\boldmath$r$}~ {\aXpha)

g (\mbox {\boldmath$r$})

\end{equation} .

where \( g(\mbox([\boldmath$r$})\) is a Eolynomial or otherwise a
regular function of the cartesian coordinates

\(x_1, x_2, \allowbreak\ldots, x_n\),

which means that it has a convergent power series expansion around
the origin. The_above mentioned splitting can then be realized by
splitting the singular part'' \(xr (\alpha)\) as
\begin(eguation)

r {\alpha})=\phi_1(r) + \phi_2(r)

~ \end{equation}

so that

\begin{enumerate} .

\item \(\phi(r)\) is a regular, even function of \(r\), and

\item \(\phi_2(r)\) tends to zero rapidly as \(r\) tends to
infinity, so \(\phi_2(r)\) is negligible for \(r>r_O0O\).
\end{enumerate}

Then we have the integral as a sum of two integrals \(I_1\) and
\(I_2\), each defined by

\begin(align}

I_1 &= \int
\phi_l(\m?ox{\boldmathSrs])g(\mbdx(\boldmathsrs})dr \\

I_2 &= \int
\phi_2(\mbox{\boldmath$r$})g(\mbox[\boldmath$r$))dr

\end(align}

respectively.

2$$<COO8S
$S<<\text{omission}>>$$
\section{Numerical Examples}
The accompaying figures show the results of the method applied to
few examples which are similar to those used by Lyness. They are:
\begin{align}
f (\mbox (\boldmath$r$}) & =_ R
r (\alpha}\cdot\exp(—-2x 2-y 2),\qguad \alpha =-\frac32,-\fracl2,
\fracl2; \nonumber \\
f (\mbox{\boldmath$r$}) & =
r [\alpha}\cdot x, \quad \alpha=-\fracl2, 1. \nonumber
\end({align}
The figures show the dependence of the error on the number of mesh
points used. The errors for $I_1$ and $I_2$ are also shown. Lyness'
method was also tested and 1ts results are shown for comparison. \par
So far as one can see from these figures, our method does not
compare favorable tc Lyness' methd. However, it must be stressed
that our method gives results which are correct almost to the
working accuracy, as constrasted to Lyness' method.\par

It will be seen from the figures that most of the comput
concerns the first part $I_1%$. It should also be noticeg ti:g cost
contribution of the second part $I_2$ to the results strongly depends
on the exponent in the singularity. When $\alpha=-3/2%, $I 2% is
comparable in magnitude to $I_1$, but it is two orders of magnitude
below $I_1% when $\alpha=1/2$. \par
To summarize, it will be said that the method of splittin
alternative way to evaluate the special type of muftiple gniﬁéiifsan

as dealt with by Lyness, which is at least as efficient
as to the amount of coméutation.\par as hls method
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