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Game Theoretic Analysis for an Optimal Stopping Problem

in Some Class of Distribution Functions

Jun-ichi NAKAGAMI Chiba University, Japan
TIERF BFER thip B—

1. Introduction

Let X1, X5,--+, X,,, -+ - be mutually independent and identically distributed random vari-
ables with a common cdf F(t) = P{X < t} such that E[X¥] = [ tdF(t) < oo, where
R = (—o00,00), Ry = [0,00). A positive observation cost c(€ R4y = (0,00)) is incurred
to the observation of each X,,n > 1. If the observation process is stopped after X, is
observed, a reward X,, — nc is received.

The optimal stopping time N is necessarily of the form; to stop at N = min{n | X,, € S}
for some stopping set S C R, and S is stationary and of a control-limit-type {X > z} or
{X > z} for some z € R, where z is called a stopping level. For this, we define that a
stopping level z (or z — 0) means a stopping set {X > z} (or {X > z}) respectively.

For any stopping level z and for any cdf F, we define an expected reward ¢(z, F') =
E[Xy — cN] of the stopping problem by

f(x,w)tdF(t) —c .+ f(x,oo)(t —z)dF(t) —c
F(z) - F(z) ’
where F(z) = 1 — F(z). Note that F(z) — 0 and ¢ — —oo as z — oo and that Fi(z) — 1
and ¢ — pr —c as £ — —oo where urp = E[X] = [ptdF(t).
By the assumption E[X*] < oo, define Tr(z),

(1.2) Tr(z) = /:o(t—x)dF(t) - /:’Ir(t)dt.

(L1) - $(z,F) =

Lemma 1. Tr(z) is continuous, non-negative, convex and non-increasing function of z.
It satisfies that Tr(z) > (ur — z)* for any z € R and that Tr(z) — 400 as z — —oo and
Tr(z) — 0 as ¢ — 400 . Ty has a derivative a.e.. Moreover, if Tr(z) is positive at any
point z, it is strictly decreasing at z. ’

Now, redefining the expected reward ¢(z, F') by (1.1') for any stopping level z and for
any cdf F, we will have the optimal expected reward ¢°(F') for any cdf F.

Tr(z) — ¢

(1.1%) | ¢z, F)= z + )
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(1.3) #°(F) = sup (s, F) .
| dg(z,F) _ Tp(z)—c
(1-4) iF(s) — @)

The right hand side of (14) changes the sign from + to — at most one time as z goes from
—00 to +00. From Lemma 1, the equation Tr(z) = ¢ for any fixed c¢(c > 0) has a unique
solution z°(F) % (Tr)=1(c) , so that the set of optimal stopping levels x°(F) (which must
contain the point z°(F')) of (1.3) is given by

(1.5) o x)(F) = {z| F(z) = F(a°(F))}.
Since the cdf F is right-continuous, this set is an interval of the form [a, ).

" We have the optlmal expected reward ¢°( )

(1.3%) ¢°(F) = 2°(F) = ¢(x°(F), F),
yvhe;te #(A, F) means #(y, F) for any y in a set A.

i;'emma 2. For any given cdf F, the following stopping sets or stopping levels (i) (ii) (ii)
are optimal, and the optimal expected reward is given by (1.3") ; |

(i) the set {X > a} or level a where a = min{z | z € x°(F)} .

(ii) the set {X > b} orlevel b— 0 where b=sup{z |z €x°(F)} ,

(iii) the set {X >z} ({X >z} )orlevelz (2 —0) where Vz € (a,0) .

First, we shall derive the maximal bound ¢* for q&(m,‘F) on Rx F

(1.6) ¢" = supsup ¢(z, F) = sup¢°( )
. s€RFEF

= Ga°(F*), F*) = $(a*,F*),
where (z*, F*) is a joint maximizing point of ¢(z, F).
Second, we shall consider ¢(z, F') as a two-person zero-sum game in which the player 1

(gambler) decides his level z in R and the player 2 (nature) chooses he]: cdf Fin F, before

the observation of {X,;n > 1}. Then the minimax value ¢* and the maximin value ¢, on
R x F,

(1.7) | ¢ = jnf iggﬂx F) = ;relff¢°( )
= M (F7), F7) = $(a" F)

(1.8) b = supinf §(s,F) = (e, F.),
xz€R FEF
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and the saddle value ¢°, the saddle point (z°, F*) in R x F,

(1.9) ¢* = valueserrerd(z, F) = 4(z*, F),
will be derived for the following two classes F(u, 02) and F(u, 02, M) of cdf’s.

The class F(u,0%, M) is the set of cdf’s whose mean u, variance ¢? and doma.ln (v —
M,y + M] are assumed to be known.

(1.10) Flu, 0, M) = {F| / dF(t) = 1,/ tdF () = u,
A A
/tzdF(t)=u2+02 where A=[u— M,u+ M), M > o}
The class F(u,0?) is F(u,0?, M) where M is arbitrary in Ry, and F(u) is F(u,0?)

where 02 is arbitrary in R, .

Let a random variable X has a mean p with a cdf F,(¢), then the new random variable
X — p has the mean 0 with the cdf Fy(t) = F,(t + ). The following Lemma 3 below holds
immediately from the definition (1.1) of ¢(z, F).

2. Some Fundamental Lemmas

Lemma 3.
(2.4) $(z, F,) = p + ¢(z —p, Fo)foranyz € R .

Therefore, we may assume without loss of generality that all the cdf’s in F' have the

mean 0. So that, we shall analyze the stopping problem in only two classes F(0,02) and
F(0,0%, M).

Lemma 4. For cdf’s F; and non-negative numbers A;,7 = 1,2,--+ n, such that 37, A\; =
1L,let F =Y, A\F;. Then

(2.5) $(z,F) = Y A(z)¢(z, F;) for any z € R, where
7=1
AJ(:L') — __/\ij(m)

i=1 )\,-F',»(m)'
Let define G, be a discrete cdf which has n probability masses p;, P > 0, at n points
t;, 1=1,2 -+ n, respectively (7, p; = 1), i.e., it is represented as
(2.6) o Gat) = (<t ><pytnipa >)
and G, (u, 0?) be all discrete cdf’s G, in F(u,d?). Let

(2.7) Gy(t;9) = (< —g—,oq ><



46

for any ¢,0 < ¢ < co. Then G,(¢; ¢) is the only two-point cdf which has the mean 0 and

the variance o2.

Lemma 5. The class G,(0,0?) of two-point cdf’s is represented with a parameter ¢q, 0 <
g < oo, as follows,

G2(0,0%) = {G2(5q) | 0< ¢< oo}.
Let us define

(2.8) Ti(z) = supTr(z), THz) = inf Tr(z) .
FeF Fer
Lemma 6. Suppose F = F(0) so that ur = 0 for all F' € F, then T%(z) and T4(z) have

the same property as Tr(z) in Lemma 1 with pp replaced by 0 , except that T%(z) is not
always convex. '

From above Lemma 6, T%(z) and T%(z) have inverse functions (T¥)(c) and (T£)(c)

for all ¢,c > 0, respectively. Thus we have shown the existence of the values of ¢* and ¢*:

(2.9) ¢ = sup{e| Tr(a) = c} = (T3)7(c)
FeF
(2.10) = inf{e | Tr(e)=c} = (TH7(0) .

3. The Class F(u,0?)
Proposition 3. [Feller p.151] If F' is an arbitrary cdf, then

(2 ([ u®u@dF) < ([ ©0dFW) ([ POdFE)

for any set A and any functions u, v for which the integrals on the right exist. Furthermore,
the equality sign holds if and only if

(3.3) /A (au(t) + bu(t))2dF(t) = 0 for some a,b € R .

Note that if v and v are linearly dependent, i.e., for some a,b € R, au(t)+ bu(t) = 0, the
condition (3.3) is satisfied for all F € ¥ | and that if u and v are linearly independent,
the condition (3.3) is satisfied only when the cdf F is degenerated at one point in a set A.

We shall calculate ¢* and the maximizing point (z*, F*) of the problem (2.9) by Propo-
sition 3.

(3.4 (f, ==aray<(f

(z,00)

dF() ([ (t=2PdF()

(z,00)

4
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'3.4/) (/ [t =2)dF () <(/ dF (D) (/(_mlm](t—m)zdF(t)).

Then, we obtain the maximal bound ¢*.
o2
3.7) ¢* = sup{z | Tr(z) =c}=—~c.
FeF 4c

Since the equality holds in two Schwartz inequalities (3.4) and (3.4'), from the remark
>f Proposition 3, the maximizing cdf F* should be the two-point cdf. Then, we have

5} a? o? . 4c?
3.8 : FUt) = Gy(t; —) = —2¢, — ’ >
, o2
3.9) ¥ € X" = x°(F*) = [-2c, 5——) .
C

Theorem 1. For a class F(0,0?) of cdf’s, the maximal bound ¢* is 62/4c — ¢ by (3.7)
wnd the maximizing point (z*, F*) € x* x {F"} is given by F*(t) = G5(t;0/2¢) in (3.8)
wnd xX* = [—2¢,0%/2¢) in (3.9).

Remark of Theorem 1. From Lemma 2, The equation (3.9) means that the player
. may decide a stopping level z* for some z* € [—2¢,0?/2¢c) or 02/2c — 0. If the player
~ decides any of the above stopping levels, he stops the process whenever X,, = 02/2c¢ is
»bserved because the player 2 chooses only one cdf given by (3.8).

Second, we shall calculate the minimax value ¢* of (2.10) and the minimax-mizing point
o, F*) € (x°, F7). | |
From Lemma 6, T4(z) > (—z)* for all z € R. Then it holds that Tr.(z) = (—z)* <

"L(z) for z € (—oo, —c] if a cdf F*, which has all the mass on [—c, ), is contained in F.
since Tre(z) = (—x)7 is strictly decreasing on (—oo, —c|, we have

3.10) ¢* = inf{z |Tr(z) =c} = {2|Tp-(2z) = ¢} = —

FeF

such a class F* of cdf’s F* always exists in F for all ¢, ¢ > 0.

3.11) F* = {F| dF(t) = 1, F € F}.

[—¢,00

n particular, we can find the class G; = G5(0, 0?) of two-point cdf’s in F* from Lemma 5.

3.11%) g; = {G:(59) g2 %}-

It is easily shown that for any F* € F™ it is optimal for the player 1 to stop the process
nmediately. That is,

3.12) x* = x%(F*) = (—o0,—c) for all F* & F .

5
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Theorem 2. For a class F(0,0°) of cdf’s, the minimax value ¢* is —c by (3.10) and
the minimax-mizing point (z*, F*) € (x*,F™) is given by (3.11) and (3.12). In particular,
there exists the class G} of two-point cdf’s in F* by (3.11').

Now, we shall derive the saddle value ¢° for ¢(z,F) in F = F(u,0?). We have a
candidate (x*, F*) for a set of saddle points (x*, F*).

Theorem 3. For a class F(0,0?) of cdf’s, the saddle value ¢* is —c and the saddle point

(2%, F*) € x* x F* is given by x* = x*, F* = F* and G} = G, C F* defined in Theorem 2.
Theorem 3 says the class F(u, 0?) is so rich for the player 2 that the player 1 must stop

immediately. In this case, the information of the value o2 is useless for the player 1.

4. The Class F(u, 0% M)

In this section, we shall derive the maximal bound ¢* and the saddle value ¢* in the
more restrictive and interesting class F = F(0,02, M) (see (1.10)).

Theorem 4. For a class F(0,0%, M) of cdf’s, ¢ < M, the maximal bound ¢* and the
maximizing point (z*, F*) € x* x F* are as follows: ‘
(i) When 0 < ¢ < ¢?/2M,

. M, o
) =M—c(1+-a—2), X =[——M—,M),

u M a? M? q?
F*(t) = Ga(t; ;‘) =(< —apM>< 1 M2

(i) When 02/2M < ¢ < M/2, the same result as Theorem 1 holds, i.e.,

>) .

a2 2

g
R U = _Dc. —
¢ 4C c 3y X [ CJ 2c) y
o o? 0?,4c?
F'(t) = Go(t; —) = (< —2¢, — ‘ .
(*) d ’20) (<=2, 2 <5 + 4c? >)
(iii)) When M/2 < c< M,
. O° o? Y o?
¢ —-M—C(l'l'm),x —[—M,M),
o a? a?, M?
Fr(t) = Go(t; —=) = (<« =M, — —_
(t) 2( ?M) (< )M >< 0'2+M2 >)
Now, we shall derive the saddle value ¢*.
We confine our consideration to the case:
(4.4) 0 <c< d?/M.
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On the other hand, it holds that

(4.2) }‘Ielf}'_(ﬁ(.’t,F) < ¢(z,Ga(-;M/0)) = —cfor z e[—-M, faz/M) ,
(4.3) }Iéffd)(m,F)g #(z,Ga(+;0/M)) = —oo for z € [QZ/M, M],

because the player 1 stops immediately in the case of (4.2') or he cannot stop in the case
of (4.3'). Then, the player 1 must decide his stopping level z in the interval

2 2
in order not to make his reward infrer ¢(z, F) < —c, where —c is the reward of immediately
stopping or the saddle value ¢* = —c in Section 3.

Lemma 7. For any strategy (z, F),2 € x™, F € F, if F has a probability mass p at any
point y in the'interval (z, M) and satisfies ¢(z, F) > —c, then there exists a cdf F" € F
such that F has no mass in the interval (z, M), and it satisfies ¢(z — 0, F") < ¢(z, F).

Lemma 8. For any strategy z € x¥, F € F, if F has probability mass p at any point y
in the interval (—M, z) and it satisfies ¢(z, F') > —c, then there exists a cdf F” € F such
that F” has no mass in the interval (—M, z), and it satisfies ¢(z, F'") < ¢(z, F).

Let us define for any z € [—0?/M, 02/M), a three-point cdf G¥(;z) € F which has
all the mass at three points —M, z, M with the mean 0 and the variance 2. This cdf is
uniquely determined by ‘ :

Mz+02 M?—0%? o2- Mz
2M(M + z)’ M? — 22’ 2M(M — z) >)
and let GM = {GM(t;2) | —0?/M < z < 0%/M}. Note that if z = 02/M or —0?/M,
G¥(t;z) becomes the two-point cdf G3(t; 0/M) or G,(t; M /) respectively.

(4.11) G¥(t;z)= (< —M,z, M ><

The player 1 would decide a stopping level z in the folloﬁing set |
(4.13) {z | (z, F) > —cforall F e F}nxM &xM
This set is not empty because z = —c is contained in it.

- If there exists a point z° € x} such that
(415) (e, G3'(52%)) = (Tga) () = p(=* = 0,G3' (52%)) ) 2 —c,

the stratégy (z*,GM (- 2*), z € xM, GM(-;2*) € G¥ C F, is the saddle point and ¢° =
(Tégu)"l (c) is the saddle value. Because, from (4.14), Proposition 1 and (2.10), the following
relation is satisfied.

#a* = 0,G5'(52) < sup inf ¢(s, F) < jnf sup §(, F)

z€xM z€xXM
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< inf sup ¢(z, F) = (Tgu)7'(c) = (2, G3'(5 ).

Feggu zexy

Theorem 5. For a class F(0,0%, M) of cdf’s, 0 < M, the saddle point (z*, F*) € (x*, F*)
is as follows:
(i) When ¢%2/M < c < M, the same result as Theorem 3 holds, that is,

¢’ = —¢, x" = [—M, -—C] a.nd
s —{F _ 2 .
F={F| ][_C,M] dF(t) =1, F € (0,02, M)}
(ii) When 0 < ¢ < 02/M,
¢ ={(*IM - )t —¢, x* ={z*}, z* = (0*/M — c)* —c and

F* = {F*}, F*(t) = G¥(t;z°) defined by (4.11) .
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Figure 1. The maximal bound ibuand the saddle value ¢¥

in the class 54(_0,02,1‘4) when M=12, 0 = 8,
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