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Exponential Dispersion Model & 1 ZE
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SUMMARY

It is known that a normalizing transformation of an exponential
family is determined by the differential equation. We shall prove
that this correspondence between the families and the transformations
is one-to-one within the class of all exponential families. This
result yields that the Box-Cox transformations are normalizing
transformations of the exponential dispersion models with power
variance functions. The correspondence is - plotted graphically.
Using this relation we propose a new parameter estimation procedure
for the exponential dispersion models with power variance functions,
and the procedure is examined by the numerical example.

Variance-stabilizing transformations are also discussed.

1. Introduction
Box and Cox (1964) proposed a family of power transformations

such that the transformed data has clearly defined properties, e.g.,
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constancy of variance and/or normality. It is well known that
familiar distributions are closely related to the Box-Cox
transformationé. For example, the square transformation is a
variance-stabilizing transformation of a Poisson distribution
(Anscombe, 1948), and the cube transformation is a normalizing
transformation of a gamma distribution (Wilson & Hilferty, 1931). We
try to unify the results obtained in the literature.

In general it 1is known (Konishi, 1981) that a normalizing
(variance-stabilizing) transformation of an exponential family is
determined by the differential equation. We shall prove that this
correspondence between the families and the transformations is one-
to-one within the class of all exponential families. This assertion
also holds within the class of all exponential dispersion models.
The exponential dispersion model is a generalization of an
exponential family, and was reviewed by J¢rgensen (1987). This
result yields that the Box-Cox transformations are normalizing
(variance-stabilizing) transformations of exponential dispersion
models with power variance functions.

In Section 2 we review exponential dispersion models with power
variance functions. Section 3 gives an one-to-one correspondence
between exponential families and the normalizing (variance-
stabilizing) transformations. This theorem is applied to the Box-Cox
transformations in Section 4, and the correspondence is plotted out
in FIGUREs 1 and 2. Using this correspondence we propose a new
parameter estimation procedure for the exponential dispersion model
with power variance function in Section 5. The procedure is examined

by the numerical example.
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2. Exponential dispersion models
Suppose a d-variate random vector X comes from a distribution

with density function of the form

A{8"x - x(8))

dF(x;4,8)/dv(x) = f(x:2,68) = a(x;d)e (1)

where a and « are given functions, and § varies in © of a subset of

Rd and 2 varies in A of a subset of R+. Here v is a o-finite measure

on Rd. The parameter 1/2 stands for a measure of dispersion. This
family is called an exponential dispersion model and denoted by
ED(Z,6).

The exponential dispersion model was introduced by Nelder and
Wedderburn (1972) with d = 1, and by J¢rgensen (1987) in multivariate
case. Such an original idea may be found in Tweedie (1947). The
exponential dispersion model is used for error distributions of
generalized linear models. Allowing that 2 = 1, we can regard that
the model is an generalization of the exponential family.

Another exponential dispersion models are used for describing

discrete distributions. Discrete dispersion models, written as

ED*(X,Q), consist of densities of the form

- Ax(8)

| T
dG(y:,8)/dv(y) = g(y:1.8) = a(y:2)e? ¥ (2)

Let X and Y be random vectors with density functions of the form

(1) and (2) respectively. Then cumulant generating functions are
given by
log Eglexp(t'X)] = 2{x(g + t/2) - x(8)} and (3)
log Eglexp(t'Y)] = 2{s(8 + £) - x(8)}. (4)
Hence «(9) is called a cumulant generator. Immediately it holds
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that E[X] = 0x(6)/36, Var[X] = (1/2)8%x(8)/3688°, E[Y] = 2-2x(8)/38

and Var[Y] = x-azx(g)/agagT. Barndorff-Nielsen (1978) showed that
the mapping ¢ — 39x(8)/38 (= p, say) is one-to-one. We define the
inverse mapping by 6 = &(g). The dxd matrix azx(g)/agagT 9=k (1) (=

V(g), say) is called a variance function, and the variance function

characterizes the distribution.

Theorem 1 (J¢rgensen, 1987). An exponential dispersion model is
characterized within the class of all exponential dispersion models

by its variance functions.

In the sequel we consider univariate (d = 1) exponential
dispersion models. Especially the exponential dispersion model with

power variance function
V() = 4P

is very attractive. Letting a = (p-2)/(p-1), we denote this model by
ep{®) = Ep(?®)(2,6), and its cumulant generator by «x_(6). Giving

various values to a, we get important families.

Ep{2) . the normal family with p = 0, sy(8) = 6,
(™) : the Poisson family with p = 1, «__(8) = e,

ED(O) : the gamma family with p = 2, xo(ﬁ) = -log(-6),
Ep{1/2) . the inverse gaussian family with p = 3, ”1/2(3) = /-206.

In general J¢rgensen (1987) proved that there exists an exponential
dispersion model with xa(e) = (a—l)a_l{e/(a—l)}a when p <=0, 1 <p«
2 or p > 2 (equivalently a = 2), and in other case there exists no
exponential dispersion model. Further he showed that a distribution

in ED(a) is continuous on R+ with an atom at x = 0 if a < 0, is
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continuous on R+ if 0 = o <¢.1, and is continuous on R if 1 < a = 2.

The exact density in ED(a)(l,e) for 0 < a <1, 1 < a < 2 is given by

f (x;2,0) = c-Sa(cx)exp( A{6x - Qél(5§T) } ).

1/a

where ¢ = c(l) = a (l_a)l—l/azl-l/a.

Here Sa(x) is a probability
density of a stable distribution with index a, see, e.g., p.583 of
Feller (1971).

When 0 < a < 1,

X-a)k

Sa(x) = - sin(azk) for x > 0 ; = 0 for x = O,

-1
X

; (ak+1)(
k=1

and when 1 < a < 2,

S, (x) = - =& < —(l*—kﬂl(—m)k sin(zk/2) for x # 0.

x| k=1

The convergence of Sa(x) is very slow. Hence it is hard to obtain
the maximum 1likelihood estimator of (a,1,8). Stable distributions
were extensively studied by Zolotarev (1986).

When a < 0, the distribution in ED(G)(X,B) is given by the
Poisson mixture of a gamma distribution. More precisely, the mean of
the Poisson distribution is given Dby X(a—l)a_l{ﬁ/(a—l)}a, and
parameters of the gamma distribution ED(O)(X’,H') are given by 1' =

-a and ' = 02. See, e.g., Siegel (1985).

3. Normalizing and variance-stabilizing transformations

Let X be a mean of an n-random sample from a wunivariate
exponential dispersion model ED(A,6). Then by calculating the moment
generating function of X by (2), we hold that X follows ED(n2,6). On
the other hand by the central limit théorem a distribution of vni{X -

k'(6)} converges to a normal distribution N(0, x"(d)) as n tends to
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infinity. Substituting ni to 2, and X to X (~ ED(4,6)), we know that
a distribution of vZ{X - x'(8)} converges to a normal distribution
N(O, x"(8)) as A2 tends to infinity. This implies that for a smooth

function h(x), it holds that
YZ{h(X) - h(x'(6))} L N[O, K"(ﬁ){h‘(x'(ﬁ))}gl (2 —— ). (5)

In this article we treat the asymptotics that 2 tends to
infinity when the wunderlying distribution F is a member of the
exponential dispersion model. If F is a member of an exponential
family, substituting X with X and 1 with n in (5), we consider the
asymptotics that n tends to infinity.

Let h(x) be a twice continuously differentiable monotone
function with h'(x) > 0. We transform X (~ ED(AX,8)) into h(X). We
regard that h(x) and clh(x) * Cy (c1 > 0) provide the same
transformation. Now standardizing h(X) by the asymptotic bias and

the asymptotic variance, we put

V2 K"(a)h"{x'(ell)

Zy(X) = FTer(ayy7erTey (R0 - Blet(0)) - S (®)

Let K be the third cumulant of Zh(X):

"t ————
k = 5( = + 3/57(0)

h"{x'(8)} ).
{r"(6)})3/2

hl{K!(a)} (7)

Then we get the asymptotic expansion of the distribution function as

Priz,(X) = z] = 0(2) - z,p-K(z° - 1)8(2) + 0(}), (8)

where ¢(z) and ®(z) are the density and the distribution function of
the standard normal distribution respectively.
When Y has a discrete distribution of the form (2), we consider

the transformation from Y to h(Y/2). Then

_ J:I- , "(8Yh"{x'(8
Z,(¥/2) = g (eyyerrey (VA - hiw (o)) - SR
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converges a normal distribution N(0, «x"(4)) in law as A1 tends to
infinity. For a discrete distribution, (8) is not valid because the
finite correction term of order 0(1/¥2) should be added. See e.g.
Siotani and Fujikoshi (1984). However the following approximation
for the density

3

Priz, (Y/2) = z] = ¢(z) + K- (2° - 3z)é(z) + 0(%)

1
2V2
is valid when Zh(Y/l) takes the value z with positive probability,
where K is of the form as (7).

A function h(x) is called a varidnce-stabilizing transformation

of an exponential dispersion model (or of an exponential family) when

the asymptotic variance of Zh(X) of (6) is independent of 4, i.e.,
hi{x'(8)}/x"(8) = 1 or equivalently h{x'(8)} = IJx"(H)dB. (9)

The most important transformation may be a normalizing transformation
which vanishes the coefficient of O(1/v¥2) in the expansion (8). Such
a characterization was established by Konishi (1981, 1887). In our
setup, a normalizing transformation is given by a solution of the
differential equation that K of (7) equals zero. This equation has,

the unique solution
hix'(8)} = In"(ﬁ)z/sde. (10)

Both transformations (9) and (10) are given by the solutions of the
differential equations. Conversely for a given h(x), (8) and (10)
determine x(6). However, a family with the cumulant generator «(6)

may not exist. Thus we have

Theorem 2. Let h(x) be a given twice continuocusly differentiable
monotone function. Then

(1) h(x) is a variance-stabilizing transformation of an exponential
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dispersion model (of an exponential family) whose cumulant
generator x(6) satisfies x"(4) = [h'{n'(e)}]_z, and
(2) h(x) is a normalizing transformation of an exponential dispersion
model (of an exponential family) whose cumulan£ generator «(8)
satisfies x"(8) = [h'{x'(8)}] .
4. The Box-Cox transformations
As a special ‘case of Theorem 2, consider the signed Box-Cox

transformations
hy(x) = sign(x)-1x1% (qa # 0); hy(x) = log x,

and the exponential dispersion model ED(a) with power variance

function.

Theorem 3.

(1a) The variance-stabilizing transformation of ED(a) (ax = 2, a# 1)
is given by hq(x) with q = a/{2(a-1)},

(1b) the variance-stabilizing transformation of the gamma family
ED(O) is given by ho(x) = log x,

(1c) the variance-stabilizing transformation of the Poisson family
p{"®) is given by h; ,(x) (Anscombe, 1948),

and each converse of (la)-(lc) is also valid within the class of all

exponential dispersion models or within the class of all exponential

families.

Note that q = a/{2(a-1)} takes the values q < 1/2 or q 2 1 as «a
varies in a s 2, a # 1. The inverse function a = 2q/(2q-1) 1is
plotted in FIGURE 1. Taking o = 1/2 in (la) we know that the inverse

gaussian family ED(l/z) is corresponding to h_l/z(x) = 1/Vx%.

- 8 -
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Theorem 4.

(2a) The normalizing transformation of ED(a) (o = 2, a # 1/2,1) is
given by hr(x) with r = (2a-1)/{3(a-1)1},

(2b) the normalizing transformation of the inverse gaussian family
ED(1/2) is given by hO(x) (Whitmore-Yalovsky, 1978),

(2¢) the normalizing transformation of the gamma family ED(O) is
given by h1/3(x) (Wilson-Hilferty, 1931),

(2d) the normalizing transformation of the Poisson family ED(-m)
is given by h2/3(x) (Blom, 1954),

and each converse of (2a)-(2d) 1is also valid within the class of

all exponential dispersion models or within the class of all

exponential families.

Note that r = (2a-1)/{3(a-1)} takes the values r < 2/3 or r = 1
as a varies a = 2, a # 1/2, 1. The inverse function a = (3r-1)/(3r-2)
is illustrated in FIGURE 2. Recall the distribution of ED(a) with a
< 0 takes zero with positive probability. However in Theorems 3 and
4, this causes no problem because q = a/{2(a-1)} of (la) and r =

(20-1)/{3(a-1)} of (2a) are positive when a < 0.

Corollary 5. Suppose a function h(x) is a variance-stabilizing and
normalizing transformation of an exponential family. Then h(x)

should be of the form c,x + Cy with constants ¢, # 0 and Co» and the

1 1

family should be normal.

Proof. Let h(x) and x(6) satisfy the relations (9) and (10). From

-1/2 5/2_

(8) we have h'{x'(6)} = «"(6) and h"{x<'(8)} = - 1/2 x"(6)
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Hence we have - 1/2+.x"'(8)/x"(6)°/%2 = 0 or x"'(6) = 0. Thus x(8) =

2 1/2

cle + c20 * Cq and h'(2c10 + c2) = (201) for some constants

c,> 0, Cy and Cz- This completes the proof.

1

The z-transformation of a sample correlation coefficient is a
variance-stabilizing and normalizing transformation. We remark that
a distribution of a sample correlation coefficient is not a member of

an exponential family.

5. Applications for parameter estimations
As we have already seen, the maximum likelihood estimators of
"the parameters of ED(G)(X,H) are hard to obtain. The moment method

for parameter estimation based on a random sample from ED(a)(x,H) is

- P - - = ~ -~ - -1
a = (2a4 - Ksi)/(d4 - KSE)’ 6 = (a - 1)}—{(a—l) '

(12)
and 3 - -(&—2)/(&—1)/;2,

-~

where rg is an estimate of the third cumulant (see Hougaard, 1988).
On the other hand, Theorem 4 may provide an alternative procedure for

estimating the index a. The proposed procedure is as follows.

Step 1: Fit a normal distribution after the signed Box-Cox

transformations from X5 to sign(xi)lxilr

and find the power,
say r, which maximizes the likelihood.
Step 2: If 2/3 < r < 1, then we stop to fit ED(a) for the data.

Step 3: If r

1/3, a gamma distribution is fitted,

if r 2/3, a Poisson distribution is fitted,

and in other case parameters are estimated by
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. . 3 . . - -1 . - - ;
a = (3r-1)/(30-2), 6 = (a-1)x(@ 1) 7 7 = x(@-2)/(a-1) 22

(13)
Step 4: Obtain likelihoods of ED(a) with a of (13), a of (12), a = 0

(gamma), a = 1/2 (inverse gaussian) and a = 2 (normal). Then
choose the best model by using an information criterion such

as AIC.

Concerning on Step 3, €4is a conditional maximum likelihood estimate

given a, and 2 is obtained by the moment method.
This procedure is examined for the weight data of 98 newly-

enrolled male students of a university of Hiroshima. The estimated

mean and variance are p = 61.02(Kg) and 02 = 38.79. The following

table summarizes the performance of the fitted models.

TABLE Weights (Kg) of 98 freshemen

data set : (145) 51, 652, 3#53, 4#54, 7#55, 2s58, 9%57, 758, 459,
B#60, 461, 5%62, 863, 5#64, 9#65, 5#66, 2#67, 68,
70, 72, 3#73, 74, 768, 79, 82 (194)

n+*w implies that w (Kg) is repeated n times.

The numerals were rounded off at the first decimal.

The original sample size was 100. The minimum and maximum values 145
and t94 of the original data are treated as outliers, and omitted.

-2+logarithm of # of

Fitted model likelihood parameters

Normal 836.62 2 (a = 2)

Inverse gaussian 630.398 2 (a = 1/2)

Log normal ‘ 630.397 2

Normal after  emation ©626-10 3  (estimated power r = -1.835)
'Ep{?) (moment method) 625.96 3  (a = .85088)

ep{®) (from Box-Cox)  625.73" 3 (a = (3r-1)/(3r-2) = .86676)
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ED{?) (MLE of a) 625.67 3 - .878)

(ayy,
(# : proposed method)

Hence our procedure works well because its likelihood is very
close to that based on the maximum likelihood principle. This data
may follow a distribution of an exponential dispersion model with
power variance . function. We also note that the 1likelihoods of an
inverse gaussian distribution and a log-normal distribution are
nearly equal. This phenomena is interpreted by (2b) of Theorem 4.
Actually the estimated inverse gaussian distribution is ED(l/z)(6147,

-0.01343), and the estimated A = 6147 is fairly large.
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FIGURE 2. Normalizing transformation,
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