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Continuous radial asymptotics for solutions
to elliptic Fuchsian equations in 2 dimensions

BOGDAN ZIEMIAN

Institute of Mathematics, Polish Academy of Sciences
Sniadeckich 8, 00-950 Warsaw, Poland

Abstract. Radial regularity at the origin of solutions to elliptic Fuchsian opera-
tors is studied in spaces M(; p) and Z4(; s) of distributions with continuous radial
asymptotics by means of the techniques based on the Mellin transformation.

Introduction.  We study regularity of solutions to singular linear equations R(z;,
. ,$n’$15%a ceesy a:ngg:)u = w, with R(z,£) an elliptic symbol, on proper cones in
the positive octant R} . Equations of this type appear i.a. in the study of Laplace-
Beltrami operators on symmetric spaces. They fall within the scope of the singular
operators considered by M. Kashiwara [5], R. Melrose [7] and M. Bony [1].

The study of solutions to singular elliptic equations is quite different from that
of solutions to (non-singular) elliptic equations. In the latter case local regularity
of solutions is completely controled by the behaviour of their Fourier transforms at
infinity (first wave front set). In the case of singular operators the Fourier transfor-
mation is replaced by the Mellin transformation, however the growth order of the
Mellin transform along the imaginary planes( second wave front set; see [11]) does
not give information about the asymptotic expansions of solutions at the vertex of
the corner. This information is contained in the boundary values of (the holomorphic
extensions of ) the Mellin transforms. Therefore in order to get a complete descrip-
tion of local regularities the two pieces of information should be coupled. This goal
is acheaved by introducing the spaces M((Q;p) and Z4(f;s). In contrast to solu-
tions to Fuchsian equations in the sense of Baouendi-Goulaouic, the solutions u to
Ru = 0 do not expand into discrete powers of the radial variable. Instead, for n = 2,
we have “continuous”asymptotic expansions whose densities are distributions sup-
ported by several half lines parallel to the real axis. The densities are equal to the
boundary values of the Mellin transforms times the factor (27i)~!. Moreover, they
extend to holomorphic functions with logarithmic singularities situated in a discrete
lattice in C. This is resemblant of the resurgence phenomenon of Jean Ecalle and is
investigated in a forthcoming paper [12].

The paper ends with an explicit example covering the case of the operator A=
(215 dz1 P+ (2252 dz3 )%

A more detailed expos1t10n together w1th complete proofs is to be found in papers
[15] and [16].
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1. Notation and basic facts on the Mellin transformation.

Throughout the paper we use the following vector notation: if a,b € R",a =
(a1,..+,8n),b=(b1,...,b,) then a < b (a < b,resp.) denotes a; < b; (a, < bj,resp.)
forj=1,...,n. Wedenote R} = {zr e R":0<z},R_.={zeR:2<0},]=
(0,t] = {x € R} : ¢ <t} wheret € R}. We also write1 =(1,...,1) e R" .

Z is the set of integers and Ny stands for the set of non-negative integers. If
r € R} and z = (21,...,2,) € C" we write z* = z{' ... zZ*. Vector notation is also
used for differentiations. Namely we write

9_2 o, 0 0 0,
8z “0zy’ 0z, "0z ‘0z "Bz,

and if v € Ny then

v o a v o _. 2 a Vn
( ) ax”l e W,(az%) = (.’Bl 6.’1,‘1) ...(xnazn) .

For points a € R" we write a = (a;,a') where a € R,a' € R*™!, similarly for
¢ eC™ (¢ =((1,¢"), G €C, (" € C", we also consider sets W C C" of the form
W = W! x W' where W! C C,W’' C C"!. For a set W C C" and a vector a € R"
we write W+a={2€C":z—a€ W}.

For an open set V. C R",C§°(V) is the space of compactly supported C* functions
on V, D'(V) is the space of distrbutions on V.

S(R™) denotes the Schwartz space of rapidly decreasing functions, S'(R") is the
space of tempered distributions. A(V') stands for the space of analytic functions on
an open set V C R", O(W) denotes the space of holomorphic functions on an open
set W C C™. More generally A(R"™';S'(R)) (O(C""'; §'(R)),resp.) denotes the
space of analytic (holomorphic, resp.) functions on R®™!(C" !resp.) with values
in S'(R") i.e. functions R"™' 3 2 — T(z) € S'(R) such that for any 0 € S(R)
the function R*™! 3 z +— T(z)[o] € C is analytic. We also make use of the
isomorphism S'(R™) = S'(R"™!; $'(R)) where the right-hand side-is the space of
continuous linear mappings on S(R™™!) with values in §'(R). Similarly, we consider
S'(R™) = S'(R, S"(R"!)). The isomorphisms can be regarded as S' versions of the
Schwartz kernel theorem ([2}).

For the sake of completenes below we present an outline of the main facts on the
Mellin transformations which are used in this paper (for details cf. [13, 4]).

Fixt € R]. Let I = (0,t]. By C*°(I) we denote the set of complex functions on
I which are restrictions to I of smooth functions on R%}.



Let « € R". By M, = M,(I) we denote the space of the functions ¢ € C*(I)
such that for every v € Ny

— at+ls Y v
Oaw(p) = ilér;lw (= 3:1:) o(z)|

is finite, with the topology given by the seminorms g4,,,7 € Ng. The space M, =
M,)(I) for w € (R U {oo})™ is the inductive limit

My = U Ma(I)

alw

The space M' = |J M('w) C D'(RL), where M('w) is the dual of M(,,), is called
weER™
the space of Mellin (transformable)distributions. We define the Mellin transform of
u€ M : '
(w)
Mu(z) = u[z™*"] for z€ C", Rez <w,

Mu is holomorphic for Re z < w. By the Mellin transform of u we shall regard any
holomorphic extension of the function defined above.

The Mellin transformation introduced above satisfies the following operational
identities. If u € M(’w),a € C" then

M(z%u)(z) = M(z —a) for Rez < w+ Rea.

If ve Ng,|v| =1 then
0" v
M ((Ev—)u> () =(z"+1)M(z4+v) forRez <w —v.

In the sequel I' C R} will denote a proper cone i.e. a cone such that I’ ﬂ_R_f = {0}.
We shall write M} for the set of Mellin distributions supported by I'. We also
introduce the cut -off functions subordinated to a proper cone:

Definition A (see [15]). Letéz € R’ . By a conical cut-off function at (0; 6z) we
understand any function x € C*®°(R}) of the form k£ = ¢ - & where ¢ € Cg°(R"),p =
1, in a neighbourhood of zero and & € C*°(R}) is homogeneous of order zero,

supported by a proper cone and k(&?:) # 0.

Definition B (see[15]). Let 6z € R} and suppose u € D'(R}). We say that

u € M' 2-locally at (0; 5:?:) if there exists a conical cut-off function « at (0; 5:%) such
that ku € M'.



2. Generalized Taylor formula for distributions in Z4(Q; s).
Below we define the spaces M(; p) and Z4((; s) of Mellin distributions with con-
tinuous radial asymptotics at the origin. Since we are interested in the behaviour with

respect to the radial variable we introduce “radlal”coordlnates S:R}Y - R}, z=
S(y) where

Ty =11
zj=yyi for j=2,...,n

The coordinates S are related (see Proposition 1 in [15]) by means of the formula
(Mu)o ATH(() = M(u o S)(()
valid for u € M{,, to the linear transformation A : C* — C",({ = Az given by

Cl=z1+"'+zn
¢ = zj for 3=2,.

Definition 1. Let Q! be an R_ connected open subset of C, i.e. a subset such that

together with any point Z’l € Q! it contains the half-line Zl + R_. Also suppose
that for any r € Re Q! 4 {Rely : ¢ € N} theset A, = {¢(1 € C\Q! : Re(; < 1}

is compact in C . Let p : Re Ql — R be a non-decreasing function. We say that a
Mellin distribution u in M. belongs to M(; p) where

Q=A"1(Q xC" 1)

if the function H({) = Mu o A~1(() satisfies the conditions
i) He O(Q! x C* 1),
ii) For any open neighbourhood W of A = C\Q!

|H(a +14b)] < C(1+ || b |))?®) for a + ib € (C\W) x C™?

where C = C(W, a) is locally bounded in a € Re Q! x R*1.

In the case where @ = C"™! and p = s € R is a constant function we also consider
the space D'(R; M(C™™1;5)) of M ’(C" 1, s)-valued distributions on R such that for
any compact set K CR

IM'T[p)(a’ +ib')] < C(1+ || b [})* ) sup|D%(by)| for b’ € R*7,

laj<m
v € C§°(R) supp ¢ C K, with C = C(K,d'),m = m(K,ad') locally bounded in
a € Rn—l.

Next we impose more constraints on the set Q! and on the behaviour of the Mellin
transforms near the boundary of Q.
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Definition 2. Let s € R and let Q! = C\ |J L’ where L’ = 6;+ Ry where §; € C .
Jj=1 _
Denote B = {Imf;,i = 1,...,k} and set @ = A~1(Q' xC*™'). We write u € Z4(Q;s)
if w € My for some proper cone I' C R} and the function H({) = Muo A7(()
satisfies the conditions :

i) H € O(Q! x C*Y),

k.
ii) For every open neighbourhood W of |J L’
i=1

\H(a +ib)| < C(1+ || b ||)* for a + ib € (C\W) x C"~*
locally uniformly with respect to a € R",

. N e
iii) |H(a +b)| < C(d%wﬁllhllg)W

for b; close to B and ¢’ = a'+ib' € C™, for some constants 0 < € = C(a),m =
m(a) € R locally bounded for a € R".
- We also denote Z4(Q2; —00) = [ Za(;s).
sER
Let H be a function satisfying i) - iii) in Definition 2. For a fixed ¢' € C"™! and
every 3 = 1,...,k define
EL = lm H(+ib,(")~ lm  H(-+iby,(")
by —Imé; by —Imé;
b1 >Imé; . b1<Imé;
where the limit is taken in the sense of distributional convergence in D'(6; + R). By
iii) the limit clearly exists and defines a holomorphic function

C"'5( — EL € D'(6; +R)
which satisfies the estimates

B4 lell < C sup D1+ ¥ 1)* for @ € G(6; +R)

al<m
locally uniformly in a’ € R". Define
Ti — _1_ M’)—IEJ'

T om

where (M')™! is the inverse Mellin transformation in variables (’.
Then it follows from the above that

‘ T € D'(L7; M(C™1;5)).

Let L7 = L' N {Re(i < r}(r € R) and let T/ be any distribution in D'(8; +
R; Z4(C""';s)) with support in LI which coincides with TV on §; + {a € R : a < r}.
Finally let

Q= A7 ({Re; <rju xC* 1)

—5—



Theorem 1(Generalized Taylor formula). Let u € Z4(Q;s). Then for any
r € R there exists R, € M(Q,;s) such that

k
(1) woS =YY Tiy{x(v:1)] + R,0S

i=1

where x is in C§°(R) x = 1 in a neighbourhood of zero and for every fixed y; > 0
and j = 1,...,k, y? denotes the test function L’ 3 8 - y¢ € C (Note that T/ are
regarded as distributions in the variable 8). Conversely, if for any r € R formula

(1) holds for some T € D'(Li; M(C* %;s))(j = 1,--- ,k) and R, € M({Y_Rez; <
i=1

r};s) then u € Zy4(Q; s).
Moreover if (1)holds for some 7 € R then it holds for every r < 7.

The proof of the theorem can be found in [16]; see also [12] and [13].

Remark. If estimations in the supremum norm in Definition 2 are replaced by those
in L? norm we obtain an analogue of Theorem 1 in terms of the weighted Soboles
spaces SP(s,s') (see [11] and [1] for the definition).

Remark. Different variants of decomposition (1) can be used to extend the classical
concept of differentiability.

Corollary 1. The spaces Z4(f;p) and M(S2;p) are 2-local, i.e. for any conical
cut-off function x if u € Z4(Q; p)(M(R; p)resp.) then ku € Z4(Q; p)(M(R; p)resp.).

The proof for the space M(;p) can be found in [15]. The proof for Z;(M; p)
follows from that for M(S2; p) and Theorem 1.

3. The radial characteristic set charaP of a polynomial.
We start by stating the following property of the classical Cauchy transformation.

Proposition 1. Let C"™! 3 ¢/ — T € E'(R) be a distribution valued holomor-
phic function which is rapidly decreasing as a function of Im(’, locally uniformly in

Re(’. Suppose that T, restricted to an interval (0, Z), b > 0 is a function T¢ () for
¢' € C"! and for j = 0,1 and some ! € N

o C o
|||3—7Ta'+i-('7'1)|||1 <5 7€(0,b)
£ T

1

locally uniformly with respect toa’ € R, where |||o||li = sup (1+]||z|)'( X |D%o(z)))
z€R"-1 lal<!

for o € S(R"™"). Then for a, < a; < 0 and small b; > 0

_ . %,
NC™ Twtiar +ib)lli < S
1

bP
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locally uniformly in @' € R*™!, where $ = max(p, 1 + $), # = sup order T¢ and
. Cl

CTe(C) = ——Tc'

i ! n—1
C—”Y] for CEC , Re(; <0.

The proof can be found in [16].

Before passing to the definition of a radial chartacteristic set of a polynomial we
recall some properties of the Mellin transforms of conical cut-off functions and of the
related Cauchy transforms. Details and proofs are to be found in [15].

Proposition 2. Let & be a conical cut off function of Definition A. Denote
R (y') = R(L ),
K'(¢") = M'(&")({') for ('ecC™!
K(¢) = (MK)o A}(() for (€ (C\{0})x C"?

Then
i) K € O((C\{0}) x C"™),

ii) For every a € R the function
R" 5 b+ (ay + ib;)K (a +ib)

isin S (R“).loca,lly uniformly with respect to a € R",
i) K(¢) = - X2 + K(¢) with K e o(C™).
Moreover &' € C$°(R}™') and
i') K' e O(C™™),
ii") For every a' € R"™! the function

R 3¥ + K'(a' +ib')
is in S(R®™!) locally uniformly with respect to @’ € R* 1.

Theorem 2. Let T € S'(R"™) and fix a € R™. Fix a conical cut off function « as in
Definition B, and let «', K’ and K be defined in Proposition 2. Denote

1

(2m)" ———T[K(( —a—iy)] for +Re(; >+a;,(" €C"!

cH¢) = T(¢) =
and

) 8, = €D, () = G TK(E ~& ~] e S®) o ¢ eC

(in(2)Tis regarded as an element of $'(R"™!; S'(R)) under a canonical isomorphism

§'(R") > §'(R"™; S'(R))).
-
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Then - : :
C™T € O({£Re(; > +a,} x C*™Y),

€'T), €0(C" S (R))
and in the sense of convergence in S'(R")

hm C T(a+i)— hm ¢t T(a+z)—(CT) (a +1.)

a——»a a—»a
al>a1 a1<a1

(here (é'T)zl(a' + i) € S'(R"!; 8'(R)) is regarded as an element of S'(R™)).

Corollary 2. Let H be a function holomorphic on an open set U C C" . Fix
a € R™ and suppose that the function b — H(a + 1b), defined for b € R™ such that
a + ib € U, extends to a distribution in S'(R"™) which we denote by H.. Further
suppose that there exists an open set U! C C such that for every ¢; € U? the function
b — He,(a' +ib'), defined for b' € R"™! such that (¢1,a' + ib') € U, extends to a
distribution H . in §'(R™!) and the distribution valued function

Ul = Cl — H(h;l € Sl(Rn— )

is holomorphic on U!. Finally assume that there exists a regularization

1 : n-1 n—1
H;h;, € S'(R; S'(R"™ ")) of the function b H51+tb1 s, € S'(R™ '), defined for

b e R witha; +ib, €U 1. such that H; . = H; under the canonical isomorphism
1y

S'(R, S'(R”_l)) ~ S'(R").
Then the function

Col0) = Gy B (K¢ =8 =), (G () eV x

is holomorphic on U! x C"™!, and for every fixed (' € C™~! the distribution C:; ¢ e
1
S'(R) is a regularization of the function
~t
by — C5 4, ()
defined for by € R such that 51 + iby € UL. Moreover the function
B(() = C(¢) for Re(; < a1, ('€ C"™*
EY(Q) +C, (") forRe(1 >d, (€U, ('eC™
extends to a holomorphic function ¥ on ({Re(; < a;} UU!) x C™*™* (here &* €)=
(C H.)(¢) as in Th. 2).

We recall the definition of the radial characteristic set char, P introduced in [15].

Let P be a polynomial in C” and & € R". Denote @ = Aa and P(¢) = PoA~ 1((), and
let (,p) be a regularization to a distribution in S'(R"™) of the function b —

'P(a+|b)

_g9—
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Definition 3. Let Q! be the biggest set (as in Def.1) such that the function

3) C(©= (2,,),,( ) [F(a+ inK({( —a- w)]for Re(; < al,C' crt
extends to a holomorphic function on & x C"_1 for any F € o x c* 1)
(with Q! as in Def. 1) such that for any open set W of C\Q! there exist constants

C and M such that
|F(a+14b)| < CA+ b)Y for a+ibe (C\W)x C"™?

locally uniformly in a € ReQt! x R"™!. We define char. P = C"\A~}(Q' x C"™").

In Theorem 3 below we compute the set char. P for a class of polynomials in two
complex variables. We start with notation and prehmlnarles

Let P = 3 a,z” be a polynomial in C? with complex coefficients. We assume
lpl<m

that the vector v = (—1, 1) is non characteristic for P i.e. Pp(7) # 0 where Pn(z) =

> ayz’.

lol=m

Define P(C1,(2) = P(¢1— (2, C2) and write P(C1,C2) = am(C)¢ + - -+a1(C1) e+

ao({1). Observe that a,,((;) is a constant function

am = Pn((-1,1)) = z ap(—1)"* #0.

lp|=m
Represent P as
(4) P(61,¢2) = amH(Cz — (1))
=1
where ¢;((1),:** ,cm((1) are the complex roots of P with ¢y regarded as a parametr.

Define the discriminant of P
A = ] (ei(¢) = ex(r))-
i<k
If P has no multiple polynomial factors then it follows from Lemmas A.12 and A.13
in [2] that A is a non-zero polynomial in {; and for every (; such that A({;) # 0 the
functions cJ((l), j = 1,...,m are holomorphic in a neighbourhood of C 1. Further,

smce am 18 a constant functlon in a neighbourhood of every point ( 1 such that

A(( 1) = 0 the ¢;(¢1) have expansions into Pulseux series, i.e. a series of the form

(5) ei(G) = Sar((G — C)Vry”

k=0

_q—
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for some p € N. ,
Fix a € R?. We shall consider the functions ¢;j,j = 1,...,m defined as follows. For

Re(; close to aj, ¢;(¢1) are the holomorphic functions satisfying (4) and we choose

the following extension of ¢; to {Re{; > a1} Let 6,(v = 1,...,N) be all points in
C such that A(6,) =0 and for some j = 1,...,m, c; has Pmseux expansion at 6,

with p > 1 and Ref, > a;.
At the points 8, c; has value ¢j(8,). For (; € Ry +86,, we define ¢;({1) U c}*’((l) =

lin} c¢j(¢1). We also define c;(zl) = lim  ¢;j(¢1).
¢G1—<€1 1~

° °
Im¢y>Im(y Im{y <Im¢,

Denote by B,(p =1,..., M) all points in R such that for some j =1,...,m
(6) Rec;j(a; +iB,) = a;.

For j satisfying (6) we define: sgn(j;p) = + if for a; > a; close to a;, b —»
Recj(ay +b) is an increasing function in a neighbourhood of B; ,. Otherwise we put
sgn(j; u) = —. Finally for {; € C we denote

I°(B,) = {j : formula(6)holds}
I*(8,) = {j : ¢; has a Puiseux expansion at 8, with p > 1
and Rec,-(:zl +1by) > a, for b; > Imé, close to Imé,}

Theorem 3. Fix a € R? and let a = Aa. Under the notation and assumptions
introduced above denote

L,=R+:B, for p=1,....M

I
I

L, ++86, for v=1,...,N
M N
U U L. = LN {Re(s > a1}.

Then char. P = A™}(L. x C). Moreover, for any F € O(Q; x C), such that the
function R 3 yo— F (Cl ,a2 +1v2) is polynominally bounded at oo locally uniformly
in (1 and a2, the differences of the boundary values of the Cauchy transform (3) are
distributions Ef, F on the lines L, NQY(u =1,..., M) with support in L, N {Re(; >
a1}, and distributions ézz on the lines {R+6,} N Q' (v = 1,..., N) with support in
L, N {Re(y > &1} such that for any [ € N ‘

(7) NELE, Flellll S Cpsup Y [D%p| for ¢ € C(L* N 1Y)
la|<p

~10 -
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(¢ € C((R+6,) N Q) resp.) for some constants Cp = Cy(az), p = p(az) locally
bounded in a; € R. Eplicitly we have

_ 1 . K" - Cs'gn(jw')(CI))F(Cla cs_sn(jw)(cl )
(8) EfF(¢)=— sgn(j; p)————1r —1-
¢ 2 G je;(B,.) Hq:] (cjs (J".')(Cl ) — cqsn(J,u)(Cl )
a#5

for (G € Ry +a, +:B)NS, p=1,...,M with A(¢;) #0
+ B

(

| - — ! 2""0-"- F 1,C+ 1
(9) Egzp(gl)zi ™ K'(C2 = ¢f (()F(G1,¢f ()

JEI+(8,) H(C;-(Cl) —cf(61))
\ 1%

\
K6~ i (C))F(6, <5 (6)
H(cj_((l) —c; (€1))

=1
. P /
for ¢ € Ry 4+6,)NnQ, v=1,...,N.

Proof. In view of Corollary 2 we are interested in the holomorphic extensions in
variable (; of the function

! _ 1 K'(¢2 = 0)F(¢1,6)
CCI (<2) B —2—7;; /ReB:;; P(Cl’e) 46

defined for {; = a1 +ib; with by # B, for p=1,...,M. Since the function C 3 6 ——
K'({; — 0)F((1,9) is rapidly decreasing along the imaginary axis locally uniformly in

¢1 and (s, it follows that the integral over the line Ref = a, may be replaced by an
integral over Ref = r (for big r > 0) if we add the suitable residuum terms. To this
end denote for ¢(; € C

IF(¢) = {j : 7 > Re ¢j(a + iby) > az for by > Im(;, close to Im(; }.

In view of (4) we have

(10) Cule) == 3 Ko al)Fe(@)),
ijI;"(Cl) H(cj(CI) — cq(Cl))
o

1 / K'(¢2 — 0)F((1,9) a6
27iam, i
rReo=r ] (6 — ci(¢r))

j=1
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The integral in the second summand is holomorphic (as a function of ¢; for a fixed
(2) in the set 2, = {(; € C : Recj((1) < r for j = 1,...,m} hence it follws that

(10) gives on extension of é:;l(cz) to Q, Ny N {Re(; > a;}\L. Since the functions
c; are locally bounded we observe (by pushing r to +00) that all singularities of the
extension are contained in the residuum terms, and the computation of the “jumps”of

é;l((“g) is now simple. It follows from Corollary 2 that the holomorphic extension of
C~ is given by

C (C) for Re(; < :ll,C2 e C

11 =19 5 5 . 0
(11) ¥e) { C+(C) +C¢,(¢2) for Re¢s > a1,(; € (C\L:)N @,¢eC

where &7 (¢) = o7 (3): [F(a + i)K(¢ — a — i)] for £Re¢; > *a;. Thus for
Re(; > a; the jumps of ¥(-,{2) coincide with those of é;l(Cg) which gives formulas
(8) and (9). It remains to prove that = ,EY, are distributions on the respective lines.

To this end we shall modify the function %(() to a function 1/3(( ) which has the same
jumps as 1 but whose growth properties are easier to investigate. In view of iii) in
Proposition 2 we can write

K(¢) = K'(G)K (G) + K(Q)

where K 1 js a modified Cauchy kernel in variable ¢; and K € O(C) is such that
K(az + i) € S(R) locally uniformly in a; € R.
Then we have

EX(¢) = %1(¢) + %2(C)

where.

$1(0) = 5-Ch, (K (G — &y — i) for Rea # &,

00 = Gra(phlEC-d-im) for CeC

Since 1), is an entire function on C? we are interested in ¢; . Let x be a C§°(R)
function which is 1 in a neighbourhood of the points B,(y =1,...,M) and Imé, (v =

1,...,N). Write for Re (; # a,
$a(0) = 5oxCa, (K (G — &y =),
$a(0) = 5-(1 = 05, (@K (G — s — )

Again v4(+,{3) is holomorphic in complex neighbourhoods of the points a +
iB,(p=1,...,M) and a + iImé,(v =1,...,N) so we are reduced to 3. Inserting

K'(G) = —Cil +R(G)
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where K € O(C), in the definition of 13 we find that modulo a holomorphic factor
we are led to consider the function

¢5(C) —X a1(<2) {‘—Tl——] for Re(; 7&&1

1— 01 — 17

Summing up we find that about the points a; + 1B, a; +ilm#, the function 3 given
by (11) has the same jumps as the function

3= X a1(<2) [ﬁ] for Re(; < a1,(z € C

q’((l) 42) =
2, (@) |

a —ry

] +C(1(C2) for Re(; > al,Cz eC

Next from (10) we find that & may be replaced by

- fR x(m )Mdﬁ’ for Re(; < a;
¥((1,¢2) = G-a—im )
= Jr X(’h)%}d‘h + E((1,{2) for Re(; < ax
where
(12) Bha) == ¥ & (62— e () F (G, ei(6))
serre)  T(ei(G) = e(Gr))
et

and

I+(C1) = {] : Rec,-(&l + Zbl) > 22 for b > Im(,close to Imcl}

In view of the properties of H the assertion (7) now follows from Proposition 1 and
Kothe theorem [3].

Corollary 3. Formulas (8) and (9) demonstrate the occurence of a “coupled ”
resurgence effect in the spirit of J. Ecalle [6,8]. This phenomenon is studied in the
forthcoming paper [17].

Another remarkable feature of the spectral distributions Egi")F is the following:

Corollary 4.  The distribution valued holomorphic functions

CBCzI—-—) ”F CBCZ'_)'—'CzF

are rapidly decreasing in YImC2, locally uniformly in Re(; even though the function
C 3 ( — F((1,(2) may grow polynominally in Im(,.

13—



-y
(op}

4. Singular elliptic operators on R} with regular singularities.
Let U be an open set 0 € U C R". Consider a linear partial differential operator
R on U of order m with smooth coefficients of the form

0 0 0
R= R(xaxé‘:;) =R(.T1,“' ,.'Bn,.'zla_zl,"' ,$na—$n-).

Denoting P(z) = R(0,z) (=the principal Mellin symbol of R at zero) we may write
R as

0 0

R=Plzg-)-Qz,z5)

where 5 5 ,
Q(m’ma) = lel(x,zgx') +---4 ann(z,ma—m)

and Q',--- ,Q™ are differential operators of order m.
We assume the following “ellipticity” condition:

For every a € R" there exist C7 < o0 and C > 0 such that

|P(a +iB)| > Co(1+ |IBI)™ for |8l > Ch.

We recall the following existence and regularity result for solutions of the equation
Ru = w in the spaces M(f;p) where Q, = {z € C" : 127_, Rez; < 3 7, w;} and
o(a;) = s € R -a constant function.

 Theorem 4 (Theorem 2 in [10]; see also [9]). Let R be as above and let 6z €

R’ . Suppose w € M(Q,,;s)2—locally at (0; 6:?:) for some w € R", s € R. Then for an
arbitrary o € R"™ with 357, @; < 3°7_; w; there exists u € M(Qq; s — m)2—locally

at (0;6z) such that Ru = w in a local canonical neighbourhood of 6z at 0.

In the statement of Th.2 in [10] we assumed in addition that s > m . We may get
rid of this assumption by applying, for instance, the Petree inequality as in Lemma
1 in [16]. 7

We shall now establish more refined regularity results in general spaces M(;s)
where (2 is an arbitrary set as in Definition 1.

Theorem 5. Let w € M(;s) 2-locally at (0,6z) . Then for every a € R" with
2. C 2 there exists us € M(Q\jf:jl{cha.raP+j}; s—m), where j = (5,0,--- ,0) € Ng
2-locally at (0; 6z) and Ru, = w 2-locally at (0; 6z).

The proof is given [11].

In dimension 2 we have a better result with the spaces M(€2; s) replaced by Z4(€; s):
Theorem 5. Let n =2 and let w € Z4(; s) -2 locally at (0;6z) 6z € R} Then

* o0 .
for every a € R? with Q. C Q2 there exists us € Zg(22\ U {char.P + j};s — m)
j=0 «

2-locally at (0,6::') and Ru& = w 2-locally at (0,6;:).

___,/’:l_
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The proof can be found in [16].
Finally we state the following 2-locall regularity result proved in [15].
Theorem> 6. Let 6z € R}. Suppose w € M (9;8) and u € M(R; ) 2-locally at
(0;6z) and Ru = w in a local conical neighbourhood of (0, 6z). Then
1) foranye>0u€ M(QN Q; 0(—o0) +¢€) 2 —locally at (0 6z)

if 3 —m < p(—o0) L Yim  g(ay)
ay——00
2) ueM(Qﬂﬁ;é—m) 2—loca11yat(0;6:7:) if @=0.

Example. Let 0 # a € R? and denote by us € ?JJT:.!(Rz) (see [10] and [15]) the
solution of the equation Pu, = 8(1,1) on R_Z,_ where P(z%) = (zy 32—1)2 + (2:2-6672)2 ,

such that 1

(& +3B1)2 + (g +if2)?

We have P((1,¢2) = ((1 — G2)* +¢F = 2(¢2 — e1(G))(Gz — e2(G1))
where ¢1(¢1) = ¢, e2(G) = 1=¢¢; and A =i(; . Further from (6) we find

Méu,(B) = e L'(R?).

* * R *
B1 = a —2a2, Bz = 202 —ai

and since ¢; and c; are regular there are no points 6,. -
Denote

L= {C] e€C: C] =’ a + 2(&1 —_— 252),&1 P 3
Ly={¢ €C: G =a, +i(2a2 — a1),01 > a},
L= Ll U Lg.

Then it follows from Theorems 1 and 3 (also see Example 3 in [15]) and Theorem 5

that
Kus € Z4(SY; —o0)

where @ = A™1((C\L) x C) and k = ¢ - & is any proper conical cut off function.

Moreover by Theorem 3 and Proposition 1 the spectral distributions 5(1;52) equal

Eglel = a'((2)6 o <[]+

-
(al )al‘—za?)

K'(¢, — .
v o [T 0q)ie for o eCP®+iBY)

L,

=2 — 2
“'Cz[‘P] _a (<2)6(51:2;2_;l)[¢]+

+ _1__/-’{'(@ - 1=0)

2i G
L, '

¢(¢1)d¢y for ¢ € Co°(R +iB2)

- ~{ g .-
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where K'({2) = M'(%(1,y2))({2) and a'(®((;) are some entire functions which are
the Mellin transforms of some distributions T1(?) in M(C;—o0) vanishing near zero.
Then Tl(z) are smooth functions Tl(z)(yz) vanishing for y, close to zero. Computlng
the inverse Mellin transforms of =1 thh respect to (2 we find

I [‘P](yz) = %Tl(y2)6(;1,;1—2;2)[¢]—
14i
1. Y2t
- z,;“(l’”)/ ¢

Tole)(y2) = —T2(y2) (a1, az—al)

- y2
—- —&1
i) [
L,

Thus from Theorem 3 we get the following Taylor formula for Us:

@(C1)d¢ for ¢ € C3°(R +1Ba),

so(cx)dcl for ¢ € CP(R +1iBy)

For any r > a,

(13) k- “;(yl,yl "Y2) =
» 1 a1+t(a1—-2a2) 1
— T
= 5% (y2)+
1 a1+i(2a2—a1) 2
— T2(yy9)—
+ 27t Y1 . (v2)
01+1‘+i31 yl_;iﬁ
- —"f(la!ﬂ)x(yl) / 2y S dGi+
a1+zB1 Cl

ar+r+iBy , 13i¢
2 2
+ / | y——yf‘dcl)
a1+iBz Cl

+ R (y1,91 - y2)

- |
where R, € M()_Rez; < r; —oo)(in particular (”‘—;’:‘yﬂ is bounded at zero).
=

Remark. Actually it can be proved that u. (yl,yl Y2) is a generalized analytic

function in variable y;, which in our case means that in formula (13) we may take
r = 400 and R, = 0.

Remark. - Observe that if & — 0 then the lines L., L, tend towards the half-line
R, and the spectral densities T'+T? tend towards that for up = 41—1rln ((ln:cvl )2 + (Inx2)2) .
Indeed for a; > 0 we have

14, 1 .
1 ( a +y,° T u ) = _2_y,;’L cos(ﬂlnyg)
Coay 2

- (6 —
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which agrees with the explicit formula given in Example 1 in [15].

10.

11.

12.
13.

14.

15.

16.

17.
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