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The Fourier-Sato Transformation of Pure Sheaves

Syoirrt NINOMIYA

Dept. of Math., Faculty of Science, University of Tokyo

§0. INTRODUCTION.

Kashiwara-Schapira introduced the notion of pure sheaves in [K-S] in
order to calculate the shifts which appear when contact transformations
are applied to sheaves. The purity of a sheaf describes the obstruction for
the prolongment of its sections across critical points of Morse functions
and played an important role in studying R-constructible sheaves and, in
particular, their index theorems (see M. Kashiwara [K] and P. Schapira
and N. Tose [S-T}). Under the assumption of purity, the obstruction is
expressed as cohomology groups, which can be calculated with two mi-
crolocal data, the Lagrangian variety associated to the Morse function

. and that of the micro-support of the sheaf. Then we use the inertia index
of three Lagrangian planes. Kashiwara-Schapira studied the functorial
properties of pure sheaves by several fundamental operators in [K-S].
The Fourier-Sato transformation is a geometric counterpart of Fourier
transformation, which is introduced by Sato et al. [S-K-K] when they
constructed the sheaf of microfunctions. The Fourier-Sato transforma-
tion of a conic sheaf on a real vector bundle F is a conic object on the
dual bundle E*. In the category of F,, this transformation is closely
related with the Gauss sum, etc.

-In this paper, the author calculates the Fourier-Sato transformation
of pure sheaves. In §4 we have the result and the proof. In §5 as a
corollary of this result, we obtain another proof of the proposition by
Kashiwara-Schapira [K-S2] which asserts that the Fourier-Sato trans-
form of a perverse sheaf is also perverse. J. L. Brylinski proved analogous
propositions in the algebraic category [B, corollaire 7.23] and in the cate-
gory of F, [B, corollaire 9.11]. The important point of the present paper
is that we use only techniques purely in the real domain. Thus the proof
is independent of the monodromy structure of perverse sheaves.

The author would like to express his sincere thanks to Prof. T. Oshima for his warm
guidance, to Prof. N. Tose for his advice on the direction of study and to Dr. N. Honda
for his advice and encouragement.
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§1. NOTATION AND CONVENTIONS.
The following notation is taken from [K-S].

1.0. Throughout this paper, let A be a commutative unitary ring with
finite global dimension, Sh(X) the abelian category of sheaves of A-
modules on a topological space X, D(X) the derived category of Sh(X).
We denote by D+ (X) the full subcategory of D(X) consisting of com-
plexes with cohomology bounded from below and by D®(X) the full
subcategory of D(X) consisting of complexes with bounded cohomol-
ogy. For an object F of D(X), we denote by F[k| the object obtained
by k-shifts; that is to say H’(F[k]) = H'**(F) and dyK = (=1)*d3+F,
Sheaves on X are identified with complexes of D(X) which are concen-
trated in degree 0. We use usual notation of derived categories and sheaf
cohomology. Refer to [K-S] for functors, Hom(-,"), - ®-, f«, f7%, fi, f',
‘|z, -®-, ()z, T'z(:,*), T'z(-), orientation sheaf or x, relative orientation
sheaf ory, x and constant sheaf M x.

1.1. TX, T*X, Ty X, To X, TX, T*X, Ty X, T4 X
For a C*-real manifold X, TX (resp. T*X) denotes the tangent
(resp. cotangent) bundle to X If Y is a submanifold of X, TyX (resp

TyX ) takes for the normal (resp. conormal) budle to Y. TX T*X
TyX and TYX are defined by

TX = TX\TxX, T*X =T*X\TiX

TyX = Ty X \TyY, THX =TEX\TLY.

1.2. W, Pf
For a C*°-map between C*°-real manifolds f : Y — X, wy and py are
defined by

T*Y T*X.
1.3. a

For a vector bundle E — Z, a is an antipodal map in E. If G is a
subset of E, G* is the image of G by this map.

1.4. Micro-support
We recall the definition of micro-support for sheaves.

2
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DEFINITION ([K-S]). Let X be a C°-real manifold and F an object
of D¥(X). Then the micro-support of F, denoted SS(F), is a subset of
T*X defined as follows.

Let U be an open subset of T*X. Then

U NSS(F) =0

— { for any real C*°-function ¢ on X,
(z1;d¢(z1)) € U implies (RT(4(2)24(c1)}(F))z, = 0.

1.5. D*(X;Q)

Consider the same situation as above. Let 2 be a subset of T*X.
Then S(Q) is the set of arrows in D*(X), given as follows. f: F — G
belongs to S(2) if there exists a distinguished triangle

H
+1
NV AN
F L g
which satisfies
SS(H)NQ =0.

The set S(2) is a multiplicative system of D*(X). Then D¥(X;Q) is
defined as the localization of D*(X) with respect to S(Q).

§2. THE FOURIER-SATO TRANSFORMATION.

2.1. We recall the definition of the Fourier-Sato transformaion from [K-
S]. The notion of Fourier-Sato transformation is due to Sato-Kashiwara-
Kawai ([S-K-K]) although they defined it for sphere bundles. Let
E 5 Z be a real vector budle with finite fibre dimension over a lo-
cally compact topological space Z and D}, . (E) be the full subcategory
of D*(E) consisting of complexes whose cohomology groups are locally
constant on any half-line of E. Let E* 5 Z be a dual vector bundle

of E. Set

Dt ={(z,y) € E X E*| < z,y >2 0},

D™ ={(z,y) € E X E*| <z,y >20}.

Consider the diagram
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E x E*
A
p2 P1
v | N
E* D* E.

For an object F of DY, . (E), we define the Fourier-Sato transform F*
of F by

F" =Rpe, RTp+(p7 ' F) = Rpay(p7 ' F)p- -

2.2. micro-support of F"

Let (z) be a coordinate system of Z, (z,z) that of E and (z,z;(,£) the
associated coordinate system of T*E. Let (z,y) be a coordinate system
of E* and (z,y;(,n) the associated coordinate system of T E* for which
the canonical pairing between E and E* is given by

<z,Yy>= inyi
H

and for which the canonical 1-forms of T*E and T*E* are given respec-
tively by

wg =< (,dz >+ < §,dz >

and

wpe =< (,dz >+ < n,dy >.
Then the canonical isomorphism
&g : T*E — T*E*

is defined by : |
(2,17;(,5)"—“‘) (Z,f;C, _1")'

Under the above situation, we have

THEOREM 2.2.1([K-S, THEOREM 5.1.4]).
SS(F") = ®g(SS(F)).

2.3. Another proposition from [K-S].

4
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PROPOSITION 2.3.1. Let Y be a real C°°-manifold and E a real vector
space with finite dimension. Let G be a closed convex cone (not neces-
sarily proper) in E with0 € G. Set X =Y x Eand Xg =Y x Eg. Here
E¢ is the space E endowed with G-topology (see [K-S] for definition).
Let ¢ be the natural continuous map

¢:X——->XG.

Then following claims hold.

(a) For F € Ob(D*(X)), SS(F) is contained in T*Y x (E x G°*) if
and only if the morphism ¢~ R ¢,F — F is an isomorphism.

(b) For F € Ob(D*(X)), we have

6 'R F=F in DHX;T*Y x (E x Int G°%)).

§3. PURE SHEAVES.
We recall the definition of pure sheaves from [K-S].

3.1. Inertia index 7(A1, A2, A3)

Let (E, o) be a real symplectic finite dimensional vector space; i.e. o is
a non-degenerate skew symmetric bilinear form on the finite dimensional
R-vector space E. Let 'p be a linear subspace of E. Set

pt = {z € Elo(z,y) =0 for VyE€ p}.
Then p is called Lagrangian if p = p, involutive if p C p and isotropic
if p* D p.
DEFINITION 3.1.1([K-S]). Let A;, A2, A3 be Lagrangian planes of E.
Here the quadratic form Q on A\ @ Ay @ A3 is defined by

Q(z1,2,23) = o(x1,22) + 0(x2,23) + (3, 21),

for (z1,%2,73) € A1 @ A2 @ A3. Then the index TE(A1, A2, A3) is defined
as the signature of @, that is the difference of the number of positive
eigenvalues and that of negative eigenvalues of Q.

3.2. Properties of the inertia index
In the following part of this paper, we write 7 for 7g if there is no fear

of confusion. Let p be an isotropic subspace of E and A a subset of E.
Then A? is defined by

X =((Anp*) +p)/p.

5



PROPOSITION 3.2.1([K-S, PROPOSITION 7.1.2]). Let A; be Lagrangian
planes of E. Then we have following statements.

(i) For all s € 63,
‘ T(A1, A2, A3) = sgn(s)T(As(1), As(2)s As(3))
holds.
(ii) If p is a subspace and satisfies
p C (Al f /\2) + (/\2 N /\3) + (/\3 N /\1),
then we have
TE'(AI') A?) A3) = TE"(Af’ Ag’ )‘g)
In particular if
/\1 n (/\2 + /\2) C (/\1 n /\2) + ()\1 N /\3)
holds, we have
T(/\l, Ag, /\3) = 0

3.3. Definition of pure sheaves

Let X be a C°-real manifold, n the projection T*X — X, A a
Lagrangian submanifold of T*X, ¢ a real function on X and Y, =
{(z,dé(z));x € X}. For any point p in T*X, T,T*X has a canonical
structure of symplectic vector space. Then three Lagrangian planes in
T,T*X are defined by

Xo(p) = Tp(n ' 7(p)),
/\A(P) = TPA

and

As(p) = TpYs.
DEFINITION 3.3.1. Under the above situation, we say that ¢ is transver-
sal to A at p if ¢(n(p)) = 0 and if Yy and A intersect transversally at p.

LEMMA 3.3.2. Let A be a Lagrangian submanifold of T*X, p a point
of A and F an object of D¥(X). Assume that in a neighborhood of p,

SS(F) C A holds. Let ¢ be a real function on X and transversal to A
at p. Let § be a number which satisfies

= %(dimX + dim(Mo(p) N Aa(p))) mod Z.
Then the cohomology group
+376(p)
H] P (]:)w(p)

{z|é(z)20}
does not depend on ¢ where

76(P) = T(Xo(p), Aa(P); A4(P))-
After these preparations, we can define pure sheaves.

6
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DEFINITION 3.3.3([K-S]). Let A be a Lagrangian submanifold of T* X ,
p € A, and F € Ob(D*(X)). We assume SS(F) C A in a neighborhood
of p. If we have, for a real function ¢ transversal to A at p and A-
module M,

M, forj=—d+jdimX + 374(p);

j -
H{zl«ﬁ(z)zﬂ}(F)"(”) B { 0, otherwise

with 14(p) = T(Mo(p), Ar(p), As(p)), then we say that F is pure of
type M with shift d along A at p.

3.4. Properties of pure sheaves
We recall properties of pure sheaves from [K-S].

PRrOPOSITION 3.4.1 ([K-S, PROPOSITION 7.2.8, 7.2.9]).

(i) Let A be a Lagrangian submanifold of T*X, p a point of A and F
an object of D% X). Assume that F is pure of type M with shift d
along A at p and that Ext’(M, A) = 0 (j # 0). Then RHom(F, Ay) is
pure of type Hom(M, A) with shift —d along A® at p®.

(ii) Let A; be a Lagrangian submanifold of T*X;, p; a point of A;
and F; an object of D¥(X;). Assume that F; is pure of type M; with
shift d; along Aj at p; (j = 1,2). Let q; be the j-th projection on
Xl X .X2.

(a) If Tor;(My, M;) = 0 for Vj # 0, then ¢; ' F, é) ¢; ' F, is pure of
type My @ M, with shift dy + d, along Ay X A, at (p1,p2).

(b) If Ext’(My, My) = 0 for Vj # 0, then RHom(¢; ' F1,¢; 1 F2) is
pure of type Hom(M;, My) with shift d; — di along A$ x A2 at (p$,p2).

Let f: Y — X be a C°°-map between C'*°-manifolds.

THEOREM 3.4.2 ([K-S, THEOREM 7.3.1]). Let A be a Lagrangian sub-
manifold of T*Y, p a point of Y ;(( T*X and G an object of D*(Y).

Assume:

(i) f is proper over supp(G),

(ii) py is transversal to A at p and w fp;l(A) is isomorphic to a sub-
manifold Ay of T*X,

(if) p7(S8(6)) N w7 w(p) C (o),

{iv) G is pure of type M with shift d along A at pz(p).

Then Ay is a Lagrangian submanifold and R f,(G) is pure of type M
with shift d' along Ao at wg(p) where

d'~d = 5 (dim X~dim¥)=57(a(ps(2)), Ma(01(8))s 17 Ol @5 ().

7



THEOREM 3.4.3 ([K-S, THEOREM 7.3.3]). f, X, Y are the same as
those of Theorem 3.4.2. Let A be a Lagrangian submanifold of T*X, p
a point of Y ol A and F an object of D*(X). Assume:

(i) f is non-characteristic for F,

(ii) wy is transversal to A at p and pfw;I(A) is isomorphic to a

submanifold Ay of T*Y,
(iii) w1 (SS(F)) N p} ' ps(p) C {p},
(iv) F is pure of type M with shift d along A at @ ¢(p).

Then Ay is a Lagrangian submanifold and f~1(F) is pure of type M
with shift d along Ag at pg(p).

THEOREM 3.4.4 ([K-S, COROLLARY 7.3.4]). Let X andY be C*°-real
manifolds, q; and g, the projections from X XY to X and Y respectively
and p, and p, the projections from T*(X xY) =T*X x T*Y to T*X
and T*Y respectively. Set p} = pjoa (j =1,2). Let A be a Lagrangian
submanifold of T*(X xY), Ay a Lagrangian submanifold of T*Y and

p a point of A. Set py = p2(p) and px = p§(p). Let K be an object of’

DY X x Y) and F an object of D*(Y). Assume:

(1) p2|a is transversal to Ay at p and p; 1(Ay) N A is isomorphic toa
submanifold Ax of T*X by p{,

(ii) K is pure of type M with shift d along A at P,

(iii) F is pure of type N with shift d' along Ay at py,

(iv) q1 is proper over supp(K) N g5 (supp(F)),

(v) (2)~}(p=) N SS(K) C {p},
(vi) (SS(K) x_SS(F)) N (TxX x T*Y) C T4X x T3Y holds in a

neighborhood of ©x(px).

(vii) Ext’(M,N) = 0 for Vj # 0.

Then R ¢;, RHom(K, ¢; ' F) is pure of type Hom(M, N') with shift d"
along Ax at px where

d"=d'—d—%dimY+%‘r

and

7 = 7(Ao(P), Aa(P), o (P%) X Ary (PY))
= 7(Ao(py ), P2( A (P) N (F) "' (Mo(Px))), Aay (PY))-

This proposition describes the contact transformation of pure sheaves.

8
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3.5. Microlocal uniqueness of pure sheaves.

" The following fact is important.([K-S]) Let F and G be objects of
D*(X). Assume F is pure of type M with shift d along A at p. Then
G is pure of type M with shift d along A at p if and only if

F=G in D¥(X;{p})
holds.

§4. THE FOURIER-SATO TRANSFORMATION OF PURE SHEAVES.

4.1. The Main Theorem.

THEOREM 4.1.1. Let E — Z be an R-vector bundle with finite fibre di-
mension n over a locally compact topological space Z and A a Lagrangian
submanifold of T*E. Let F € Ob(D} . (E)) and p € A. Assume F

conic

is pure of type M with shift d along A at p. Then the Fourier-Sato
transform F" of F is pure of type M with shift d' along A* at p* where

p* = ®g(p),
A* = ®5(A),

n 1 _ .
d=d- 5 + ET(/\O(P),(I’EI()\O(P )), Aa(p))-
PRrOOF: Identify Z with the zero sections of E and E*. Set

E=E\Z, E*=E*\2,
S=E/R*, S*=E*/Rt,
DE={(a:,y)€E>Z<E*|<a:,y>20},
D, = {(z,y) € E X E*| <2,y >2 0},
Ds = {(z,y) € 5 x §*| <=,y >2 0},
D.=D E*xE

EE EE‘>§<E( 7 )

V4

D . =Ds x (S*x IOD).
SE SxS* 4
zZ

First we give three lemmas.



LEMMA 4.1.2. Consider the diagram

[ [ t
E*xXE « > D.
Z E
P12 P11 !
v N
o o
E* E sa
/ |n
P21
o iz
f2 S* X E - D o
Z SE
p22
S* ! {32 S S4
AN /
P32 P31
i3
S*x S < > Ds.
zZ

Then for an a.rbztrary object F of Dcomc(E), we have
Fr = (R AFYS).

Here for F € Ob(D?,
defined by

conic

(E)) and G € Ob(D*(S)), F° and G"® are

FN =Rp12.RTp,pun ™' F
E
G"° = Rpaz, RTpsps1 6.

PROOF OF LEMMA 4.1.2: Since RT'p,(+) = Ri3,i5(-) , we have

(4.1.2.1)
| R AF)) = f;' Rps2, RTpgp3y R A1, F
= fz R p32, R23*23P31 R fi1,.F

From the fact that s, is a topological submersion of codimension 1, we
get, by Poincaré-Verdier duality theorem, {

-1p f _ to—1
(4.12.2) p;; Rfy *f®9£(s*x;))/(3'x5)[l] = Rs;,81p3; R fi.F
z z

10
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Now we remark that the following part of the diagram in Lemma 4.1.2

is a Cartesian diagram.

From (4.1.2.1),(4.1.2.2) and this fact, we deduce

(4.12.3) f2 1((Rf1* )AS)® (S‘xE)/(S‘xS)[l]

=f; ' Rpsa, Ris,d3 Rsa,shps) R fi, F
=f; ' Rpsa, Riz. Rsa,ipsipsy R f1, F
=f5" Rpsz2, Rsz, Rizaipsipsy' R i, F
=fy ' Rpa. Riz*i;s!zp:;—ll R fi.F

Since p3; is a topological submersion of codimension (n — 1),
(4:1.2.4) Pa1 R fi.F ®@ or(s-xsy/sln — 11 = psy R f1, F
z

Remarking that s; is a topological submersion and that the diagram

[ P21 [
E—— E

82 lfl

S P31 S

S*

N X

—

S*

N X

is a Cartesian diagram, we have, by (4.1.2.3) and (4.1.2.4),

(4.1.2.5)

R LF)®e (s*xE)/s[n]

=f; ' Rpaz, Riz,ipshph; R f1, F
_.f2 Rp22* R22*5232 R32*p21‘7:
—f2 RP22* R22*12p21f® (S'XE)/(S‘ XS)[1]

11
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Now s; is a topological submersion of codimension 1 and the diagram

.EJX o* ("—"}— .Do
Z E
31i 331
S*XE (—-—'2— D °
Z SE

is Cartesian. Thus we have from (4.1.2.5);

-1 AS
fi (R ALF) )®0—r(b-x5)/s
.z

[n]
=f; ' Rpoa, Riz,iy Rs1,81pn F
=f; ' Rpaz, Riz, Rss,iysipy F
=f2—1 Rpa2, Rsis Ril*i!ls!lp‘!z*lf
=f7 R f2, Rp12, Riy, i) sipy F
=Rpi2, Ri1,i1p1, F = (%).

Since p;; is a topological submersion of codimension n, we have, more-
over,

(*) =Rp12, Ri1,iip F @ or [n]

(B x BB
z
= F =1 o ° o
Rpi2. R D, P11 f®ﬂ(E,xE)/E["]
z
:___]:-/\o ®or °o o ['I'l] .
(E*xE)/E
z

Then we have

fa (R 1,F)NS) = Fre.

12
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LEMMA 4.1.3. Consider the diagram

o o n
E*xX E « > D,
A E
P12 P
v N
) o
B L1 E i3
d /‘ r!l
P21
.l 2 J2
g2 E*x E > D °
Z EFE
7 |
E* 11'2 . E iy
N /
P32 P31
Js
E*x E « > Dg.
A

Then for an arbitrary object F of D} . (E),

conic

(g7 F)™
+1

/ N
9545 Rq1,RTzF — g5 (FM)

is a diétinguished triangle where ¢, is the natural projection E 2,z
and ¢, the natural projection E* 2,2z

PROOF OF LEMMA 4.1.3: Remark that if i is an open inclusion, &'
coincides with :~!. Now ¢, g2, t1, %2, ¢3 and 74 are open inclusions.

Taking into account of the fact that diagrams

é* E ¥}

L

NX TTNX
3
(————



and

E*;E«—Ja— Dg

are Cartesian diagrams, we have by Poincaré-Verdier duality theorem

(4.1.3.1)
(97 ' F)*° =Rpua, RTp, pii'e; ' F

= Rpiz. Rj1,dipler ' F
=Rpi2. Rij1.diiT oot o' F

=Rpu. Rjrdyibpyler ' F
= Rp12.4; Rz, j3pst o7 F
= g, Rpaz, Rj2,japaior ' F
= 93 Rpaa, Ry, jyi; 'p3 F
= g5 Rpsa, R j2.73i5057 F
= g5 Rpaz, Rja, il jips F
= 97 ' Rpaa,iy Rja,jipsil F
= g; ' Rpas,is Rl popsl F
= g7 ' Rpsz, Ria, iy RTp, p; ! F
=g; ' Rpa, RT_ . RTpgps; F.

z

14
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Apply the functor g5 ' Rpsz, RTp, to the distinguished triangle

RI  .plF
Eex B3l

zZ
+1

/ \
RTg-x(0}P51 F — P F.
zZ

Then combinig this with (4.1.3.1), we get the distinguished triangle
(g7 F)"°
+1

, V4 AN
gz_qu;qul*Rsz — g{l(f").

LEMMA 4.1.4. Let (z) be a coordinate system of Z, (z) that of S and
(y) that of S*. Define two inclusions i¢; : S* X S — S§*x S and

i3 : Ds — S* x S as they embed Z into the diagonal set of Z x Z; i.e.

§* x 53 (52,9) =5 ((2),(559)) € 5" x S
Ds 3 (z;z,y) -2, ((z;2),(z;9)) € S* x S.

Consider the diagram

§*x§ & > D
;2 j iz ;1
s* £ srx§ — P, g

Then for an arbitrary object F of D¥(S) , we have

~ ~ _1 .
Rp2,RTDsp1  F ® or(gexs)/(s*xs)l— dim Z]
z -
=Rp2*RI‘Dspl"l.7:

15



(1e FAS ®O—T(S" xS)/(S*xS) [— dim Z] = RPZ* RFDspl_lf)
z

PROOF OF LEMMA 4.1.4: Remark that p; isa topological submersion of
codimension (n—1) and that p; a topological submersion of codimension
(n —1+4dim Z). Then by Poincaré-Verdier duality theorem, we get

~ ~ _1
Rp2,Rlpsp1  F®or(gensysln —1]
. zZ

=Rp:, RIp;p1 F
=R pa, Ris.i3iip) F
=R Ps, Ris,i3iip7 ' F @ or(se 5)/5[n — 1 + dim Z].

From this, we deduce

~ ~ _1 .
Rp2. RTpsp1 F ®0r(sexs5)/(s* xs)l— dim Z]
zZ

=R pa, Ris,iyiip; ' F
=Rpy, Riy, Riz,ipp ' F
=Rp,, Riz*z'!zpl’lf
=Rps, RTpsp; ' F.

|

Now we enter into the Proof of Tlgeogem 4.1.1.

1. Proof in the case that p € ANT*E. :
Since p* ¢ SS(¢; ' Rq1, RT'zF) in this case, we have an isomorphism

(4.1.1.1) @A 2 FY in DHE (')
by Lemma 4.1.3.
Define

ps = @, p7, (P)

As = wy, 5 (A),
using the notation in Lemma 4.1.2. It is known by [K-S, Proposition
5.1.1], that an object F of DF(E) belongs to Ob(D} . (E))if and only
if SS(F) is contained in Sg where Sg is the characteristic variety of
the Euler vector field on E; i.e. Sg = {(z,7;(,{) € T*E| < z,£ >=0}
where (2, z) is a coordinate system of E with the fibre coordinate system

(z) and its dual coordinate system((,{). Then we may regard A as a
Lagrangian submanifold of T*S, and this coincides with As. Since p is

in T*E F coincides with g; ' F in a neighborhood of 7(p). Consequently
g1 1 F is pure with shift d along A at p.

16
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CrLAM 1. R fy,97'F is pure of type M with shift d along As at ps.

PROOF OF CLAIM 1: Let G € Ob(D*(S)), and assume f;'G is pure
with shift d along A at p. We have an isomorphism

6= gr'F in D¥(E;{p}).
Then by Proposition 2.3.1 we have an isomorphism
G=Rfig;'F in D*(S;{ps})

Remark that pure sheaves are micro-locally unique (see 3.5). Thereforeit
is enough to show that if G € Ob(D*(S)) is pure with shift d along As

o
at ps, fi'G is pure with shift d along A at p. Since E B, Sisa
projection, f; is non-characteristic for G. Now since wy, is smooth, wy,
is transversal to p;ll(A) at the point py = p;ll (p). Remark that py, is
an injection and wy, (po) = ps. Now we have

Pflw;ll(AS) =A

and _
@ 1(SS(G)) N o7l ps(Po) C {po}.

Then it follows from Theorem 3.4.3 (the theorem of inverse image of
pure sheaves) that f° 1G is pure with shift d along A at p. §

CLAIM 2. If G € Ob(D*(S)) is pure of type M with shift d along As
at ps, then GM° is pure of type M with shift d' along A% at ps where

ps = ®s(ps)
s = ®s(As)

and

n

- —
d=d 5

1 -

+ 57(%0 (), 25" (Ao(p*)), A (p)).

This claim is essential. The proof depends on the fact that considered
on S, Fourier-Sato transformation is a contact transformation. This
claim is proved by use of Proposition 3.4.4 (the proposition of contact
transformation of pure sheaves).

PROOF OF CLAIM 2: Consider the following diagram and that of
Lemma 4.1.4.

17
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T*(5* x S)
re 1
7 7 N
T*5* Ak =T (5* x S) T*S

Here Dgs is embedded into S$* x S in the same way as Lemma 4.1.4; i.e.
the base space Z of Dg is embedded into the diagonal of Z x Z in S* x S.
Set

10)3 = {(z,y) € S* >Z<S| < z,y >=0}.

Here (z) is the fibre coordinate system of S and (y) its dual coordinate
system. Remark that

T4 (S* x §) =T% (S* x )
. DS

and

Rp2. RTp,p;'G = Rp2, RHom(4, ,p770).
s

In the following part, we show that the conditions in Proposition 3.4.4
are satisfied. Let (z) be a coordinate system of Z, (z,() its associated
coordinate system of T*Z, (z,z) a homogeneous coordinate system of .S,
(2,2;¢, €) its associated homogeneous coordinate system of T*S, (z,y)

the dual of (z,z) and (z,y; (,n) the dual of (2,z;(,£). We have
(2:2:0,6) € T™S <= |zl = 1,16 #0,< 2, >=0
(z,4;¢,n) €T*S* < |y|=1,In| #0,<y,n>=0

(zl,zz,x,?/;fl,Cmf,’?)ET:o) (S* X S)=AK
S

{z1=22,|x|=|y|=1,C1+C2=0,

Jte R\ {0} st. {=ty,n=txr.

Since Claim 2 is a local statement, we may take a neighborhood Qg

[+]
of ps in T*S and may restrict Ag to s, AG to ®5(f2s) and Ag to
®5(2s)* x Qs. From now on, we work in the situation under this re-
striction. Thus we have the equivalence

(2’1,22,$,y; CI’C27£777) S AK

18
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{ z1 =2zl =yl =1, 4+ =0,
dt e Rt st. &=ty, n=tz.

Then
T1|ax : Ak — Qs

is a diffeomorphism. In fact
TIIAK((Z’ 2, T, Y; C, _Catyv t.’l:)) = (z’ Ty C,ty)

and

(rlag) " (2,23 6,6)) = (2,2, 7, %; V0,6, |€]2).

The map
TglAK : AK — q)s(Qs)

is also diffeomorphic. Let pss = (r1]a, ) !(ps). Then ry|s, is transver-
sal to Ag at pss since ry|p, and r§|s, are diffeomorphic. Moreover we
have

r8lax (rilag) " (As)) = Bs(As)

o
and 4_4_13 is pure with shift %codimgtxs Dg along Ag. 1t is clear
S
that r, is proper on supp(_fllo) ) N r7(supp(G)). Thus we can apply
S

Proposition 3.4.4 to this situation. Then sz*RHom(A;) ,p71G) is
S
pure with shift d” along A% at p% where

1 . o 1 . 1
d'=d- écodlmststs—-idlmS+§'r

1 ) 1
—d—-z—n—dlmZ—i--z—'r
and

r = 7(Ao(ps), €3 (Vo(5)) M (p5)):

By Proposition 3.2.1 (ii), we have

r = (0o(p), 85 (Mo(p")), A (p)).

19



Now, from Lemma 4.1.4, we deduce
gAS[—dimZ] =Rp2*RI‘Dsp1_1§ |
=Rp,, RHom(4, 57’0
S

Finally we have Claim 2. i
From Claim 1 and Claim 2 we get the following claim.

(R f1,97 ' F)™° is pure of type M with shift

- n 1 _ .
d'=d =2+ Zr(o(e), 85 Ga(e"), Ma(p))
along A% at p5%.
From Lemma 4.1.2 we have

(97" F)™° = f7 ' (R fragr ' F)™S. |

Since f; is a projection, we can apply Theorem 3.4.3. Then we find out
(g7 F)"° is pure of type M with shift d' along A* at p*. Considering the
last statement, (4.1.1.1) and the microlocal uniqueness of pure sheaves
(see 3.5), we find g, '(F") is pure of type M with shift d' along A* at p*.
Now F” coincides with g;!(F”) in a neighborhood of 7(p*) because
p* € T*E*. Therefore F” is pure of type M with shift d’ along A* at p*.
Thus the proof of the theorem is finished in the case of p € T*E.

2. Proof in the case that p € T*E'\ T*E.
Define 7' € Ob(D*(E X R?)) as follows.

Fl=FRZy BZg
Remark
SS(F') = SS(F) x T{o)R x TxR.
Then, from Proposition 3.4.1 (ii), it follows that F' is pure of type M
with shift d + 1 along A x T{ R x TgR at (p,(0;1),(1;0)). Now we can
apply the above result. Then we have F'" is pure with shift
n+2 1

1 _ * ‘
d'=d+ § - 2 + ETExR2()\0(PI), QE;R'A(/\O(P’ )), Apr (pl))
z z :

along A* x TgR x T, R at (p*, (1;0),(0;1)) where

p' = (p,(0;1),(1,0)),
A = A x T{)R x TR,

and

20
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p,* = <I>ExR’(P’)-
z

By Proposition 3.2.1 (ii), we have

TE;R’(AO(p’)v B prs(Ro(2")), A ()

=78(Xo(p), 25" (Ao(9*)), A (P))-
Then

, 1 nt+2 1 1y g
d'=d+ 3= e 5+ é‘TE(’\U(p),QEI()‘O(p ))s Aa(p))-

Since F'" = FA R Zn X Zoy[~1], it follows from Proposition 3.4.1 (ii)
that F” is pure with shift

n 1 ; - *
d—o+ 57(/\0(?),‘1’191(/\0(? ), An(p))
along A* at p*. Thus the proof of Theorem 4.1.1 is completed. B

§5. APPLICATION.

As a corollary of Theorem 4.1.1, we prove that the Fourier-Sato trans-
formation of perverse sheaves with n-shifts are also perverse.

5.1 Perverse Sheaves. :
We do not recall here the definition of stratification, constructible

sheaves and perverse sheaves. Refer to [K-S] and [G-M] for these def-

initions. We denote by D __(X) the subcategory of D¥(X) consisting
of C-constructible complexes. For a complex manifold X, we denote by
XR, the real underlying manifold of X.

5.2 Perverse Sheaves and Pure Sheaves. _
First we have the following theorem from [K-S] which describes the
relation between perverse sheaves and pure sheaves.

THEOREM 5.2.1 ([K-S, THEOREM 9.5.2]). Let X be a complex man-
ifold, F be an object of D§_ (X) and A = SS(F). Then the following
conditions are equivalent. '

(a) F is a perverse sheaf.

(b) At any point of the non-singular locus A,.y of A, F is pure with
shift 0.

5.3 Fourier-Sato transformation of perverse sheaves.

Let X be a complex vector budle with finite fibre dimension n. When
we apply the Fourier-Sato transformation to objects of D¥(X), we re-
gard X as X® and the objects as those of Dt (XR).
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THEOREM 5.3.1. For an arbitrary object F of D% _ (X), F is perverse
if and only if F"[n] is perverse. S

This proposition was proved by Kashiwara-Schapira [K-S2] and anal-
ogous propositions in the algebraic category and in the category of F,
were proved by J. L. Brylinsky in [B, corollaire 7.23 and corollaire 9.11].
We give a different proof by use of Theorem 4.1.1.

PROOF: Assume F is perverse. Set A = SS(F). Let p be a point of
Aseg. By Theorem 5.2.1, F is pure with shift 0 along A at p. Since F is
perverse, we can regard A as Ty X where Y is a smooth submanifold of
X ([K-S]). Thus we deduce from Theorem 4.1.1 that F* is pure with
shift d along A* = ® x=(Ty X) at p* = ®x=(p) where

2n 1 - *
d ===+ 57(X(p); 2xu (Xo(p")); A1y x (P))-
By Proposition 3.2.1 (ii), we have

T(Xo(p), @ xa(Mo(p*)); ATy x(p)) = 0

From Theorem 5.2.1 again, it follows that 7" [n] is perverse. vice versa. §
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