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KMS states for self-dual CCR algebras

F3HA a4 Fod # 40 (Hidekazu Ogi)

1. Introduction

A dynamical system is a pair consisting of a %-algebra % and a
one-parameter automorphism group {tt}tGR of %. In the following,
we assume that U is unital (1. € ).

A linear functional ¢ on U 1is called a state if ¢ satisfies
@(1) =1 and ¢(A*A) = 0 for all A e %.

A state ¢ on U is called a B8-KMS state for {tt}teR (or simply a
KMS state) if it satisfies the following KMS-~condition (at the
inverse temperature B8, where 8 is a positive number):
For every pair of elements A and B of 2, there exists a
function F defined on the closure EB of the stripk DB = {z € C
\0 < Imgz < B} such that (1) F 1is bounded and continuous on ﬁB’ (2)

F is analytic on D and (3) the boundary values of F are related

B!
to ¢ by

F(t) = w(At,(B)), F(t + i8) = o(t, (BJA) (¢ € R).

In statistical mechanics, Ty describes the time evolution of

the system and the KMS-condition is considered to be a condition



14

characterizing the state of the system at thermal equilibrium (with
the absolute temperature T = (kB’—l where k is the Boltzmann
constant).

In the theory of bounded operator algebras, it is well-known
that KMS states play an. important role for a study of structures of
von Neumann algebras. If we répresent a CCR algebra as an operator
algebra in a Hilbert space, then it is always unbounded. To avoid the
difficulty coming from the unboundedness we usually consider a
bounded operator algebra whose generators satisfy the Weyl-Segal
commutation relations, but we can not directly observe the
annihilation and creation operators in it. Thus it seems meaningful
to study the unbounded operator algebra as itself and to investigate
KMS states on it.

Let Aw(K,r,I) be the self—duai CCR algebra over a triplet
(K,r,I'), where K is assumed to be a Hilbert space, and let {tt}teR
be a Bogoliubov automorphism group of (K, r,I) induced by a
strongly continuous one-parameter unitary group on K. In this paper,
we introduce some continuity for linear functionals on #(K,r,’) and,
under this continuity, we study the structure of KMS states for
{2(K,r,I"), {tt}teR}' In section 2, we recall the definitions of a
self-dual CCR algebra n(K,r,[), a BogoliubOV"automorphism of
H(K,r,I'), and a quasifree state on 3I(K,r,I). In section 3, we
introduce some continuity for linear functionals on U(K,r,r). Under
this continuity, we study the existence of KMS states for {U(K,r,I),
{rt}teR}‘ In section 4, under the continuity introduced in section 3,

we study the uniqueness and the non-uniqueness of KMS states for

{U(K,r,r), {'Ct} tEIR} .
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2. Preliminaries

In this section, we recall the definitions of a self-dual CCR

algebra #(K,r,'), a Bogoliubov automorphism of %u(K,r,r), and a
quasifree state on U(K,r,I") (ef. [11).
Let K be a complex linear space. Let r(-,-) be a hermitian

form on K x K and T be an anti-linear operator on K such that

r2 =1 and «r(rf, rg) = - r{(g, f) for f, g € K.
(K,r,I") is called the basic triplet. A self-dual CCR algebra
K, r,') over (K,r,') 1is a ¥-algebra generated by an identity 1
and ({B(f) : f € K} such that

(1) B(f) 1is complex linear in f,

X
(2) B(f) = B(rf),

(3) B(£)*B(g) - B(g)B(£)" = r(f, g)1 for f, g € K.

Let. (K’,r’,r?’) be an another basic triplet. If a linear

operator U : K — K’ satisfies
ur = r'v and r’'(Uf, Ug) = r(f, g) for f, g € K,

then we can define a *¥-homomorphism Ty from U(K,r,T) into

UK’ ,r’',r’) by
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rU(B(f)) = B(Uf) for f € K.

If U 1is a bijective linear operator on K satisfying the above
conditions, then it is called a Bogoliubov transformation on K and
the associated ¥-automorphism Ty of A(K,r,I") is called a
Bogoliubov automorphism.

Next we define quasifree states on U(K,r,I).

Definition 2.1. A state ¢ on U(K,r,I') is called a quasifree
state if ¢ satisfies the following conditions; for every n =

1)2)"’)

@(B(fl)"'B(fzn_l)) =0

n
¢(B(f1)'-°B(f2n)) = E_WIQ(B(fS(j))B(fs(j+n)))v

J:
where the sum is over all permutations s satisfying s(l1) < s(2) <

-+« < s(n), s(j) < s(j+n), j = 1,2,+--,n,

3. Existence of KMS states

In this section, we introduce some continuity for 1linear
functionals on #U(¥X,r,I’) and, under this continuity, we study the
exiétence of KMS states for {U(K,r,I), {tt}tGR}'
Throughout the rest of this paper, we suppose the following

situations (%):
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(i) (K,r,r) 1is a basic triplet such that
K is a Hilbert space under an inner product (-,-) and

' is an anti-unitary operator on K.

(ii) H is a self-adjoint operator in K such that
Ut = exp(itH) 1is a Bogoliubov transformation for (K,r,I').

Denote the Bogoliubov automorphism of %(K,r,) induced by U

T .

For the dynamical system {2(K,r,T), {tt}teR} given as above,

we study the existence of KMS states under the following continﬁity.

Definition 3.1. A state ¢ on U(K,r,r) is said to be

K-continuous if, for every n = 1,2,-.--, the mapping
(fl""’fn) € K x «+¢ X K —m— ¢(B(f1)---B(fz))

is continuous, where K x --- x K 1is the n-fold product space of the

Hilbert space K.

Theorem 3.2. Under the situations (¥), there exists a
K-continuous 8-KMS state for {rt}tGR on the self-dual CCR algebra
WK,r, ) (B € (0, +»)) if the following equality holds;

r(f, g) = (f, (ePH-1)(eBBs1)"1g) for f, g € K.

Proof. Assume that
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r(f, g) = (f, (eBH-1)(eBH41)"1g) for £, g € K and B € (0, +=).
And we set .

s = ePH(efHip) "1,

Then, by the assumption, there exists a quasifree state ¢ which is

given by

o(B(£)*B(g)) = (f, Sg) for f, g € K.

It follows from the definition of S that
0 S<1 and ST =1 - S.

Since I is an anti-unitary operator on K and S does not have an
eigenvalue 0, S also does not have an eigenvalue 1. Thus, if we

set

1 -1/2

2 = 2(s %) a a((1-5) ),

then @ 1is a r-invariant dense subspace of K. We put

Ut =z exp{itH).

Then we have
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For g 1in 9, we remark that Utg has a extension Uzg which
is strongly continuous for 4% £ Imz < % and strongly analytic for

—% < Imz < %. Since
0(B(f)t (B(8))) = o(B(rf) B(U,g)) = (If, SU&),

we get its continuous extension (rf, SUzg) for —g < Imz < g whicl
is analytic in its interior. Remark that w(tt(B(g))B(f)) also has ¢
continuous extension (rUzg, Sf) on the same closed strip which is

analytic in its interior. Further we have

(rf, SU = (re, ssM2(1-5)1 % g)

t+i8/28)

1/2

= (rs'/?(1-8)"?u,q, £) = (rs’?(1-5)"%u 4, sf)
= (TU,_;g/28» ST),
where we used the equality rS—lr = (l—S)_l. Thus we get the desired

continuous function FB(f),B(g) which appeared in the KMS-condition
for f in K and g in 9. Using the density of 92 in K, we can
also get the function FB(f),B(g) for every f, g in K.
For general elements A, B in #(K,r,I'), using the definition
of quasifreeness, we can show the existence of the function FA B ir
L
the KMS-condition. This completes the proof.
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Remark 3.3. Let ¢ be a pre-Hilbert space under an inner
product (-,-), and let L ©be the completion of ¢. Let L* be the
conjugate Hilbert space of L, and let r’ be a bijective
anti~-linear operator from L onto L* defined by Tr'f = f. Take a

self-adjoint operator h in L such that ¢ 1is globally invariant

under a one-parameter unitary group Vt = exp(ith). We set
o 7t h 0
K:Ler’L,r:(r,o ),H:( _1):
0 -T’hp’
and

r(f, g) = (£, (efH-1)(efM41)"lg) (f, g e K and B8 € (0, +=)).
Then we can easily check that (K,r,I") and H satisfy the
situations (Xx).

A CCR algebra ﬂCCR(C) over { 1is a ¥-algebra generated by an
identity and {a(f), a*(f) : f € ¢} such that
(1) a*(f) ‘is complex linear in f,

(2) a(e)* = a¥(f),

(3) [a(f), a*(g)] = (£, &),

ta¥(f), a¥(g)1 = [a(f), a(g)] = 0 for f, g € ¢,
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where [A, B] = AB - BA. Suppose that h does not have an eigenvalue
0 and p((efP+1)l/2(eBb_1)-1/2) 5 s put e =

1/2  8h_y)-1/2,

9((eBh+1) (e . Let Q be a operator on K defined by

Q(f 8r’'f,) = (eBP_1)1/2(eBhy1)=1/2¢ 60 for £, f, € L.

Then we can give a X-isomorphism & between #U(K,r,) and ﬂCCR(t’)

®(B(f)) = a (QFf) + a(Qrf) for f e K.

) , —
Let {ot}teR (resp. {ot}tGR) be a one-parameter group of
- i ’ ; =
¥-automorphisms of ﬂCCR(t) (resp. UCCRgl }) induced by Vt

exp(ith), and let be a Bogoliubov automorphism group of

S

M(K,r,I") induced by Ut = exp(iétH). Then & - = ¢! - ¢®. Therefore

T t
the dynamical system {3(K,r,I), {tt}tGR} is equivalent to the

4. Uniqueness and non-uniqueness of KMS states

In this section, under the K-continuity defined in section 3, we

study the uniqueness and the non-uniqueness of KMS states for

(UK, v,y (e} ,ept

Lemma 4.1, Under the situations (%), let ¢ be a K-continuous

B8-KMS state for {M(K,r,I), {tt}teR}' Then we have, for any A €
W(K,r,r) and f € Q(He"BH),
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@(B(£)A) = @(AB(e BHg)),
Proof. We define the function G on FB by
G(z) = ¢(AB(e®ZHr)),

where ﬁB is the closure of the strip Dﬁ = {z € C: 0 < Imz < B}.

Since ¢ 1is K-continuous, G is continuous on 58 and analytic on

DB. Let F be a function satisfying the KMS-condition for A and

B(f). Since G(t) = F(¢t) (¢t € R), by [3, Proposition 5.3.6], we have
G(z) = F(z) for all gz € 58.
Therefore we have
o(aB(e™PHf)) = a(i8) = F(iB) = @(B(F)A).
This completes the proof.

Proposition 4.2. Under the situations (¥x), let ¢ be a
K-continuous B-KMS state for {U(K,r,I'), {tt}teR}' If H does not
have an eigenvalue 0, then ¢ 1is quasifree.

Hy and g e K,

Proof. By Lemma 4.1, we have, for f € 9(He—5

@(B(£)B(g)) = o(B(g)B(e 8Hr)) = r(rg, e BHr) + o(B(e BHr)B(g)).

Hence we have

- 10 -
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_BH

e(B((1-e PHyr)B(g)) = r(rg, e BHr),

Let h Dbe in Q(He_BH(l—e—BH)_l) and put f = (1—e-BH)—1h. Then f

€ Q(He—BH) and so

¢(B(h)B(g)) = r(rg, e PH(1-e BH)~1p),
Analogously, we have, for f1 € 9(He_BH),

@(B(£1)--"B(f5,)) = @(B(fy)---B(f, )B(e Pl ))

2n —BH
:pgzr(rfp, e fl)w(B(fz)--B(fp_l)B(fp+1)--B(fzn))

+ o(B(e™BE )B(£,) .- B(£, ).

Hence by the replacement of £y by | .(1—e_BH)-1h1 (h, €
Q(He—BH(l—e_BH)—l)), we have .

2n '
= -8H -BH, -1, ‘
_pzzr(rfp, e (l-e ) hl)w(B(fZ)"B(fp-l)B(fp+1)"B(f2n))
2n
:p=2¢(B(h1)B(fp))W(B(f2)--B(fp_l)B(fp+1)..B(fzn)).

- 11 -
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Thus by induction, we have, for hL € 9(He“BH(1—e_BH)'1) (i =
1,2,---,2n),

. n
@(B(h)B(hy) -+ B(hyy)) = 3 T @(B(h
J -

)B(bg (j4n)))

s(J)
ﬁhere the sum is over all permutations s satisfying s(1) < s(2) <
+e+ < s(n), s(j) < s(j+n), j = 1,2,-<+,n. Since ¢ 1is K-continuous,
the above equality holds for all ht in K.

If the number of B(ft) is odd, then we show that the
corresponding value of ¢ 1is zero. By the previous discussion, if
the numbér is odd, then w(B(fl)---B(fzn_l)) is expressed by the sum
of products of numbers with factors w(B(fi)B(fj)) and @(B(f£)).
Therefore it is enough to show that ¢(B(f)) = 0 for f € K. For f

€ 9(He-BH), we have

@(B(f)) = o(B(£)1) = o(1B(e PHf)) = o(B(e BHf)).
Hence by the replacement of f by (1—e_BH)—1h (h €
9(He—BH(1—e-BH)—1)), we have ¢(B(h)) = 0. Since ¢ is K-continuous,

we have ¢@(B(f)) = 0 for f € K. Therefore ¢ is quasifree. This

completes the proof.

We are now in a position to prove the uniqueness of K-continuous

B-KMS states for ({u(K,r,r), {tt}tER}'

Theorem 4.3. Under the situations (¥), if H does not have an

- 12 -
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eigenvalue 0 and there exists a K-continuous B-KMS state for
{(1(X,r,r)s {t,},cpls it is unique.

Proof. Let ¢ be a K-continuous g-KMS state for {2(K,r,[),
{tt}teR}' Then it follows from Proposition 4.2 that it is quasifree.
Thus the value ¢(A) for A in U(K,r,I') is determined by the two
point function of the form ¢(B(f)B(g)). The first part of the proof
of Proposition 4.2 shows that, for f e Q(He—BH(l—e—BH)—l) and g €

K,
@(B(f)B(g)) = r(rg, e BH(1-e By 1g),

The K-continuity of ¢ and the density of 9(He—BH(1—e-BH)—1) in K

prove the theorem.

Corollary 4.4. Under the situations (%), assume that the

following equality holds;
r(f, g) = (f, (ePH_1)(eBH41)"lg) for f, 2 € K and B € (0, +w).

If H does not have an eigenvalue 0, then there exists a unique

K-continuous B-KMS state for ({u(K,r,I), {tt}tGR}'

Proof. Combining Theorem 3.2 and Theorem 4.3, we get the

conclusion.

Next, we will consider the case that H has an eigenvalue 0 in

the above corollary.



Theorem 4.5. Under the situations (%), assume that the following
equality holds;

r(f, g) = (£, (ePHo1)(eBHs1)"lg) for £, 2 € K and B8 € (0, +»).

If H has an eigenvalue 0, then there exist many K-continuous g-KMS

states for ({U(K,r,I), {tt}tGR}'

Proof. Let P denote the projection in K whose range is the
eigenspace of H corresponding to 0. Take an arbitrary positive

bounded operator T on K with PTP = T and TIT = Tr, and set
o(B(£)*B(g)) = (£, BH(eBHs1)"1g) + (£, Tg) for f, g € K.
Then we have
o(B(£)*B(2)) - p(B(2)B(f)¥) = r(f, g) for f, g ¢ K.

Hence p can be extended to a quasifree state on #U(K,r,I'), which is

denoted by the same notation. It follows from PTP = T that
(eitHf’ Tg) = (f, Tg) = (f, TeitHg) for f, g €e K and t € R.

As in the proof of Theorem 3.2, we can prove that p 1is a
K-continuous B-KMS state for {U(K,r,I'), {tt}teR}' It is clear that

there exist many choices of the above T. This completes the proof.

- 14 -
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