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DIFFERENTIAL CALCULUS ON QUANTUM SPHERES
Piotr Podles®

RIMS, Kyoto University

1. Introduction

Quantum groups appear in several areas of mathematics and
physics, such as theory of deformations of simple Lie groups,
generalizations of the Pontriagin theory of duality, theory of
paragroups of Ocneanu, quantum inverse scattering method .and
conformal field theory.

The theory of quantum groups is develqped in many different
approaches. Here we use C""—algebraic approach. The aim'of this paper
is to give a short overview of the basic results on quantum spheres.
In Section 2, following [12]-[14] we shall give the definitions of
compact quantum space, compact matrix quantum group and (as an
example) quantum SU(2) groups. In Section 3 we present the general
notions concerning the actions of compact matrix quantum groups on
compact quantum spaces and study in details the particular example
of quantum spheres, which are generalizations of two-dimensional
sphere Sz endowed with a standard right action of SU(2). In
Section 4 we present the classification of differential structures on

2
quantum spheres, which generalize differential structure on S .
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Such generalization is unique, but exists only on one quantum sphere.
For others, there exists a bigger differential structure, presented in
[8]. A part of the results from Sections 3-4 is contained in [7]-[8].
We are going to present the proofs of others elsewhere.
Related material is also contained in [2],[11],[4]-[6],[3],[10].
In all the formulas we sum over repeated indices, which aren't

taken in brackets (Einstein’s convention).
2. Compact quantum spaces and groups

In this Section we want to make it clear that the C*-approach
provides a natural generalization of compact topological spaces and
compact matrix topological groups. Here we present only the most
introductory part of the theory, including the classification of the
quantum SU(2) groups (cf [12]-[15]).

Let X be a compact space and C(X) denotes set of all continuous

functions on X with complex values. For f,he C(X), )€¢,xex we set
(£ +h)60 = F00+hG), AR =2 £06), (F o h)x)= $x0h{x),
0=, IFI= sup 166

Then (C(X),+, . ,°;*;“-") is a commutative C*—algebra with unityT -

(I(x).= 1 for xe¢ X ). Moreover, the above correspondence

(compact spaces)¢—> (commutative c*-algebres with unity)

is one to one (up to homeomorphisms of compact spaces and C*

lsomorpmsms of C -algebras).
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If (PX-%Y is a continuous mapping of compact spaces, then
@*-((Y)—>C(X) denotes a unital (P*I =T ) & -homomorphism
defined by formula W*{Z:{foﬂﬁ (QFG C(Y)) . It occurs that the

correspondence

. . . . * .

continuous mappings unital C -homomorphisms

>
from X to Y from C(X) to C(Y)

is one to one. Moreover, if \f Y——-)Z is also a continuous mapping
of compact spaces then (\f° P)¥= FoY¥,

Let us also remind that we can identify C(X)eC(Y) ang C(XxY)
by formula

(£29)(x,4)= {x)g(y), e CX),q¢ C(Y), xeX | yeX.

Therefore, the cartesian product of compact spaces corresponds to
the tensor (spatial) product of related commutative C*-algebras
with unity. Thus the theory of compact spaces is the same as theory
of commutative C*-algebras with unity. So, considering all (not
necessarily commutative) (:2vr -algebras with unity we obtain objects
more general then compact spaces, which we call quantum compact
spaces. Quantum compact spaces are nothing more but abstract
objects, which are in one to one correspondence with é-algebras
with unity. For quantum space Z, we denote the corresponding C*-
algebra by C(Z). The above ideas (in more general, locally compact
setting) are contained in [12]. In the following we assume that all
quantum spaces are compact, C*—algebras possess unity and C‘('-

homomorphisms are unital.
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In order to endow quantum space with a group structure, we have
to add some structure to the corresponding C*-algebra.y In order to

do that, first let us consider the following

EXAMPLE 1 [13]
Let G be & compact subgroup of GL(N,C). Let A=C(G) . we define
U; e C(G), 1,j = 1,2,.N, by formula  Uij(g)= g, , where for
9¢ 6 <GLIN,C), 3;;  denotes the matrix element of g
standing in i-th row and j-th column. Thus ’ll:J' are matrix
elements of the fundamental representation of G. It can be checked
that the pair (A,u), where ‘u=(ug);':j=1€ Muw(A), has the following
properties:
1) *-algebra (with identity) ey generated by U, is dense in A,
2) there exists a C*-homomorphism @‘. A — AeA such that
U =B U , &j =42 N
(Einstein’s convention!)
3) There exists a linear antimultiplicative mapping L:h>A  such
that
a) [X(ucj):(:j=4 is the inverse of (utj)
b)Bf’-(x(OL*))toL for aedh

Indeed, 1) follows from the fact that the functions Uy separate

N
CIS=1

points of G . Next, let p:Gx6—G be the multiplication and }:G—=C
be taking inverse in G. Then setting }g = P*‘.C(G) - C,((;)® C(G)
we obtain

(@ ’Ul;)-)(cg,k) = '115'(3 ~h,) :(3 h)LJ‘ =9, hKJ'= Zak(g')ukj(k): ('u.‘xsuxj)(gih)
(i,j=4. . N , g,heG),
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and 2) holds. It can be also proved, that X=j* MA satisfies all
conditions of 3). In the following, the pair constructed above will be

denoted by (C(6) U¢) . Generalizing this example we obtain

DEFINITION 1 [13]
We say that (A,u) is a (compact matrix) quantum group if A is a C*-
algebra (with unity), U= (U} i1 €MualA) is an N<N  matrix with

entries in A and conditions {)-3) are satisfied.

REMARK. In the following , we abbreviate compact matrix quantum
groups with quantum groups. According to previous considerations,
we should rather write that a quantum group is an abstract object
corresponding to the pair (A,u), but for simplicity and following [13],
we just identify these two objects.

The mappings {‘,'zf, are uniquely defined.

The following theorem shows that Example 1 is in fact general for

comutative A.

THEOREM 1 [13]

1. Let (A,u) be a quantum group with commutative A. Then

Cr-{ {ucﬁ X‘ choractes om A } (1)

\-Ji

is a compact subgroup of GL(N,T). Moreover, up to C*-isomorphism,

(A,uw) = (C(G), Ug) .

2. (C((r), u(,) are not C¥ -isomorphic for different G.
Thus the correspondence GH (C(G), ’U(;) between

compact subgroups of GL(N,l) and quantum groups with commutative

S
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A is one to one (up to C#—isomorphisms). This justifies the
identification G = (C(G), Ug).

For a general quantum group G = (A,u) we also use the notation’/

A = C(G). “/&

\\

EXAMPLE 2 [14]
Let pel-441N{0} " we define A as the universal c* -algebra
generated by of,bg satisfying the following relations
LHL s ¥R =T, afaﬁ:‘/da“oﬁ Rt R 2
VLS E —u F*
LL —r/’b’zbt =T, oé’b“*./zb"’oe

and set

(3020

)

It can be proved [14] that then S,,U(Q)‘: (A,‘u) is a quantum group.

For. =4 ) A is commutative, hence due to (1)

Ty (XD, = X)) }_
S,U(2) = i{‘m"), T ) X = chamacter om C(SLQ)=

= {(Z ’__L)f |a12+1612=4§: SU(2) .
)d-

Thus S‘)U(Z) are called quantum SU(2) groups (cf Theorem 2). c*-
algebra C(S/,U(Z)) can be faithfully embedded in B(H) where H is the
Hilbert space with the orthonormal basis ¥, .,n=0,1,2,., k-

integer, in such a way that

°€LPHK= \S,1_/)2n ('Pn—»\,t( , X(an( :/)M(P";K-*:L



For each quantum group there exists a unique *-character e:el-—v(l“,
such that e('u;j)z&é,(,)‘ﬂ,,_.pl. In Example 1, e(f)= {(e,) , where
\CG e\_ and ¢, is the neutral element of G.

Now we will present the basic notions of thé representations
theory of quantum groups, which is very similar to that of compact

groups.

DEFINITION 2 (cf [13])
Let G = (A,u) be a quantum group. We say that v=(v.)™ ¢M, (A)
“3ey=4 RxR
is a representation of G iff

2) v isinvertible

REMARK. For commutative A, we may write V€ C(6) and
identify v with a continuous mapping from G into
Mrxe (€)  (v(g)= (VLJ'(B)');Z:i ) . Then condition 1) means
that V(SMT—V(S)V(M , While condition 2) is equivalent to
the invertibility of v(g), g, heG.

R
Let v=(vy);:

S
oy w= (W), berepresentations of quantum group

G. We say that v is irreducible if it is irreducible as matrix. [fR =S

o1

and there exists QeGL(R,T) such that v= QwQa™ then we

say that v and w are equivalent and write V=W . We define tensor

product V @W € Mgq g (A) by formue |
(VOW)ik, i = Vi; We€A | Gi= 4, R, kl=4,.. 5.

Tensor products and direct sums of representations are

representations. For commutative A

v=QwQ* iff  v(g)= Qw(g)Qvi foreach ge &

7
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" vew)(g)= vg)® w(g) , 3e&
In the general case each representation is equivalent to a unitary
one. Moreover, each representation is a direct sum of irreducible
representations. Let us denote the set ofi all nonequivalent
irreducible representations of G by -{’w‘&o@e .weput  u’=(I)
(trivial representation). There exist unique continuous linear
functionals ¢ €A’ e G , such that

S (ul)=8,0 8 , LG, Gj= A2 dimub,

We have a general theory of quantum groups, including Haar

measure, Peter-weyl theory [13], quantum SU(N) groups, Tannaka-
Krein theory [15], differential calculus [16], dual [1 21,[9] and double
groups [9]. Up to now, general theory of non-compact quantum groups
is not known although we have interesting notions and examples (cf
[12L,[171,[9D).

It occurs that quantum SU(2) groups are the unique nonisomorphic

quantum groups which have the same representation theory as SU(2):

THEOREM 2 (cf [15],p.75)
Let G = (A,w) be a quantum group. Then the following conditions
are equivalent.

1. Set of nonequivalent irreducible representations of G may be

> -
numbered by G={O,"/z,4,...‘§ in such a way that
@) dim uf = 22+, L€ G
£ .
L D - B ~ 133) o
b) uteu s S U
) wx=n
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2. G is similar to S),U('l) for some /Jelf-'i,ﬂ\{o& , i.e. there
exists a C*—isomorphism .L:C(S/\,U('Z))——»A such that
(L('uxd)t'ui W |

Moreover the constant I is unique.

4
‘We may choose  u° =(I) )’u/z = ,

ag*?. , '(/)2+4)£*b9., _/039_7_
w'= (’\LAL:));:_i = [#Fe* , I-(uu N, 2| (2)
_/)bv.#l ) _(/)'2+4)X~)F0£) 062

3. Symmetries of quantum spaces. Quantum spheres

Here we present some notions concerning actions of quantum
groups on quantum spaces. As an example we present the
classification of genéralizations of the two-dimensional sphere
Sz endowed with the étandard right action of SU(2) (which is the
covering group of SO(3)).

Let X be a compact space, G < GLIN,@)  compact matrix
group and $: XXG- —*>X continuous mapping. Let us denote
8 =¢%:C(X)— C(X)®C(G) .Then g is the action of G on X iff

the following conditions are satisfied

@) (Beid)d = (ideds)?

b) (I®b)3(ct): ae C(X), be CE))=C(X)= CE)
( {(Z) denotes the closure of the linear span of the set Z contained
in a C*-algebra).

Indeed, a) means that
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S(SCX/ 8)/1»): S(X; 9“)/ X€ x/ Szhé G.
Assuming a) one can prove that b) is equivalent to S(X’Qc):)( ’xex.

Therefore we can introduce the following

DEFINITION 3.
Let X be a quantum space and G be a quantum group. We say that
the C*-homomorphism 3. C(X)— LX)eC(G) describes an

action of G on X iff the conditions a)-b) are fulfilled.

From now on we assume that G is any quantum group and ()(, 2)
is any pair satisfying the conditions of the above Definition 3.

We say that a vector space Wc C(X) corresponds to a
representation v of G iff there is abasis € i=4,..dimv , inWw
such that  5€; = €« ® Vi{ |

It occurs that C(X) can be decomposed into vector spaces

corresponding to irreducible representations of G :

THEOREM 3
Let Z describe an action of a quantum group G on a quantum space
X . We set W.p =(ifi® &rnc(X) ( gop were introduced in Section 2).

Then
. C(X)= @4 We

L€ G \

2. For each o£¢ & there exist sets 1 _, and vector spaces
: . o€

Wae € C(X) , celyp , corresponding to ‘U such

that

We= @& We

el p

10
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Cardinal numbers (, of I,,c don’'t depend on the choice of I,e and

We: . Moreover, each vector space W < C(X) corresponding
of ./\

to W ,LeG,  is contained in W .

We call C, multiplicities of u‘e in the spectrum of 2

Let us now consider the special case of the standard right action
. Sl 'SU('Z)-—*SZ SZ _ .:SZ
S X of SU(2) on . Denoting X and
3 = 3* we have that

a) multiplicities in the spectrum of Z are

Co=Cu=Cy=... =41 | C4,=Cy,=Cgp=--. =0
b) W, generates the C*—algebra with unity C(X).
Indeed, a) is a classical result. Then NL:\/Ju is the
linear span of spherical harmonics
Yim , m=-L,.. L, 470,42 . Condition b) follows from
the fact that cartesian coordinates on 32C R® ( which are

combinations of Y.m | m= -401 ) separate points of SZ and

)

therefore generate C*-algebra C(s?).

The above justifies the following

DEFINITION 4.

We say that the pair (X,Z) is a quantum sphere if X is a quantum
space, 4: C(X)—C(X)® C(S/,U(Z)) describes an action of
SI,U(Z) on X and conditions a)-b) are satisfied.

| L
REMARK. Fixing (e {042, . 15 and choice of U we can
define generalized spherical harmonics €im , m=-1,.1, as any

‘ 5
basis in NL such that 2€bm =€ «® Uy, .Thus we can also

11
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define quantum sphere as any pair (B, 2) where B is a C*—
algebra and 6:B—>B& C(S,U(2)) is a C°-
homomorphism for which there exist €., € B ,m=-1,.1,

1 = 0,1,2,.., such that

a) ¢, arelinearly independent and span a dense subset inB
b) 8Cum = Cus® UL,

c) &4m .M ='-1,0,I, generate B.

Quantum spheres are classified in the following way:

THEOREM 4  (cf [7])
For ﬁ:ﬂ we have precisely one quantum sphere (S},O ,% o) )
For /ue(-M)\{O} we have a continuum of quantum spheres
(She, 2pe) , ceLO].
The classical case (S* ;S*) corresponds to P= 4,¢c=0
C(S},c) can be in each case realized as C*—subalgebra of
C(S/,U(Z)) generated by
€= Ak U, ,m=-1,0,1,
where

(84-4:SC»S4)=(J?)4JJ?) for c <= ) (5-4;SC)SA)=(4|014) fo'{‘ C=o0

and ‘lk"m are given in (2). In this embedding
be= Bresny COSE) — C(Sh)® CLS, V@),

According to Section 1 g is the dense % -subalgebra of C(S/,U(Z))l

generated by of,b" . There is also a distinguished dense *-algebra

A < C(S;c) generated by  ©_,,€o, €4 . It can
be also written as
(AC: L&:Q L’\’L\': LLV\ {etm - VY\—_—-L'... L ) L:O,AI... }

12



|

/

N\

97

Then we have ch_\&‘l\c < \ic ® ) L?kc < @ .

%*
REMARK. We can also define C(S/z;c) as universal C -algebras
generatedby €., €. ,€, satisfying .

Lam €€ =81 )

bLm,uQL € m taew ) l(=-4.0|4)

where

A=A-p%, 8= (A4p)pcsd (fore=m:2=0, g=(hpp )
and nonzero values of dum |, bumx € ¢ are:

Aoyy = 4+)f‘ , Oy = 4+/)‘2 , oo =4,

b‘>—1l,—4= 640,4= 1 , 6-40’_4-—' 604,4 = =0

)
2
L-"")o = 447}1 ) 64-4,0 = ‘(/“"}J'z> ) éoo,az/’"/) .
We also introduce the coefficients Cu(+ ,k1=-1,0,1,r=-2,.2,

as
C

—Aoa T C/M'l = C‘4°.‘4=C04,4: COo,o‘: 4 )

Co-ny-a = CAO,A‘—"_))'Z' ) Conao = "/—2) CA-A,O = ‘/Uz

)

Cuiyr =0 for  +4 k+l (cf C3).

)
warning: The definition of quantum sphere given here is more

restrictive then in [7]. Moreover, generalized spherical harmonics

are chosen in [7] in some special way.

13
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4. Differential calculus on quantum spheres

Let ¢ be the standard right continuous action of SU(2) on 5'2
and %= g*: C(S?)—C(S*)eC(SU). Moreover, we can define a
right coaction r of SU(2) on C(s?) by formula

(56)00) = (80 g)) , §€CISH, ge Su@) , xe S2.
The 1ast two mappings are related by ((d®Xg)é="g ,  where
ge SU(2) and '7(3 is the corresponding character on C(SU(2)).
We know that $* is a manifold, § is smpthand Ak < C7(S%) .
weset » = ko et S"=@& S§°7

m=0 )

where S""= BdBAdBa.. 4B

n —t"m PN //4,/ 2;/

\
\
A

is the bimodule of external forms on SZ of n-th degree , which are
generated by P . Then d:S"—=>$8" Let #:S5"—=S" be the
complex conjugation: |
(@, dayn. da)* = d*d(a®n.. dlaF) o dy, O, € 3.
We have moreover the right shifts Rg SN SA, g¢ SU(2):
Rg (CLO c1.¢4 Ao ddn) "’.@\3 %) d (’VS Ady)A. cl(ff‘s Clm)/aolaﬂ a,¢3
Alternatively we can also consider a unique linear mapping
s —S"ed |
(*-algebra o< C(SU(2))  was introduced in Section 1) such that
(coL@’Xa)Z" = Ry , g€ SU2).

It is easy to check that (5™, 3", d %) satisfies

1 S"= @ 5 is a graded algebra such that 9" =%  and

=0

the unity of 5™ is the unityof S”

14
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2 MM = Ste W is a graded homomorphism such that
(doe) = id, (3 o) =(ided)d", 2"°=1;4
3) * is a graded antilinear involution such that
(BAB)¥ = (- @*AB* Be s @es™

( A denotes multiplicationin $"),

(M) % = (x@%) 2"

* on SAO reduces itself to the standard *
4) d-S"—S" is alinear mapping such that

o) d(SP™) € ShUN 0,49,

by d(BA0)=dBnB +(-D*6AadB’ BeSr Blesh

c) d#*=%d

d (ded)d” = o d

e) dd=0
5) S" M= Apam -{oLcha,, A da, o, %y,... Ola e%}

(we omit A if one from multipliers belongs to 3"° ).

In the following we assume that )'él._-"."l N{oy, ce [0,0]
(c =0 for )J=ii ), \ACC-(S/UU('Z)) is the distinguished *-algebra,

D= d, C(S}c), =13,

/)
DEFINITION 5 |
1A
We say that S"= (SA,%A ) CL,*) is an external algebra on
j”_ , invariant w.rt. ?:/,C iff conditions 1)-5) are satisfied.

The above choice of axioms is motivated by [1] and [16]. We don't
introduce (and don't know if it is in self-consistent way possible)

any condition replacing

15
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6n9’= (- B'A0, B¢ She, Qe SM

which is not good for non-commutative 3)3 . However, we can
introduce 'dimensionality’ conditions as follows.

We define L as the free left module over ® with besis Wy ,i=
= -1,0,1. Let N:L—Led be defined by
AN (a; LO;)=77,'C (@)W U) , where a_,, d,,d, € W
Assume that _5" is an external algebra on S;,C , invariant w.r.t.

%

. Then the homomorphism of left modules J L — Shd

O ‘
given by y (W) =de; satisfies
(j sed) A =27, (we defined /L in such a way that this

equality holds).
An element T€L  is called A -inverientifft AT-TeL .
The set of A -invariant elements is equal |
Lihv = € du, €W

(values of @, are given at the end of Section 3).

DEFINITION 6 ‘
1 N thv . .
Let MC, % ) _S. ) L ; L )y be as above. We say
A 2\ .. A .
that § is (.)-dlmenswnal iff
a) Ker j =BL‘""Y ,Rangej= S"* v
b) there exists a 2“2 -invariant basis of the left module 5"7‘ ,

consisting from one element.

REMARK. 1. Condition a) m‘eans that de, generate left module N
with one constraint Gw. €w de.=0.

2. Conditions a)b) are satisfied (for pF=4 , c=0O ) by
(S, ZA,d,,x—) introduced at the beginning of the present Section.

16
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In that case we can replace 9-4, €., €y by another basis in
\/\L_L , consisting from cartesian coordinates X4, X2, Xy .1In
this basis a) means that d.xK , k== 1,23, generate the left module

"% with one constraint Xudx.=0 , whereas b) is satisfied by
(%) € X dxndue € SM2,

THEOREM 5
For pe C-1,43N40§ |, ¢ = 0 there exists unique ('%)-dimensional
external algebra S_A on the quantum sphere Sj,c , invariant
wrt
For  Ne CA4A)N{CY e (O] there are no (Z) -
dimensional external algebras on the quantum spheres SZC )
invariant w.r.t. Zﬁc
The same facts hold if we restrict ourselves to SheSht or
S*e Sht e SM (without * or with *) instead of S
(in Definitions 5-6 and in this theorem).
Moreover 3" forc = O has the following properties:
a) one-element g'\z -invariant basis in the left module S"* can
be chosen as
We= ey € bmn, dewm nde,
b) SAK:'{O} , k72,
c) the following formulae hold:
due (dew)e, =0
bxt,«r (de. e, = (”*/UZ) Cl-e,f - EKL,'P € d,et , +=-4,04,

Cuq,+ (dew)e, = CuL'»r €u ECLBL +/u’2 (4 —/\)?') Bmmemden] ,
A=-2,..2,
We €gp = €4+ W, , 4‘:—4,0'/1)

)

17
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d‘KLd"eK /\CLQLZO

Cugrde, nde, :}J‘Z (A +}\)2)"2(/JG_ DCuid € € L0, , ¥=0.2
(de“)*:(ie—\( ) k:—4,0,4,

)
€4+ We , T=-4,0,4,

li

LU.’*—:.—DC:. )
AA _ i 4
"de=demeult,, | k=-40,
M Wy = w,BT.
2 .
REMARK. Thus the quantum sphere (S,,O,Z/,O) is

distinguished. What concerns other quantum spheres the following

result seems to be interesting:

THEOREM 6 (cf [8]) &
c 1
Let pe (-4,1N40y | €€l 0]  There exists an external

algebra ¢ =(IJ, ,5}'\,&,*) on S/ZUC , invariant w.rt. &,. such

/UC
that KMJ ={CS ) RWJ = Sht , i.e. o(.?_,, , de. ,ULE’«L
form a basis in the left module [, *
The following question remains open: Is there any uniqueness
g y

result in that case?
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