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ON WELL-BEHAVED C¥-ALGEBRAS RELATED TO ORDERS
N
Kazuyuki SAITO

One of the outstanding problems in the theory of
AW¥-algebras is the monotone completeness of any AW¥-algebras.
For AW¥-algebras of Type I, the answer is known to be yes
(see Kaplansky [3]) but, for general AW¥-algebras, this
question is still open, although an impressive attack on this
problem was made by Christensen and Pedersen [1].

In this note, we should like to make a survey of the
development of the problem of monotonicity of AW¥-algebras,
with an outline of their proofs. This is a joint work with
John D.M. Wright [6].

Let us recall that a C¥-algebra A 1is an AW¥-algebra if
(1) each maximal abelian ¥-subalgebra of A is generated
by its projections and (2) each orthogonal family of
projections { e, } in A has a supremum ZAea\in Proj (A)
(the complete lattice of all projections in A).

A natural line of attack on this problem would be to use
the second dual A" or the weak closures of represéntatives
of A on some Hilbert spaces.

Unfortunately, this is too naive. Invgeneral, the
structure of the complete lattice Proj(A) 1is not consistent
with that of Proj(A") or that of the weak closuréé, because
of the lack of the Weak or strong topologies. 1In fact, if so,

A would be a von Neumann algebra.
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Let B be an AW¥-algebra and let C be a unital
C*¥-subalgebra of B. We say that C 1is normal in B if
for every orthogonal family { e, } in Proj(C) with the

e in Proj(C), <I.e = I_e

supremum ZC o c€o BSa”

Let A be an AW¥-algebra. Then A sits inside its
regular completion K [2]. K is a monotone complete
C*-algebra (and so an AW¥-algebra) which is, in general, not
a von Neumann algebra. We say that A is normal if A 1is

~

normal in A. So our first question is this:
Are all AW¥-algebras normal ?

It has been known for ten years that finite AW¥-algebras
are normal [7], [2] and [4]. So, when establishing normality,
we may confine our attention to properly infinite AW¥-algebras.

Quite recently, we showed that mild restrictions on the
centre of an AW¥-algebra are sufficint to force it to be

normal. In particular, all AW¥-factors are normal.

Let A be an AW¥-algebra whose centre is locally

countably decomposable. Then A must be normal.

Detailed proof will appear in the Journal of the

London Mathematical Society (see [6]).
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Let B be a C¥-algebra. A net of increasing projections

in Proj(B), { ej }jeJ with the supremum LUBProj(B)ej

in Proj(B) is said to be well-behaved if LUBProj(B)ej

is the supremum of { e, 1},

j tjed in the partially ordered set

B,. B is said to be well-behaved if, every such net { ey }

h jed

~is well-behaved.

Let us begin with the following lemma which plays an

important role in proving the theorem.

Lemma 1. ([4]) Let A be an AW¥-algebra. Then the

following three conditions are equivalent.

(1) A is normal;

(2) A 1is well-behaved;

(3) for every increasing net { e, } in Proj(A)

J jed

with the supremum e in Proj(A), whenever x, in A,,

satisfies e xej > 0 for all j, then exe 2 0.

J
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'Remark. (2) and (3) are equivalent even when A is a

general unital C¥-algebra.

Outline of the proof (see [4]).

(1) 2z (2). Suppose that A is normal, then, by a
result of Pedersen and Sait6, for every increasing net

{ e } in Proj(Aa),

jed

LUB LUB

Proj (A)j Proj (A)€j"

A

Since A 1is monotone complete and { e, }

i Yjed is well-behaved

A

in A, and so it is well-behaved in A as well.
Conversely, suppose that A 1is well-behaved. Then, for
every orthogonal family { eJ }jeJ in Proj(A), the net

{z F a non-empty finite subset of J } is well-behaved.

jeF®) |
So it follows that

Ipey = LUBPPOJ(A){ Zier®; | 7}
= LUBPrOJ(A){ Zier®; | F}
= erj

(2) z (3). It is given that { e } is an increasing

jed
net in Proj(A) with the supremum LUBProj(A)ej (= e say).

Suppose that { e }jeJ satisfies (3).

The claim is that LUB LUBA e.. We have

h
only to check that ej < a for all j for some a in A implies

-.4$_~_

Proj (A)®j
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e < a. Suppose that such an a 1s given as above, then,

because a 2 0, it follows that

-1/2 -1/2

(a + 1/n) ej(a + 1/n) <1
for each j and n. Thus we get that
| (a + l/n)—l/zej)" <1
for each j and n. This implies that
ej(e - e(a + l/n)—le)ej >0
for all j and n. Since { e }jeJ satisfieé (3), it follows

that
-1
e(e - e(a + 1/n) “e)e 20

and [e(a + 1/n)“1e“ < 1 for all n. Thus we conclude that

-1/2

“1/25(a + 1/n) <1

(a + 1/n)

for all n. This implies that e < a + 1/n for all n and so
e ¢ a follows.

Conversely suppose that { ej }jeJ is well-behaved.

It is given x € A such that e.xe. > 0 for all j. To prove

h Jd J
the claim, we may assume that e = 1l(consider it in eAe) and

x|l < 1. Since
(L + x)(1 - ej)(l + x) - (1 - x)(1 - ej)(l - X)

= 2x(1 - ej) + 2(1 - ej)x,

—E_
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we see that

ejxeJ -x = (1 - ej)x(l - ej) - (1 - ej)x - x(1 - ej)
= (1/2)((1 - x)(1 - ej)(l - X)
- (1 + x)(1 - ej)(l + x)) + (1 - ej)x(l‘— ej)
< (1/72)(1 - x)(1 - ej)(l -x) +1- e
because [|x|| < 1 and x = x . Take y = (1/2)(|x| + x) and

z = (1/2)(|x] - x). We see that x = y-z, y,z in Aps ¥z = 0
and z and y are non-negative. Moreover, y and z commute

with x. Hence, it follows that

Ze.Xe.zZ - ZX2Z
J J

A

(1/2)z(1 - x)(1 - ej)(l - x)z + z(1 - ej)z.

Since zejxejz is non-negative for all j and zxz = - z3,

we see that

N
A

(1/2)z(1 - x)(1 - ej)(l - x)z + z(1 - ej)z

for all j. Since { ey }jeJ is well-behaved, this implies

that

(1/2)z(1 - x)(1 - ej)(l - x)z + z(1 - ej)z ¥ 0 in Ah’

3

and so z- = 0, that is, z = 0. This completes the proof.
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Theorem 1. Finite AW¥-algebras are normal.

Let { e, }

i Yieq be any increasing net in Proj(A) with

the supremum e in Proj(A). We shall show that ({ ey }jsJ
satisfies (3). To do this, we may assume that e = 1.

Suppose that x in Ah satisfies that ejxej 2 0 for all j.

If x = x - x (x'x” =0, x* >0and x” > 0) and x” # 0,

then there is a non-zero projection @ in A and a positive

number € such that x > €q and (1 - q)x+ = x+. Set fj = equ
and we have
0 < f,e.xe,f, = f.xf, = f,qgqxqf, = - f.x qf.

= 13%5%%50 3y T A 3% A

< —-ef.qf, < -€f

< -efyafy g
for all j and so fj = 0 for all j, that is, €5~a = 0 for all j.
Note .that

= - e. g Vv e. - e, <1 - e,
4797 &30 e5va = €5 2 3

for all j and A is finite, this implies that g = 0, because
1l - ej + 0 in Proj(A). This is a contradiction. Thus

x = 0, that is x > 0. This completes the proof.

Now we are in the position to discuss about the properly
infinite case. Since, as you see, above proof depends on
the finiteness assumption on A, we need to seek another
way to establish the normality for properly infinite case.

Before going into the discussions, we need some definitions.

__(7,_
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For a given index set B, a family { xjeAh | jeB }

is said to be order summable if

{z

jeF¥ | F a non-empty finite subset of B }

.

is bounded above in Ah' When such a family is order summable

its order sum is defined to be the supremum of the set

{ ﬂzjanjH | F a non-empty finite subset of B }.

For a given indexed set B, a family { xjeAh | jeB }

is said to be well-behaved if the set

{ zjeFle F a non-empty finite subset of B8 }

has a supremum in Ah. When { xj | jeB } is a family of
orthogonal projections, this definition of well-behaved is
consistent with our earlier one.

Let B be a given index set. The algebra A 1is said to
be B-complete if each order summable, B-indexed family of
positive elements in A 1is well-behaved.

It is clear that if A 1is B-complete and if y is a set
where #y < #8 , then A 1is y-complete. We note further
that A 1is a-complete for a sufficiently large ordinal o,
then A 1s monotone complete, but we omit the details.

The rest of the discussions, we shall suppose that A

is a properly infinite AW¥-algebra.

We suppose for the moment that, for some infinite ordinal

2, A has a system of matrix units { e,. } j<q Where
. 3

ij “0g1

9
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eOo v 1l in Al

A transfinite sequence { aj }j<a in eOOAe00 is said

to be dilatable in A if there exists an orthogonal family
of proj . i z . -
projections { P, } in ( J<O‘eJJ) such

j<a j<a®3j R0 2

that e = xj for each jJ < a. Let a be an ordinal

00P3%00

number. We call e..Ae

oohegg @-dilatable if, whenever { Xy }

is an order summable transfinite sequence of positive elements

J<o

of Ae 0° with order sum less than 1, then the transfinite

€000
sequence is dilatable in A.
The following lemma is a modification of an ingenious

argument by Christensen and Pedersen [1].

Lemma 3. Let o be an ordinal with a < Q. Let eOOAeOO

be a-dilatable in A. Then A 1is a-complete.

eOOAeOO is ¥-isomorphic to A, it suffices to show

is a-complete. The proof is rather long. We

Since

that e,,Ae

007700
shall omit the details. See [6].

We shall need the following lemma which is proved in

(1, Lemma 37].

Lemma 4. Let e and p be projections in a unital C¥-algebra

B such that |lepe||l < 1 and let x be a positive element of B

such that x + epe < e. Let { £33 }l§i,j§2 be matrix units

9_
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for M2(C). Then there exists a projection q in B8M2(C)

such that q is orthogonal to p@fl1 and

(e@fll)q(lell) = x@fll.

Let z = (1 - p)(1 - epe)—lx(l - epe)_l(l - p). Then

z e Ay such that (1 - p)z(1 - p) = 2z, eze = x and 0 <z 51
Let
Z (Z_z;)l/2
q =
(z-—zz)l/2 1-2z
via { fij }lgi,j§2' Then q satisfies all the requirements.

Lemma 5. Let o < Q@ and let « + 1 be the successor ordinal

of a. Let eOOAeOo be a-dilatable in A. Then eOOAeOO

is also (a + 1l)-dilatable.

In fact, let { be an order summable transfinite

xg }g<a+l
sequence of positive elements of eOOAeOO' Let its order sum

be ¢, where ¢ < 1. By hypothesis, there exists a family of

orthogonal projections in ( Zi<aeii)A( zi<aeii)

{ Pe }€<a

such that eOOpgeoo = Xg for each & < a. By Lemma 3, A is
a-complete and so
LicgPi = LUBAh{ i epPy | F a non-empty finite subset of o }

Thus
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(2 = LUB, { z, | F a finite subset of a}

€00 Z1<qP1 1800

LA
(¢}
A
-
g
=
0
(¢]

and so Heoo( Zi<api)e00” <

€00l Zi<oPi'®00 * Xq

e Let =

We‘observe that Zi<aeii " e(m v Zi;a 11" 11

z let £ = e and let f
oo

22 12

* = * =
YA( Zigaeii) such that fl2fl2 fll and f12 f12 f22.

i<a®ii’ be»any partial isometry in

(250811

Let le = f12*' Then, by the above lemma, there is a projecton
JA( 2

Py in ( zigaeii i§aeii)’ such that pa is orthogonal to

X p. and x

i o« = €00PaC0o- Hence Xg | € <al =

i<a

{ Xg | € <a+ 1} is dilatable.

Lemma 6. Let a be an infinite ordinal such that a < Q.

Let A Dbe &-complete for each £ < a. Then eOOAeOO is

o-dilatable in A.

In fact, let { Xy }i<a be an order summable transfinite
sequence of positive elements of eOOAe00 with order sum c,
where ¢ < 1. To obtain a contradiction, let us assume that
this transfinite sequence is not dilatable. Then, there exists

a smallest ordinal B, such that { xi } is not dilatable,

i<B
and B £ a. (Note that w < B by the results of Christensen
and Pedersen [1].)

Let Yy be any non-zero ordinal strictly less than B.

From the definition of B, { Xy }1<Y is dilatable. So, there

— ’[ —
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is a family { Py }i<Y of orthogonal projections in
JAC X ©00P1i%00

) such that Xy =
i< y. Let MY " be the set of all such families of orthogonal

projections and let M = u{ M_ | 0 <y < B }. Clearly

Y
M#@. For T = { 1 1 e M and = { q, }

i<yy J Td<y,

( Zi<yeii i<yeii for each

e M,

(1]

(]

we define T < to mean that Yy Y and, for all i < Yy

Py = Q- This partially orders M inductively. So, by

Zorn's lemma, M has a maximal element { Py } Then,

i<g®
by applying the argument of Lemma 5to { XE }E<C+1’ we find

YA( I,

a projection P, in ( & 15;611 ) such that P,

S -
i<gTii

is orthogonal to L and eOOPCeOO = x_. Thus

i<gPy 4 tey Yiaon

is in M. This contradicts maximality. Hence the assumption

that { X4 } was not dilatable must be false. Hence

i<a

eOOAe00 is a-dilatable in A.

By using these lemmas, we have the following:

Theorem 2. Let A be a properly infinite AW¥-algebra.

Let Q be an infinite ordinal such that there exists an Q-

indexed system of matrix units in A, { €y }Ogi,j<9'

Then A 1is Q-complete.

In fact, assume that A 1is not Q-complete. Then there
is a first ordinal B, B £ £, such that A 1is not B-complete.

So, for o < B, A 1is oa-complete. So, by the above lemma,
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®004€00

B~complete. This is a contradiction. So A must be Q-

is B-dilatable in A. Then, by Lemma 3, A is

complete.

Corollary 1([1]). Let A be a properly infinite AW¥-

algebra. Then A 1is monotone o-complete.

Since A has a countable system of matrix units, A 1is

w-complete. So, A 1is monotone o-complete.

Now we are in the position to discuss about normality

in properly infinite AW¥-algebras.

Theorem 3. Let A Dbe a properly infinite AW¥-algebra

whose centre, Z, 1s locally countably decomposable. Then

A 1s normal.
OQutline of the proof. (See [6].)

Let A be an infinite AW¥-factor. Let II be an infinite
set of orthogonal projections in A. Let & be the cardinalit;
of M. Then A is &K -complete. Since A 1is monotone o-
complete, there is nothing further to prove if II is countable.
So let us suppose 11 to be uncountably infinite.

We may decompose II into a family of disjoint set

{ I | A € A}, where each NI, is of the same cardinality as I,

A

— ‘3 _—
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and where #I = #A. Let p, = Il Then { P, | » e A} is

A'
an orthogonal family of non-zero projections. We shall show

that each Py is infinite. Suppose that 1 is finite for some i.
Then piApi is a finite AW¥-factor and so it is o-finite. Since

Hi is uncountable. This is a contradiction. So all p; are

infinite. Since A 1is infinite, there exists a minimal infinite

projection eq in A such that eq X Py for all i € A. So there
is a set INI' of mutually orthogonal family of projections

{ e | A € A} such that e, ~ e, for all A € A. By Zorn's

A 0
lemma, II' can be extended to a maximal collection T of
mutually orthogonal infinite projections, each of which is

equivalent to e Clearly #I' > & . By a general theory of

0
AW¥-algebras, one can find a #I'-homogeneous partition of 1 in A.
Hence we can construct #I'-system of matrix units { eij | ij e T}
in A such that ey v 1 for all i. Since #A < #I'y, A must be
#A-complete, and so I is well-behaved. For the general case,

see [6].
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