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Abstract. This paper concerns a subdass of simple deterministic grammars,
called very simple grammars, and studies the problem of identifying the subclass
in the limit from positive data. The class of very simple languages forms a proper
subclass of simple deterministic languages and is incomparable to the class of
regular languages.

Besides some characterization results for very simple languages, we show that
the dass of very simple grammars is polynomial time identifiable in the limit from
positive data in the sense of Pitt. That is, there is an algorithm that, given the
targeted very simple grammar $G_{*}$ , identifies a very simple grammar $G$ equivalent
to $G_{*}$ in the limit from positive data, satisfying the property that the time for
updating a conjecture is bounded by a polynomial in $m$ , and the total number of
prediction errors made by the algorithm is bounded by the cardinality $k$ of the
terminal alphabet involved in $G_{*_{)}}$, where $m$ is the maximum of $k$ and the lengths
of all positive data provided.

As corollaries, it immediately follows that the class of very simple grammars
is identifiable in polynomial time via equivalence queries only and it is also PAC-
identifiable in polynomial time.

1 Introduction

Since the class of regular languages has been
shown to be efficiently identifiable using de-
terministic finite-state automata(DFAs) from
what is called “minimally adequate teacher“ by
Angluin([3]), a computationaJ approach to learn-
ing theory or, more specifically, to grammatical in-
ference has been again receiving much attention,
and intensive works on this issue have been re-
ported.

From the practical point of view, there are, we
believe, two major requirements in the study of in-
ductive inference algorithm for formal languages.
That is, the identification algorithm must have a
good time efficiency‘ and run only with positive
data($exa$mples).

Angluin [1] has given several conditions for the
class of languages to be identifiable in the limit
from positive data, and presented some examples
of identifiable classes. She has also proposed sub-
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classes of regular languages called k-reversible lan-
guages for each $k\geq 0$ and shown these classes are
identifiable in the limit from positive data with
the polynomial time of updating conjectures ([2]).

Motivated by a question posed by Angluin, how-
ever, one natural question has been quite recently
recognized as significant: In what sense we should
analyse the time complexity of an “in-the-limit”
algorithm ? Because one may define the notion of
polynomial-time identification in the timit in vari-
ous ways. And, it was not until quite recently that
the polynomial-time identifiability in the limit was
reasonably defined by Pitt. He proposed the fol-
lowing definition ([10]), which is one of the neatest
definitions ever proposed for the polynomial-time
identifiability in the limit.

Informally, we say a dass of languages $C$ is iden-
tifiable in the limit in polynomial time using a class
of representations $\mathcal{R}$ iff there is an algorithm $A$

which, given $L$ in $C$ , identifies $r$ in $\mathcal{R}$ representing
$L$ in the limit, with the property that there exist
polynomials $p$ and $q$ such that for any $n$ , for any $L$

for which a correct representation is of size $n$ , the
number of times $A$ makes a wrong conjecture is at
most $p(n)$ , and the time for updating a conjecture
is at most $q(n,N)$ , where $N$ is the sum of $lengtl\iota s$

of data provided. In [15] it is shown that the sub-
class of regular languages called strictly k-testable
languages is identifiable in the limit in polynomial
time from positive data.

This paper deals with a class of grammars caJled
very simple grammars and discusses the identifi-
cation problem of the class of very simple gram-
mars. To author’s knowledge, the notion of a very
simple grammar was originally introduced in [5]
in the study on some type of Thue systems and
the equivalence problem. The dass of very simple
languages forms a proper subclass of simple deter-
ministic languages by $I<orenjak$ and Hopcroft([7]),
and is incomparable to the class of regular lan-
guages.

After providing some of characterization results
for very simple languages, we show that the class
of very simple grammars is identifiable in the limit
in polynomial time in the sense of Pitt. In fact,
the identification of the class is achieved using only
positive data.

The main result in this paper provides the first
instance of language class containing non-regular
languages which is identifiable in the limit in poly-

nomial time in the sense of Pitt.
As corollaries, it immediately follows that the

class of very simple grammars is identifiable in
polynomial time via equivalence queries only and
it is also PAC-identifiable in polynomial time.

2 Definitions

We assume the reader to be faniliar with the rudi-
ments of automata and formal language theory.
(For notions and notations not stated here, see,
e.g., [6].)

Let $\mathcal{R}$ be a class of representations for a class
of languages $C$ to be identified. Given an $r$ in $\mathcal{R}$,
$L(r)$ denotes the language represented by $r$ .

For a given $r\in \mathcal{R}$ , a presentation of the lan-
guage $L(r)$ is any infinite sequence of data such
that every $w\in\Sigma$“ occurs at least once in the
sequence with its sign ( $+$ : when $w\in L(r)$ , or-:
otherwise), and no other data (incorrectly labeled)
appear in the sequence. A positive presentation of
$L(r)$ is any infinite sequence of data such that ev-
ery $w\in L(r)$ occurs at least once in the sequence
and no other data not in $L(r)$ appear in the se-
quence.

Let $r$ be a representation in $\mathcal{R}$ representing a
given $L(i.e., L=L(r))$ . An algorithm $A$ is said
to identify a language $L$ in the limit using $\mathcal{R}$ iff
for any presentation of $L$ , the infinite sequence of
representations $r$; in $\mathcal{R}$ produced by $A$ satisfies
the property that there exists a representation $r’$

in $\mathcal{R}$ such that for $aJ1$ sufficiently large $i$ , the i-th
conjecture (representation) $r_{i}$ is identical to $r’$ and
$L(r’)=L(r)$ . A class of languages $C$ is identifiable
in the limit using $\mathcal{R}$ iff there exists an algorithm
$A$ that, given an $L$ in $C$ , identifies $L$ in the limit
using $\mathcal{R}$ .

Let $A$ be an algorithm for identifying alanguage
class $C$ in the limit using $\mathcal{R}$ and let $L$ be alanguage
in $C$ . Suppose that after examining $i$ data, the al-
gorithm $A$ conjectures some representation $r$; for
$L$ . We say that $A$ makes an implicit error of pre-
diction at step $i$ if $r_{i}$ is not consistent with the
$(i+1)- st$ example.

[Polynomial-time Identification in the
$limit]([10])$

A class $C$ is identifiable in the limit in polyno-
mial time using $\mathcal{R}$ iff there exists an algorithm
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$A$ for identifying $C$ in the limit using $\mathcal{R}$ with the
property that there exist polynomials $p$ and $q$ such
that for any $n$ , for any $L$ for which a correct rep-
resentation is of size $n$ , and for any presentation
of $L$ , the number of implicit errors of prediction
made by $A$ is at most $p(n)$ , and the time used by
$A$ between receiving the i-th example $w_{i}$ and out-
putting the i-th conjectured representation $r_{i}$ is at
most $q(n,m_{1}+\cdots+m_{i})$ , where $m_{j}=lg(w_{j})$ .

Finally, we say that $\mathcal{R}$ is identifiable in the limit
in polynomial time if so is $C$ using $\mathcal{R}$.

3 Very Simple Grammars and
Languages

Let $G=(V_{N}, \Sigma,P, S)$ be a $CFG$ in Greibach nor-
mal form. We say that $G$ is in Greibach normal
form in the strict sense if no right-hand side of
the rule contains the starting nonterminal $S$ . It
is well-known that every $\lambda$-free $CFL$ is generated
by a $CFG$ in Greibach normal form in the strict
sense([6]).

In what follows, all grammars we consider are
assumed to be in Greibach normal form (not nec-
essarily in the strict sense).

For each terminal symbol $a\in\Sigma$ , a rule whose
right-hand side is of the form $a\alpha(where\alpha\in V_{N^{*}})$ is
called a-handle rule. Then, $G$ is called very simple
if for each $a$ in $\Sigma$ , there exists exactly one a-handle
rule in $P$ .

A language $L$ is called very simple iff there exists
a very simple $CFGG$ such that $L=L(G)$ holds.
(Note that since every very simple grammar is $\lambda-$

free, so is every very simple language.)

Example 1 Let $\Sigma=\{a,b,c, d, e,f,g\}$ . Consider
a $CFGG=(\{S, A,B, C,D\}, \Sigma,P, S)$ , where $P$

consists of the following:

$Sarrow aABC$, $Aarrow bAD$

$Aarrow c$, $Barrow e$

$Carrow fC$ , $Carrow g$

$Darrow d$.
The grammar $G$ is very simple and $L(G)=$
$\{ab^{m}c\theta^{n}ef^{n}g|m,n\geq 0\}$ . Note that $L(G)$ is non-
regular. $0$

3.1 Characterization Results

The next result immediately follows from the
definition.

Lemma 1 Let $L$ be a very simple language.
Then, for each string $w$ in $L$, if $lg(w)\geq 2$ , then
the initial symbol of $w$ must differ from the last
symbol of $w$.
Example 2 The followings are not very sim-
ple languages : {abba}, $\{a^{n}|n \geq 1\}$ , and
$\{c^{m}ac^{n}|m,n\geq 0\}.\square$

Thus, the class of very simple languages forms a
proper subclass of simple deterministic languages
by Korenjak and Hopcroft([7]) and is incompara-
ble to the class of regular languages.

Lemma 2 For any very simple grammar $G$, there
exists a renaming $f$ such that $L(G)=f(D_{L}(G))$ ,
where $D\iota(G)$ is the derivation language of $G$ un-
der the left-most interpretation.

Since derivation languages under the left-most
interpretation’ of CFGs of finite index(i.e., of non-
terminal bounded CFGs) are regular([9]), it is
proved that there exists a very simple language
$L$ which is of infinite index(i.e., not nonterminal
bounded).

Lemma 3 For any very simple grammar in the
strict sense $G$ , there exists a homomorphism $h$

such that $L(G)=h^{-1}( D_{2})$ , where $D_{2}$ is a Dyck
language over two letters, and $ is a specific sym-
$bol$ neither in the alphabet for $G$ nor $D_{2}$ .

Lemma 4 For any $\lambda$ -free $CFGG$ in Greibach
normal form in the strict sense, there exist a cod-
ing $f$ and a very simple grammar $G$‘ in the strict
sense such that $L(G)=f(L(G’))$ .

Combining Lemmas 3 with 4, we have:

Theorem 5 For any $\lambda$-free $CFLL$, there exist
a coding $f$, a homomorphism $h$

. such that $L=$
$fh^{-1}( D_{2})$ .

This provides a simple, straightforward, alter-
native proof for this result which has been proved
in [12], [13], [14].

3$t$
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3.2 Closure Properties

We can show that the dass of very simple lan-
guages has none of standard dosure property.

Theorem 6 The class of very simple languages
is closed under none of the following : union,
concatenation, intersection, complement, Kleene
closure$(+,*),$ ($\lambda$ -free) homomorphim, inverse ho-
momorphism, intersection with regular languages,
or reversal.

4 Identifying Very Simple
Grammars

Let $L$ be a very simple language, where $L=L(G)$
for some very simple grammar $G=(V_{N}, \Sigma, P, S)$.

A rule of the form $Aarrow b$ is caJled terminal rule
and a symbol $b$ is called terminating.

Lemma 7 Let $w,$ $w_{1},w_{2}$ be in L. Then, for each
$a,b,c\in\Sigma$ ,

1. if $w=ax$ (for some $x$ in $\Sigma^{*}$), then the a-handle
rule is of the form : $Sarrow a\alpha$ (for some $\alpha\in$

$V_{N^{*}})$ .
2. if $w=xa$ (for some $x$ in $\Sigma^{*}$), then the a-handle

rule is of the form : $X_{a}arrow a$ (for some $X_{a}\in$

$V_{N})$ .
3. if $\beta\Rightarrow^{*}a^{n}$ (for some $\beta\in V_{N^{+}},n\geq 1$), then

$\beta=X_{a}^{n}$ , where $X_{a}$ is the left-hand side of the
a-handle rule of the form : $X_{a}arrow a$).

4. if $w_{1}=x_{1}aby_{1}$ and $w_{2}=x_{2}acy_{2}$ (where
$x_{i},$ $y_{i}\in\Sigma^{*}$) and a symbol $a$ is not terminat-
ing, then the b-handle rule and the c-handle
rule shares a common nonterminal $X$ as their
lefl-hand sides, i.e., they are, respectively, of
the forms: $Xarrow b\alpha$ and $Xarrow c\beta$ (for some
$\alpha,\beta\in V_{N^{*}})$ .

Proof. The proof is given for only 3, since others
are $aU$ obvious. By induction on $n$ . Let $\beta\Rightarrow^{*}a$.
From the property of very simple grammars, this
holds iff $X_{a}arrow a$ is in $P$ and $\beta=X_{a}$ . Suppose
the daim holds for each $k<n$ and $\beta\Rightarrow^{*}a^{n}$ .
$Le\grave{t}\beta=X\beta’$ and $Xarrow a\alpha$ , then $\alpha\beta’\Rightarrow^{*}a^{n-1}$ .

By the induction hypothesis $\alpha\beta’=X_{a}^{n-1}$ , where
$X_{a}arrow a$ is in $P$ . Further, since $Xarrow a\alpha$ and
$X_{a}arrow a$ , we have that $X=X_{a}$ and $\alpha=\lambda$ . Thus,
$\beta=X_{a}^{n}$ is obtained. $0$

4.1 Grammar Schema and Its Interpre-
tations

Given a finite alphabet $\Sigma$ , let $V_{N}=\{X_{a}|a\in\Sigma\}\cup$

$\{S\}$ and let PAR $(=\{x_{a}|a\in\Sigma\})$ be a finite set
of parameters, where $S$ is a specific symbol not
in $(\{X_{a}|a\in\Sigma\}\cup\Sigma\cup PAR)$ , and the value of
each parameter ranges among $aU$ elements &om
$V_{N^{*}}$ . Let $\Gamma=(V_{N}\cup PAR)$ . Then, a construct $Xarrow$

$ax$ , where $X\in V_{N},$ $a\in\Sigma$ and $x\in\Gamma^{*}$ , is called
rule form. We call a quadruple $\mathcal{G}=(V_{N},\Sigma, P, S)$

grammar schema if $P$ is a finite set of rule forms.
An interpretation $I=(f_{n}, f_{p})$ is an ordered

pair of mappings, where $f_{n}$ is a coding defined
on $V_{N}$ , and $f_{p}$ is a homomorphism defined on
PAR such that for $\forall x\in PAR,$ $f_{p}(x)$ is in $\Gamma$“.
Then, given a grammar schema $\mathcal{G}$ , let $I(\mathcal{G})$ be a
quadruple defined by $(f_{n}(V_{N}),\Sigma,I(P),S)$ , where
$I(P)=\{f_{n}(X)arrow af_{p}(x)|Xarrow ax\in P\}$ . An in-
terpretaion $I$ is caJled ground if for $\forall x\in PAR,$

$f_{p}(x)\in V_{N^{*}}$ .

Let $G_{*}$ be the target grammar of inductive
inference. We start with constructing the ini-
tial grammar schema $\mathcal{G}0=(V_{N}, \Sigma,P_{0}, S)$ , where
$P_{0}=\{X_{a}arrow ax_{a}|a\in\Sigma\}$ .

Our final goal here is to find(or identify) a
ground interpretation $I=(f_{n},f_{p})$ such that $I(\mathcal{G}_{0})$

is equivalent to $G_{*}$ , i.e., $L(I(\mathcal{G}_{0}))=L(G_{*})$ .

In what follows, we claim that there effectively
exists a finite set of positive data that ensures the
identifiability of the target grammar. We proceed
with our argument by using an example.

Let’s consider the following very simple
grammar $G_{*}$ $=$ $(V_{N}, \Sigma, P, S)$ as the target
grammar, where $V_{N}$ $=$ $\{S, A,B,C\},\Sigma$ $=$

$\{a,b, c,d,e,f,g, h\},P$ $=$ $\{S$ $arrow$ $aAS,$ $S$ $arrow$

$cB,$ $A$ $arrow$ $b,B$ $arrow$ $dBA,B$ $arrow$ $eA,B$ $arrow$

$fAC,C$ $arrow gC,C$ $arrow$ $h$}, and suppose that
$R=\{abceb, cdebb,ceb,cfbh, cfbgh,cfbggh\}=$

$\ell i$4
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$\{w_{1}, \ldots,w_{6}\}$ is given as a sample set of $L(G_{*})$ . We
shall show that $R$ is a sufficient sample set from
which a ground interpretation $I=(f_{n},f_{p})$ with
the property that $L(I(\mathcal{G}_{0}))=L(G_{*})$ is obtained.

First, for $w_{1}=$ abceb, since there are deriva-
tions: $S\Rightarrow ax_{a}$ and $x_{a}\Rightarrow^{*}$ bceb, $x_{a}$ must
be $X_{b}\gamma_{1}$ for some $\gamma_{1}\in V_{N^{*}}$ . Then, since $x_{a}\Rightarrow$

$b\gamma_{1}\Rightarrow^{*}$ bceb, $\gamma_{1}$ must be $X_{c}\gamma_{2}$ for some $\gamma_{2}\in V_{N^{*}}$ .
Hence, $\gamma_{1}\Rightarrow cx_{c}\gamma_{2}\Rightarrow^{*}ceb$, and $x_{c}\gamma_{2}\Rightarrow*eb$ .
Letting $x_{c}\gamma_{2}=X_{e}\gamma_{3}$ , since $X_{e}\gamma_{3}\Rightarrow ex_{e}\gamma_{3}\Rightarrow$

$eb$ , we have a set of relations

$x_{a}=X_{b}\gamma_{1}$ , $x_{b}\gamma_{1}=X_{c}\gamma_{2}$ (where $x_{b}=\lambda$ )
$x_{c}\gamma_{2}=X_{e}\gamma_{3}$ , $x_{e}\gamma_{3}=X_{b}$ (from 3 of Lemma 7).

We generally say that a parameter $x_{a}$ is empty if
it is $\lambda$ . (Note that $x_{b}$ is empty in our example.)

Applying the derivative computation to these
leads to a constraint equation

$x_{a}$ $=$ $X_{b}(x_{b}\backslash X_{c}(x_{c}\backslash X_{e}(x_{e}\backslash X_{b})))$ .
By computing all empty parameters involved in
the above equation, we have

$x_{e}(X_{e}\backslash x_{c}(X_{b}X_{c}\backslash x_{a}))$ $=$ $X_{b}$ . . . $(c.w_{1})$ .

In the same manner, from other five strings in
$R$ , we have

$x_{e}(X_{e}\backslash x_{d}(X_{d}\backslash x_{c}))=X_{b}^{2}\cdots(c.w_{2})$

$x_{e}(X_{e}\backslash x_{c})=X_{b}\cdots(c.w_{3})$

$X_{b}\backslash x_{f}(X_{f}\backslash x_{c})=X_{h}\cdots(c.w_{4})$

$x_{g}(X_{b}X_{g}\backslash x_{f}(X_{f}\backslash x_{c}))=Xh$ $(c.w_{5})$

$x_{g}(X_{g}\backslash x_{g}(X_{b}X_{g}\backslash x_{f}(X_{f}\backslash x_{c})))=X_{h}\cdots(c.w_{6})$.
Let $Eq(R)=\{(c.w_{1}),(c.w_{2}), \ldots, (c.w_{6})\}$ . Further,
let

$\Sigma_{s}(R)$ $=$ $\{a\in\Sigma|\exists w\in R,\exists x\in\Sigma^{*}(w=ax)\}$

and
$\Sigma_{f}(R)$ $=$ $\{a\in\Sigma|\exists w\in R,\exists x\in\Sigma^{*}(w=xa)\}$ .

In our example, $\Sigma_{\theta}(R)=\{a,c\}$ and $\Sigma_{f}(R)=$

$\{b, h\}$ .
[Identifying Ground Interpretation $I$ $=$

$(f_{\mathfrak{n}}, f_{p})]$

(1) Computation of $f_{n}$ : We assume $\Sigma=$

$\{a,b,c, d,e, f,g\}$ be an ordered set with this al-
phabetical order. An $f_{n}$ -information is the infor-
m\‘ation on identifying nonterminals obtained by

specifying $f_{n}$ . We compute $f_{n}$ from $R$ as follows.
There are three phases of computation of $f_{n}$ .
(1)$- 1$ . First, from 1 of Lemma 7, we may define
$f_{n}$ by

for $\forall a\in\Sigma_{s}(R),$ $f_{n}(X_{a})=S$

(1)$- 2$ . Note since $c$ is in $\Sigma_{s}(R)$ , it is not terminat-
ing. Further, $cd’,$ ce’ and $cf$’ are substrings
in $R$. Hence, $bom4$ of Lemma 7, we may define

$f_{n}(X_{e})$ $=$ $f_{n}(X_{f})=X_{d}$ .
(This is also justified by simply observing the
occurrences $(X_{d}\backslash x_{c}),(X_{e}\backslash x_{c}),$ $(X_{f}\backslash x_{c})$ in $Eq(R_{1})$ ,
because these three occurrences imply that $X_{d},$ $X_{e}$

and $X_{f}$ must be identical as the prefix of $x_{c}.$ )
Further, from $(c.w_{6})$ , we have that $x_{g}\in X_{g}X_{h}^{*}$ .

Hence, $x_{g}\neq\lambda$ , i.e., $g$ is not terminating. Since
$gg$

’ and $gh$ ’ are substrings in $R$, we may define

$f_{n}(X_{h})$ $=$ $X_{g}$ .
(This is also obtained by observing the occurrence
$x_{g}(X_{g}\backslash x_{g})\in\{X_{h}\}$ in $(c.w_{6}).)$

(1)$- 3$ . Further, for other $X(\in\{X_{b},X_{d},X_{g}\})$ not
defined yet, we define $f_{n}(X)=X$ .

(2) $Computationoff_{p}$ : In order to obtain a
concrete very simple grammar $G$ which is at least
consistent with the given data $R$ (i.e., any string of
$R$ is generated by $G$), all we have to do is to solve
a set of equations $Eq(R)$ using “

$f_{n}$-information”,
so that we may obtain a ground interpretation $I$

such that $I(\mathcal{G}_{0})$ is consistent with $R$ . There are
three phases of computing $f_{p}$ .
(2)$- 1$ . From 2 of Lemma 7, we may define $f_{p}$ by

for $\forall a\in\Sigma_{f}(R),$ $f_{p}(x_{a})=\lambda$

That is, define $f_{p}(x_{b})=f_{p}(x_{h})=\lambda$ .
(2)$- 2$ . For each $a\in\Sigma_{f}(R)$ , we say that an equa-
tion $(c.w_{i})$ is of type-a if its right-hand is of the
form $X_{a}^{k}$ . for some positive integer $k_{i}$ . Then, the
set $Eq(R)$ is dassified into $|\Sigma_{f}(R)|$ blocks each of
which consists of only equations of type-a. In our
example,

b-type block $=$ $\{(c.w_{1}),(c.w_{2}),(c.w_{3}\rangle\}$ and
h-type block $=$ { $(c.w_{4})$ ,(C.W5), $(c.w_{6})$ }.

For each $a,b(\neq a)\in\Sigma_{f}(R)$ , assume that $X_{a}\neq X_{b}$ .
Let $x_{c}$ be a parameter which appears in equations

5:
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of both type-a and type-b. We say that $x_{c}$ is dou-
$ble$. Let $x\backslash x_{c}$ and $y\backslash x_{c}$ be its occurrences in equa-
tions of type-a and of type-b, respectively, where
$x,$ $y\in V_{N^{+}}$ . Then, $x_{c}=xX_{a}^{k_{1}}=yX_{b}^{k_{2}}(\exists k_{1},$ $k_{2}\geq$

$0)$ . Since $X_{a}\neq X_{b}$ , it holds that $x_{c}=x=y$ .
Thus, double parameters can be always identified
in this manner unless it is proved that $f_{n}(X_{b})=$

$X_{a}$ . In our example, since a parameter $x_{c}$ is dou-
ble and it is not proved that $f_{n}(X_{h})=X_{b}$ , we
have that $X_{d}\backslash x_{c}=X_{f}\backslash x_{c}=\lambda$ , i.e., $f_{p}(x_{c})=X_{d}$

(with a by-product: $f_{n}(X_{f})=X_{d}$) is obtained.

(2)$- 3$ . Constructing Associated Matrix:
Let $f_{n}(Eq(R))=\{(e.w;))|1\leq\forall i\leq 6\}$ , where
$(e.w;)$ is an equation obtained from $(c.w_{i})$ by re-
placing each nonterminal $X$ with $f_{n}(X)$ and by
removing double parameters already determined
above:

$x_{e}(X_{b}S\backslash x_{a})$ $=$ $X_{b}$ . . . $(e.w_{1})$

$x_{e}(X_{d}\backslash x_{d})$ $=$ $X_{b}^{2}$ . . . $(e.w_{2})$

$x_{e}$ $=$ $X_{b}$ . . . $(e.w_{3})$

$X_{b}\backslash x_{f}$ $=$ $X_{g}$ . . . $(e.w_{4})$

$x_{g}(X_{b}X_{g}\backslash x_{f})$ $=$ $X_{g}$ . . . $(e.w_{S})$

$x_{g}(X_{g}\backslash x_{g}(X_{b}X_{g}\backslash x_{f}))$ $=$ $X_{g}$ . . . $(e.w_{6})$ .
Observing $f_{n}(Eq(R))$ , we note that an identical
parameter $x_{f}(orx_{g})$ appears in two different con-
structs: for example, in $X_{b}\backslash x_{f},X_{b}X_{g}\backslash x_{f}$ . From
the derivational property of very simple gram-
mars, $x_{f}$ must have $X_{b}X_{g}$ as its prefix. (Similarly,
$x_{g}$ has its prefix $X_{g}.$ )

From these observation, let PAR’ $=$

$\{x_{a}, x_{d}, x_{e},x_{f}, x_{g}\}$ be an ordered set of distinct
parameters obtained from PAR$(=\{x_{\alpha}|a\in\Sigma\})$

by removing all double parameters already deter-
mined and empty parameters. Then, let’s consider
a parameter replacement: $(y_{a}, y_{d},y_{e}, y_{f},y_{g})$ $=$

$(X_{b}S\backslash x_{a},X_{d}\backslash x_{d},x_{e},X_{b}X_{g}\backslash x_{f},X_{9}\backslash x_{g})$ ... $(*)$ .
In $f_{n}(Eq(R))$ , for example, since $(e.w_{6})$ is:
$X_{g}y_{g}y_{g}y_{f}=X_{g}$ , it may be taken as a formal linear
relation :

$y_{f}\dotplus 2y_{g}$ $=$ $\lambda$ . . . $(f.w_{6})$ ,

where the operation $\dotplus$ is, in principle, a con-
catenation, but here we take it as “addition” de-
fined by $X_{b}^{s}\dotplus X_{b}^{\ell}=X_{b}^{s+t}=(s+t)X_{b}’$ . Let’s
denote $(f.w_{6})$ by:

$y_{J}+2y_{g}$ $=$ $0$ . . . $(\ell.w_{6})$ .

From $f_{n}(Eq(R))$ we have a set of linear equations:

$y_{a}+y_{e}=1\cdots(\ell.w_{1})$ $y_{f}=0\cdots(\ell.w_{4})$

$y_{d}+y_{\epsilon}=2\cdots(\ell.w_{2})$ $y_{f}+y_{g}=0\cdots(\ell.w_{5})$

$y_{e}=1\cdots(t.w_{3})$ $y_{f}+2y_{g}=0\cdots(\ell.w_{6})$ .
Then, construct a $(t\cross m)$-matrix $M_{R}$ associated
with $R$ as follows:

$(i,j)$-entry of $M_{R}\Leftrightarrow^{def}$

uthe coefficient of j-th parameter
$y_{a_{j}}$ in i-th equation $(\ell.w;)$ ,

where $t=|R|,$ $m=|PAR^{n}|=|\{y_{a}, y_{d},y_{e}, y_{f}, y_{g}\}|$ ,
that is,

$M_{R}=($ $000001$ $000001$ $000111$ $000111$ $200001$ ).
And, we also have a matrix equation:

$M_{R}\mathcal{X}^{T}=C^{T}$ ... (E-1)

where $\mathcal{X}=(y_{a}, y_{d},y_{e}, y_{f}, y_{g})$ is a solution-vector,
$C=(1,2,1,0,0,0)$ is a constant-vector obtained
from the right-hand sides of all $(\ell.w_{i})$ .

Note since $f_{n}(Eq(R))$ is now classified into $s(=$

$|\Sigma_{\int}(R)|)$ disjoint blocks, PAR” is also a disjoint
union of $s$ blocks corresponding to small matrices,
that is, $M_{R}$ is of the form:

$M_{R}=($
$[M_{0}0^{1}0]$

$[M_{0}^{0}0^{2}]$ $000$

.
$[M_{s}^{0}00]$ ),

where $M_{1}$ corresponds to equations of $typearrow b_{i}(b_{i}\in$

$\Sigma_{f}(R))$ .

Thus, in order to obtain a ground interpretation
$I=(f_{n}, f_{p})$ such that $I(\mathcal{G}_{0})$ is consistent with $R$ ,
ffi we have to do is to solve an equation (E-1) in
a usual manner in linear algebra. That is,

( $000001$ $000001$ $000111$ $000111$ $200001|_{0}^{2}0011)\Rightarrow^{*}(000001$ $000001$ $000001$ $000111$ $000201|_{0}^{1}0001)$

6$i$
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$\Rightarrow^{*}$ ( $00001$ $00001$ $00001$ $00001$ $00001|_{0}^{0}011$ ).
Thus, we have a solution :

$\mathcal{X}=(y_{a},y_{d}, y_{e}, y_{f}, y_{g})=(0,1,1,0,0)$ , and
$(x_{a},x_{d}, x_{e}, x_{f},x_{g})=(X_{b}S,X_{d}X_{b},X_{b},X_{b}X_{g},X_{g})$ .

Hence, the solution makes unique interpretation
$I=(f_{n}, f_{p})$ , where

$f_{n}(X_{a})$ $=$ $S$

$f_{p}(x_{a})$ $=$ $X_{b}S$

$f_{n}(X_{c})$ $=$ $S$

$f_{p}(x_{b})$ $=$ $\lambda$

$f_{n}(X_{e})$ $=$ $X_{d}$

$f_{p}(x_{c})$ $=$ $X_{d}$

$f_{n}(X_{f})$ $=$ $X_{d}$

$f_{p}(x_{d})$ $=$ $X_{d}X_{b}$

$f_{n}(X_{h})$ $=$ $X_{g}$

$f_{p}(x_{e})$ $=$ $X_{b}$

$f_{p}(x_{f})$ $=$ $X_{b}X_{g}$

$f_{p}(x_{g})$ $=$ $X_{g}$

$f_{p}(x_{h})$ $=$ $\lambda$ .
The rule set of $I(\mathcal{G}_{0})$ consists of

$Sarrow aX_{b}S$ , $X_{b}arrow b$ , $Sarrow cX_{d}$ ,
$X_{d}arrow dX_{d}X_{b}$ , $X_{d}arrow eX_{b}$ , $X_{d}arrow fX_{b}X_{g}$ ,
$X_{g}arrow gX_{g}$ , $X_{g}arrow h$ .

It is easily seen that $I(\mathcal{G}_{0})$ is equivalent (in fact,
isomorphic) to $G_{*}$ . (Note that a grammar $I(\mathcal{G}_{0})$

we have in the manner described above is not al-
ways isomorphic to, but equivalent to $G_{*}$ , which
will be proved later.)

In some case, we may have indeterminate pau
rameters in the solution of (E-1). A famous fact
in linear algebra tells us:

Lemma 8 (i) The equation (E-l) has a solution
iff the rank of $M_{R}$ is equal to that of $M_{R}C^{T}$ . (ii)
Let $m=t$ in (E-l). Then, $M_{R}$ is non-singular iff
(E-l) has the unique solution.

Thus, if $m=rank(M_{R})$ , then the equation (E-
1) has the unique solution. And, if $m>t$ or $m\neq$

$rank(M_{R})$ , then (E-1) is solved in part. That is, let
$So1(Eq(R))$ be the set of solutions of $Eq(R)$ . Then,
we have that $So1(Eq(R))=P- So1(Eq(R))\cup$
$Uns(Eq(R))$ , where P-So1$(Eq(R))$ is the set of
solutions partly solved, and $Uns(Eq(R))$ is the set
of equations involved in indeterminate parameters
$lef\grave{t}$ unsolved.

Then, by assigning an appropriate value to each
indeterminate parameter in $Uns(Eq(R))$ , it is al-
ways possible to have a complete solution for
$f_{n}(Eq(R))$ , which completes the definition of $f_{p}$ ,
i.e., $f_{p}(x_{a})=u_{a}\beta_{a}$ , $whereu_{a}isastringinV_{N^{*}}$

satisfying $y_{a}=u_{a}\backslash x_{a}$ in $(*)$ , and $\beta_{a}$ is the value
for $y_{a}$ in the solution $\mathcal{X}$ . (Actually it is recog-
nized that $(\ell.w_{6})$ is redundant for computing (E-
1) because $(\ell.w_{6})=2(\ell.w_{5})+(-1)(\ell.w_{4})$ , and that
rank$(M_{R})=rank(M_{R}C^{T})=5$ , while $M_{\hat{R}}$ (where
$\tilde{R}=R-\{w_{6}\})$ is non-singular. That is, $Eq(R)(or$
$Eq(\tilde{R}))$ is completely solved.

Returning to our example, instead of $R$ , let’s
suppose that we are given a sample set $R’=$
$\{w_{1},w_{2}, w_{3}, w_{5}\}$ . Then, we eventually have :
$So1(Eq(R’))=\{x_{a}=X_{b}S,x_{d}=X_{d}X_{b},x_{e}=$

$X_{b}\}\cup\{y_{f}+y_{g}=1\}$ .
For instance, asolution where $y_{f}=0$ and $y_{g}=1$

leads to $”=(f_{n}’, f_{p}’)$ , where

$f_{n}’(X_{a})$ $=$ $S$ $f_{p}’(x_{a})$ $=$ $X_{b}S$

$f_{n}’(X_{c})$ $=$ $S$ $f_{p}’(x_{b})$ $=$ $\lambda$

$f_{n}’(X_{e})$ $=$ $X_{d}$ $f_{p}’(x_{c})$ $=$ $X_{d}$

$f_{n}’(X_{f})$ $=$ $X_{d}$ $f_{p}’(x_{d})$ $=$ $X_{d}X_{b}$

$f_{p}’(x_{e})$ $=$ $X_{b}$

$f_{\rho}’(x_{j})$ $=$ $X_{b}X_{g}$

$f_{p}’(x_{g})$ $=$ $X_{h}$

$f_{p}’(x_{h})$ $=$ $\lambda$ .
which eventually provides a grammar $I’(\mathcal{G}_{0})$ not
equivalent to $G_{*}$ .

Thus, in any case, we have a ground interpreta-
tion $I=(f_{n},f_{p})$ obtained from $Eq(R)$ by solving
equations. We say that $I$ is an instance of $Eq(R)$ .

4.2 Characteristic Samples

Let $G=(V_{N}, \Sigma, P, S)$ be any very simple gram-
mar. A finite subset $R$ of $L(G)$ is called chamc-
teristic sample of $G^{\cdot}ifL(G)$ is the smallest very
simple Ianguage containing $R$.

Given a very simple grammar $G$ with a termi-
nal alphabet $\Sigma$ , let $R$ be a finite subset of $\dot{L}(G)$ .
Then, we say that $Eq(R)$ is linearly dependent
iff so is $\{vec(w)|w\in R\}$ , where $vec(w)$ is a vec-
tor $(c_{1}, \ldots,c_{m})$ , each $c_{j}$ is a coefficient of $y_{j}$ in
the left-hand side of a linear equation $(\ell.w)$ in
$f_{n}(Eq(R))$ . $Eq(R)$ is linearly independent iff it
is not linearly dependent. Further, we say that
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$(c.w)$ is a linear combination of $Eq(R)$ iff the cor-
responding row vector $vec(w)$ is a linear combina.
tion of $Vec(R)=\{vec(w)|w\in R\}$ .

Let
$\mathcal{I}_{R}=$ {$I|I=(f_{n},$ $f_{p})$ is an instance of $Eq(R)$}.
Further, let $I=(f_{\mathfrak{n}}, f_{p})$ and $I’=(f_{n}’,f_{p}’)$ be in

$\mathcal{I}_{R}$ and $\mathcal{I}_{R’}$ , respectively, where $R’\subseteq R\subset L(G)$

and alph$(R)=aJph(R’)=\Sigma$ . Then, $I$ is called a re-
finement of $I’$ if there is a coding $f$ : $V_{N}arrow V_{N}$

such that for $\forall a\in\Sigma,$ $f(f_{\mathfrak{n}}’(X_{a}))=f_{n}(X_{a})$ and
$f_{n}(f_{p}’(x_{a}))=f_{p}(x_{a})$ , where $\mathcal{G}0=(V_{N}, \Sigma,P_{0}, S)$ .
(Note that $I$ is a refinement of $I$‘ implies that
$L(I’(\mathcal{G}_{0}))\subseteq L(I(\mathcal{G}_{0}))$. See, e.g., $I$ and $I’$ discussed
in the previous example.)

Let $G=(V_{N}, \Sigma, P, S)$ be a very simple gram-
mar. For each $a\in\Sigma$ , let $u_{a}$ be the first shortest
string in $\Sigma^{*}$ in the lexicographic order such that
$S\Rightarrow^{*}u_{a}a\alpha_{a}$ for some $\alpha_{a}\in V_{N}^{*}$ in $G$ . Further,
by short $(\alpha_{a})$ we denote the set of all the shortest
strings in $\Sigma^{*}$ derivable from $\alpha_{a}$ .

Let $R_{G}$ be defined by

$R_{G}$ $=$
$\bigcup_{a\in\Sigma}\{u_{a}av_{a}\in L(G)|v_{a}\in short(\alpha_{a})$

,

$u_{a}$ and short $(\alpha_{a})$ are defined above}.
$R_{G}$ is called representative sample of G. (Note
that $u_{a}av_{a}=u_{b}bv_{b}(a\neq b)$ may occur.)

We can show that $R_{G}$ is a sufficient set of
positive data from which a very simple grammar
equivalent to $G$ is identified.

Lemma 9 For all $I$ $\in$ $\mathcal{I}_{R_{G}}$ , it holds that
$L(I(\mathcal{G}_{0}))=L(G)$ .
Lemma 10 Let $R$ be a finite subset of $L(G)$ ,
$whereG=(V_{N}, \Sigma, P, S)$ a very simple grammar.
Then, $R$ is a characteristic sample $ofG$ iff it holds
that for all $I\in \mathcal{I}_{R},$ $L(I(\mathcal{G}_{0}))=L(G)$ .

From Lemma 10, we immediately have:

Lemma 11 Let $R$ be a chamterisitc sample of a
very simple grammar $G$ and let $R’$ be a finite set
such that $R\subset R’\subset L(G)$ . Then, it holds that for
all $I\in \mathcal{I}_{R’},$ $L(I(\mathcal{G}_{0}))=L(G)$ .
Corollary 12 For any very simple grammar $G$ ,
the representative sample $R_{G}$ of $G$ is a chamcter-
$ist^{\backslash }ic$ sample of $G$ .

4.3 Identification Algorithm and Its
Time Complexity

Let $G_{*}$ $=$ $(V_{N}, \Sigma, P, S)$ be the target gram-
mar. We now present an identification algo-
rithm $IA$ which is consistent, responsive and
conservative([l]). In Figure 1, $\mathcal{G}_{0,\Sigma}$ denotes $(\{S\}\cup$

$V_{N,B},$ $\Sigma,P_{\Sigma},$ $S$), where $V_{N,\Sigma}=\{X_{a}|a\in\Sigma\},$ $P_{\Sigma}=$

$\{X_{a}arrow ax_{a}|a\in\Sigma\}$ . We shffi show that $IA$ given
in Figure 1 below eventually identifies in the limit
a grammar $G_{R}$ such that $L(G_{*})=L(G_{R})$ , where
$R$ is the set of positive data provided.

From Lemma 11 and Corollary 12, it follows:

Lemma 13 Let $G_{R_{0}},G_{R_{1}},$ $\ldots,G_{R_{i}},$
$\ldots$ be the se-

quence of conjectured grammars produced by $IA$ ,
where $G_{R_{i}}=I_{1}(\mathcal{G}_{0})$ . Then, (i) for $\forall i\geq 0$ ,
$R_{\eta}\cdot\subseteq L(G_{R}.)$ , and (ii) there exists $r\geq 0$ such
that $for\forall i\geq 0,$ $L(G_{R,})=L(G_{R_{r+i}})=L(G_{*})$ .

Thus, we have the following:

Theorem 14 Given any very simple grammar
$G_{*}$ , the algorithm $IA$ identifies in the limit a very
simple grammar $G_{R}$ such that $L(G_{*})=L(G_{R})$ ,
where $R$ is the set ofpositive data provided.

Since the cardinality of a maximal linearly in-
dependent subset of $R_{G}$. is bounded by $|\Sigma|$ , in the
repeat loop the number of times when an input
string $w_{i}$ is not in $L(G_{R.-1})$ is bounded by $|\Sigma|$ .
That is, the number of implicit errors of predic-
tion is bounded by $|\Sigma|$ .

It takes at most $O(m^{3})$ time to compute $Eq(R:)$ ,
which comes from that it is reduced to the com-
putation of an inverse matrix with m-dimension,
where $m={\rm Max}_{w_{j}\in R},\{|\Sigma|,lg(w_{j})\}$.
Notes. (1) Computing $Eq(R_{i})$ actuaUy requires
time less than $O(m^{3})’$ , becase it is possible to gain
time efficiency greatly by making use of partial
solutions of P-So1$(Eq(R_{i-1}))$ and reducing the di-
mension of matrix $\mathcal{M}_{R_{n}}c_{:}^{T}$ considerably.
(2) The size of $G_{*}$ (denoted by $|G_{*}|$ ) may be de-
fined by $|V_{N}|+|P|$ . Then, since $|V_{N}|\leq|\Sigma|$ and
$|P|=|\Sigma|$ , it holds that $|\Sigma|\leq|G_{*}|\leq 2|\Sigma|$ .

Thus, we have:

Theorem 15 The algorithm $IA$ requires at most
$O(m^{3})$ time for updating a conjecture at each
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step, and the number of implicit errors of pre-
diction is bounded by I $\Sigma|$ , where $\Sigma$ is the ter-
minal alphabet of the target gmmmar $G_{*}$ , and
$m={\rm Max}_{w_{j}\in R_{i}}\{|\Sigma|,lg(w_{j})\},$ $R_{i}$ is the set of data
provided up to step $i$ .

Since the polynomial-time identifiability in the
limit implies the polynomial-time identifiability
via equivalence queries([10])and the latter implies
the polynomial-time PACidentifiability ([4]), we
have :

Corollary 16 The class of very simple gmmma$rs$

is identifiable in polynomial time via only equiva-
lence queries, where only positive counterexamples
are required in the identification process. Further,
it is also $PA$ C-identifiable in polynomial time.

Input: a positive presentation of a very simple
language $L(G_{*})$

Output: a sequence of very simple grammars

Procedure
initialize $R_{0}=\emptyset$ ;
initialize the grammar schema $\mathcal{G}_{0,\emptyset}$ ;
let $G_{R_{0}}=(\{S\}, \emptyset,\emptyset, S)$ ;
let $i=1$ ;
repeat (forever)

read the next positive example $w$; ;
let $R;=R_{i-1}\cup\{w;\}$ ;
let alph$(R_{i})=alph(R_{i-1})\cup\{alph(w;)\}$ ;
if $w;\in L(G_{R_{i-1}})$ , then

let $G_{R}$. $=G_{R_{i-1};}$

output $G_{R_{\tau}}$ ;
else

augment $\mathcal{G}_{0,\Sigma}$ using $\Sigma=alph(R_{i}))$

compute a constraint equatjon
$(c.w;)$ for $w;$ ;

let $Eq(R_{i})=Eq(R_{i-1})\cup\{(c.w;)\}$ ;
compute $So1(Eq(R_{i}))$ by solving

M$R.\mathcal{X}_{i}^{T}=c_{:}^{T}$ ;
make an instance $I_{:}$ of $Eq(R_{i})$

from $So1(Eq(R;))$ ;
output $G_{R},$ $=I_{i}(\mathcal{G}_{0,\Sigma})$ ;

Figure 1. The Identification Algorithm $IA$

5 Conclusions

(1) We have shown that the class of very simple
grammars is identifiable in the limit from positive
data, and presented an algorithm which identifies
any very simple grammar in polynomial time in
the sense of Pitt.

In the identifiability criteria discussed by Pitt,
the dass of regular languages (or even the class of
zero-reversible languages) is not identffiable in the
limit in polynomial time using DFAs([10]). Re-
cently the author shows that the subdass of reg-
ular languages called strictly k-testable languages
is identifiable in the limit in polynomial time from
positive data using DFAs([15]), which is, to au-
thor’s knowledge, the first positive result ever ob-
tained concerning the polynomial time identifia-
bility in the sense of Pitt.

Quite recently, M\"akinen([8]) discusses the prob-
lem of learning Szilard languages of linear gram-
mars and gives a linear-time algorithm for solv-
ing the problem. From the definition, the dass
of Szilard languages of linear grammars is clearly
a proper subdass of the class of very simple lan-
guages, and is also properly included in the class of
zero-reversible languages([2]). Further, the dass
of very simple languages is incomparable to the
dass of zero-reversible languages.(See Figure 2.)
(2) Roughly, one of the recent results by
Shinohara([ll]) shows that the class of $\lambda$-free
grammars having a given fixed number of rules is
identifiable in the limit from positive data, which
implies the identifiability of the class of very sim-
ple grammars with a fixed size of terminal alpha.
bet. It is, however, to be noted that the algorithm
given in this paper allows us to identify any gram-
mar with arbitmry size of the terminal alphabet.
In other words, the algorithm works for the class of
very simple languages over the growing alphabet.
More significantly, the Shinohara’s result implies
only the identifiability in the limit bom positive
data, and it does not tell or even suggest any non-
enumemtive, efficient (polynomial-time” in the
sense of Pitt) algorithm for this class.
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