
65

A Class of Logic Functions
Expressible by Polynomial-Size Binary Decision Diagrams

多項式サイズの二分決定グラフで表現可能な論理関数のクラス
Nagisa ISHIURA and Shuzo YAJIMA

石浦菜岐佐 矢島脩三
Department of Information Science, Faculty of Engineering, Kyoto University

京都大学工学部情報工学教室

Abstract

In this paper we discuss properties of logic functions expressible by BDD’s of feasible
size. We define a class of logic functions expressible by BDD’s whose size (number
of nodes) are bounded by a polynomial of the number of input variables. We derive
some properties of this class through the discussion on the relation between polynomial-
size BDD’s and Turing machines. We also focus on the relation between polynomial-
size BDD’s and combinational circuits and show that polynomial size BDD’s can be
synthesized into $O(\log^{2}n)$ depth combinational circuits.

1 Introduction
A binary decision diagram (BDD) [Bry86] is one of represen,tation forms of logic functions.
It is widely used in application programs for logic design verification, test generation and
logic synthesis, owing to its properties that there exists a unique canonical form for each logic
function and that many practical logic functions are expressible by BDD’s of feasible size.
However, in the worst case the size of the BDD of a logic function is known to be exponential
of the number of input variables. There are few discussions on a problem of what kind of
logic functions are expressible by BDD’s of feasible size [Bry90]. In this paper we focus on this
point so as to clarify the efficiency and limitation of application programs using logic function
manipulation based on BDD’s. We define a class of logic functions expressible by BDD’s whose
size (the number of nodes) is bounded by a polynomial of the number of input variables. We
derive some properties of this class through the discussion on the relation between polynomial-
size BDD’s and Turing machines. We also focus on the relation between polynomial-size BDD’s
and combinational circuits and show an upper bound of the depth of combinational circuits
that realize logic functions expressed by polynomial-size BDD’s. Main results of this paper are
as follows:

(1) Let PolyBDD be a class of logic functions expressible by uniform BDD’s whose size is
bounded by a polynomial of n , where n is the number of the input variables. Let LOGIREG
be a class of logic functions which is computable by an LSIA, where an LSIA is a one-way
off-line Turing machine which has $O(\log n)$ bounded working tape and has an ability to know
n without reading the input tape. We have shown PolyBDD $=LOGIREG$.

(2) From the properties of LSIA’s we derive that symmetric functions, threshold functions
and selector functions etc. are in PolyBDD.

(3) PolyBDD is shown to be included by DLOGSPACE directly from the definition of an
LSIA. Since it is know that DLOGSPA CE is included by NC^{2} (a class of logic functions realized
by uniform combinational circuits of depth $O(\log^{2}n))$, we can conclude that logic functions

1

数理解析研究所講究録
第 754巻 1991年 65-71

66

expressed by polynomial-size BDD’s can be synthesized into $O(\log^{2}n)$ depth combinational\sim
circuits. We also show a concrete procedure of constructing an $O(\log^{2}n)$ depth combinational
circuit from a polynomial size BDD.

2 Family of Binary Decision Diagrams

2.1 Binary Decision Diagram (BDD)
We define a binary decision diagram (BDD) over $\mathcal{B}=\{0,1\}$ as follows.

Def 2.1 A binary decision diagram over B is a 6-tuple $B=(X, N, s, l, e^{0}, e^{1})$, where
$X=\{x_{1}, x_{2}, \cdots, x_{\mathfrak{n}}\}$ is a totally ordered set of variables, where

$x_{1}<x_{2}<\cdots<x_{n}$ holds,
N is a set of nodes,
$s\in N$ is the initial node,
$l:Narrow(X\cup \mathcal{B})$ represents the label of a node,
$e^{0},$ e^{1} : $Narrow N$ represents a set of O-edges and l-edges, respectively, where

$\forall v\in Ns$. t . $l(v)\in X$: $l(e^{0}(v))\in B$ or $l(v)<l(e^{0}(v))$, and
$l(e^{1}(v))\in B$ or $l(v)<l(e^{1}(v))$, and

$\forall v\in N$ S. t . $l(v)\in \mathcal{B}$: $e^{0}(v)=e^{1}(v)=V.$ 口

The set N is divided into two subsets; N_{V} and N_{R} , where $N_{V}=\{v|v\in N, l(v)\in X\}$ and
$N_{R}=\{v|v\in N, l(v)\in B\}$. ($N=N_{V}\cup N_{R}$ and $N\gamma\cap N_{R}=\phi$). A node in N_{V} is called a
variable node and a node in N_{R} is called a value node. N_{R} consists ofjust two nodes; r_{0} and r_{1} ,
where $l(r_{0})=0$ and $l(r_{1})=1$. We call r_{0} and r_{1} the O-node and the l-node, respectively. We
denote the index of a variable x : in X as $\iota(x_{i})$. Namely $\iota(x_{i})=i$. A pair of nodes $(v, e^{0}(v))$ and
\langle $v,$ $e^{1}(v))$ are called the O-edge and l-edge of node v . The size of BDD B , denoted as size(B) ,
is defined as the number of nodes of B . Namely, size$(B)=|N|$, where $|N|$ is the number of
elements in set N .

Let A be a set of assignments for X , where assignment a for X is a vector in $\mathcal{B}^{|X|}$. We
denote the i-th element of a as $a:$, and call it an assignment to variable x_{i} (the i-th variable).
For a given assignment a , we define $T(a)$ which represents the set of nodes reachable from s

under the assignment a .

$v\in T(a)$ iff $v=s$ or $\exists u\in T(a)s$. t . $e^{a_{\iota\langle l\langle\cdot))}}(u)=v$.

The output value of the logic function represented by a BDD is defined using this set of
reachable nodes.

Def 2.2 We define the following f_{B} as the logic function expressed by BDD B :

$f_{B}(a)=1$ iff $r_{1}\in T(a)$. 口

Next, we define a description of a BDD. We assume that each element e in X and N has
an identifier which is denoted as $id(e)$. Let us call 4-tuple $D_{v}=(id(v), id(l(v)),$ $id(e^{0}(v))$,
$id(e^{1}(v))$ a description of node $v\in$. We can describe all the information of a BDD as the set
of descriptions of the nodes of the BDD.

Def. 2.3 We define the D_{B} as the node set description of BDD $B,whereD_{B}=\{D_{v}1^{v}\in N\}$.
口

2

67

2.2 BDD Family and Its Uniformity

In order to discuss the size of BDD’s with respect to the number of input variables, we define
a family of BDD’s.

Def 2.4 BDD family $\{B_{n}\}$ is a sequence of BDD’s $B_{1},$ $B_{2},$ $B_{3},$ \cdots , where 1 $X_{n}|=n$ holds for
each $B_{n}=(X_{n}, N_{n}, s_{n}, l_{\mathfrak{n}}, e^{0_{\mathfrak{n}}}, e_{\mathfrak{n}}^{1})$. \square

Let $\{f_{n}\}$ be a sequence of logic functions where $f_{\mathfrak{n}}$: $B”arrow \mathcal{B}$ (an n-variable logic function).
We can consider that $\{f_{\mathfrak{n}}\}$ expresses a language L over B by the following correspondence:

$b_{1}b_{2}\cdots b_{n}\in L$ iff $f_{n}(b_{1}, b_{2}, \cdots, b_{n})=1$.

Similarly we define a language for a BDD family.

Def 2.5 The language accepted by BDD family $\{B_{n}\}$ is defined as follows and denoted as
$L_{\{B_{\hslash}\}}$.

$b_{1}b_{2}\cdots b_{\mathfrak{n}}\in L_{\{B_{\hslash}\}}$ iff $f_{B_{\hslash}}(b_{1},$ $b_{2},$
$\cdots,$ $b.)=1$. 口

In this paper, we discuss correspondence between BDD families and Turing machines.
For this purpose we define uniformity of a BDD family following after the uniformity of a
combinational circuit family [Ruz81].

Def 2.6 BDD family $\{B_{n}\}$ is uniform if the description of the n-th BDD B_{n} can be generated
from a binary representation of n by an $O(\log size(B.))$ space bounded off-line Turing machine.
口

As a class of languages accepted by a BDD family of feasible size, we define a class of
PolyBDD.

Def 2.7 PolyBDD is a class of languages accepted by a uniform BDD family $\{B_{n}\}$, which
satisfies size$(B.)\leq poly(n)$, where poly(n) is a polynomial of n . \square

3 Relation between Polynomial S ize BDD’s and Log-
Space Automata

3.1 Log-Space Automaton
We will refer a one-way off-line Turing machine with $O(\log n)$ bounded working tape as a log

space automaton (LSA). An input to an LSA is given on its input tape which is read-only. An
LSA can read the symbols on the input tape only once in the given order (one-way). Instead, an
LSA can read and write the working tape. Namely, an LSA can be regarded as an automaton
provided with $O(\log n)$ working tape. We also define an abstract machine referred to as a log

space input-size-look-ahead automata (LSIA). An LSIA is an LSA which has an ability to know
the length of a given input sequence without scanning the input sequence. The length of an
input sequence is given as the initial value on the working tape in binary representation.

Def 3.1 LOGREG and LOGIREG are classes of languages which can be accepted by an LSA
and an LSIA, respectively. \square

3

68

The main result of this paper is that PolyBDD is equivalent to LOGIREG.

Th 1 PolyBDD $=LOGIREG$.

($LOGIREG\subseteq$ PolyBDD):
Since an LSIA has only $O(\log n)$ memory, all the states of an LSIA can be represented by p

nodes where $p\leq poly(n)$. Then using pxn nodes we can construct a state transition diagram
without loop, which is the very n-th BDD. Since transitions are computable by an $O(\log n)$

space bounded Turing machine, the BDD family is uniform.

($PolyBDD\subseteq$ LOGIREG):
Using an $O(\log n)$ working tape, an LSIA can simulate the $O(\log n)$ space bounded Turing

machine to generate a member of a uniform BDD family. In other words an LSIA can compute
the next node of a node for a given assignment. Since the number of nodes in a BDD is bounded
by a polynomial of $n,$ $O(\log n)$ space is enough to reach final node from the initial node s . 口

3.2 Properties of PolyBDD
We can lead properties of the logic functions represented by polynonial size BDD’s directly
from properties of LSIA’s.

Let REG and DLOGSPA CE be classes of languages which can be accepted by a finite
automaton and alog-space Turing machine (an off-line Turing machine with $O(\log n)$ bounded
working tape), respectively. Obviously $REG\subseteq LOGIREG\subseteq$ DLOGSPACE. The difference
between REG and LOGIREG is due to the working tape of an LSIA and the difference between
LOGIREG and DLOGSPA CE is due to the restriction that an LSIA can read the input tape
only once. Logic functions which can be computed by a sequential machine with constant
number of registers, such as parity and carry, are expressible by polynomial size BDD’s. An
LSA has an $O(\log n)$ working tape besides a finite control. Using this working tape, an LSA
can accept more complex languages.

(1) $\{0$“ 1“ $\}$ belongs to PolyBDD.
With the $O(\log n)$ working tape, an LSA can count and compare the number of $0’ s$ and
l’s in a given sequence.

(2) All the symmetric functions belong to PolyBDD. The output of a symmetric function
depends only on the number ofl’s in the inputs. Then it is computable using the $O(\log n)$

working tape.

(3) Threshold functions belong to PolyBDD if the magnitude of each weight is bounded by
a polynomial of n .

(4) Let int (w) be the integer value of binary representation w , weight(a) be the number
of l’s in sequence σ , and $\sigma[k]$ be the k-th alphabet of σ . Then the selector function
$\{w\sigma||w|=\lceil\log|\sigma|\rceil, \sigma[[w|+int(w)+1]=1\}$ belongs to PolyBDD.

The essence of the above properties is that an LSIA can count number up to poly(n) using
the $O(\log n)$ working tape. It can count the position or the number of l’s in a given sequences.
However it can not memorize a whole input sequence itself because that requires working tape
of length $O(n)$.

4

69

NC^{2}

1
DLOGSPACE

Figure 1: Relations among classes. Figure 2: A BDD.

(5) $\{ww|w\in \mathcal{B}^{*}\}$ and $\{ww^{R}|w\in B^{*}\}$ (where w^{R} is a reversed sequence of w) does not
belong to PolyBDD.
In order to accept ww by scanning an input sequence only once, the first half of the
sequence must be memorized, which requires an $O(n)$ working tape.

(6) Let $x_{1}x_{2}\cdots x_{k}oy_{1}y_{2}\cdots y_{k}=x_{1}y_{1}x_{2}y_{2}\cdots x_{k}y_{k}$ where $x:,$ $y:\in B$. Then the shift function
defined as $\{sw|w=(x_{1}x_{2}\cdots x_{k})o(0^{in1(\ell)}x_{1}x_{2}\cdots x_{k-in1(\cdot)}\}$ does not belong to PolyBDD.

Another example is that the selector function in (4) does not belong to PolyBDD if we
define the selector function as $\{\sigma w|\cdots\}$. This is also an example to show that the size of the
BDD representing the same function can vary depending on ordering of input variables.

The property predicts that it may be difficult to express logic functions computed by
sequential circuits even if the logic functions of their combinational part are expressible by
BDD’s of feasible size. If an output of a sequential circuit depends on input sequences of
length $O(n)$ and the number of its registers is larger than $O(\log n)$, there can be cases where
the sequential function does not belong to PolyBDDeven if the combinational function belongs
to PolyBDD.

4 Relation between BDD’s and Combinational Circuits
We also investigated the relation between PolyBDD and other classes related to combinational
circuits. Figure 1 is the summary of relation among the classes. NC^{k} is a class oflogic functions
which can be expressed by a uniform family of combinational circuits of depth $O(\log^{k}n)$ and
size $O(poly(n))$ under fan-in restriction [Coo85]. Since PolyBDD is included by DLOGSPA CE
and DLOGSPA CE is included by NC^{2} , we can conclude that logic functions expressed by poly-
nomial size BDD’s can be synthesized into polynomial size and $O(\log^{2}n)$ depth combinational
circuits. We show a constructive proof.

As is formalized in section 2, the function represented by a BDD is defined as the reachabil-
ity problem on the BDD. We will construct a combinational circuit which solves the reachability
problem. For a given BDD B we define $|N|x|N|$ matrix $A_{B}=[a_{i,j}]$ as follows. Intuitively $a:i$

becomes 1 if node v_{j} is directly reachable from node v: under a given assignment. We call A_{B}

the adjacency matrix of B .
a: : $B”arrow \mathcal{B}$, where

$a_{i\dot{o}}=\overline{x_{k}}$ if $l(v_{i})=x_{k},$ $e^{0}(v;)=v_{j}$,
$a_{ij}=x_{k}$ if $l(v;)=x_{k},$ $e^{1}(v:)=v_{j}$,

5

70

$a:,:=1$ if $l(v:)\in R$,
$a:i=0$ otherwise.

For example, the adjacency matrix of the BDD in Figure 2 is

$A_{B}=[00000x_{0}0^{1}00 \frac{\overline x_{1}}{x_{0},0^{2}0}\frac{00}{x_{1},0^{l}}x_{1}^{0_{\}}x_{0^{2}}]$.

Let us denote the (i,j)-element of $A_{B^{n}}$ (the n-th power of A_{B}) as $a^{\mathfrak{n}}:.j$ and let v. $=s$ and
$v_{r}=r_{1}$. Then $f_{B}\equiv a^{n}.,$’ by definition. We will show how to construct a combinational
circuit of depth $O(\log^{2}n)$ which computes A_{B}^{n} . A combinationaJ circuit which computes A_{B}

can be realized according to the above definition. Multiplication of mxm Boolean matrix
is computable by a combinational circuit of depth $O(\log m)$ and size $O(m^{3})$. By constructing
a tree of multiplication circuits we can compute the n-th power of A_{B} . Since the depth of
the tree is $|\log n\rceil$, the total depth of the circuit is $O(\log n\log m)$. If the size of the BDD is
bounded by a polynomial of n , it comes to $O(\log^{2}n)$.

As for the relation between PolyBDD and NC^{1} we have not yet obtained significant results.
There exists a logic function family which belongs to NC^{1} but not to PolyBDD. Integer mul-
tiplication belongs to NC^{1} but is known to require exponential nodes in BDD representation
[Bry90]. Therefore, there are two possibility; PolyBDD $\subset NC^{1}$, or PolyBDD and NC^{1} are in-
comparable . This problem has a significant importance on the synthesis of multilevel circuits
because polynomial size BDD’s can be synthesized into $O(\log n)$ depth combinational circuits
if PolyBDD C NC^{1} .

5 Conclusion
We have defined a class of logic functions expressible by polynomial-size BDD’s and have
investigated its properties through discussions on relation between log-space automata. We also
discussed the relationship between BDD’s and combinational circuits and showed a concrete
procedure to synthesize $O(\log^{2}n)$ depth combinational circuits form polynomial size BDD’s.
It remains as a future work to clarify the relation between PolyBDD and NC^{1} .

6 Acknowledgments
Authors would like to express their sincere appreciation to Prof. H. Yasuura, Prof. K. Iwama,
Mr. T. Tohdo, Mr. Y. Okabe, Mr. S. Hirose and all the members of Yajima Lab. at Kyoto
University for their discussions and valuable comments.

References
[Bry86] R. E. Bryant: (Graph-Based Algorithms for Boolean Function Manipulation”, IEEE

Transactions on Computers, vol. C-35, no. 8, pp. 677-691, (1986).

[Bry90] R. E. Bryant: “On the Complexity of VLSI Implementations and Graph Representa-
tions of Boolean Functions with Application to Integer Multiplication”, private communi-
cation, (to appear in IEEE tZlnansactions on Computers).

6

71

[Ruz81] Ruzzo: “On uniform circuit complexity”, JCSS 22, pp. 365-383, (1981).

7

