goooboooogn
O 7540 19910 135-144

135

On the Power of Two-Dimensional Synchronized Alternating
Finite Automata*

AAXAZYAKE¥ 70L3EF Y2I5Y a2 (Juraj Hromkovic)

WOXZ2ILEH # L %A (Katsushi Inoue)
E (Akira Ito)
BRAS (Itsuo Takanami)

ABSTRACT It is well known that four-way two-dimensional alternating finite
automata are more powerful than three-way two-dimensional alternating
finite automata, which are more, powerful than two-way two-dimensional al-
ternating finite automata. This paper shows that four-way, three-way, and
two-way two-dimensional "synchronized" alternating finite automata all have
the same power as rectangular array bounded automata.

1. Introduction

Synchronized alternation was introduced in [Hr86] as a generalization of
the alternation concept from [CKS81] enabling a simple, natural form of
communication among parallel processes of alternating devices. Although
synchronized alternation is a very new concept, there are already several
papers [DHKRS89,HKRS90,I1T90,HRS89,HIRST89,5188,5189,5190,Wi89] showing the
fruitfulness of this concept.

This paper continues to investigate synchronized alternating devices,
especially several types of two-dimensional synchronized alternating
finite automata. It is shown in [RS59,Sh59] that "two-way" and
"nondeterminism" do not increase the accepting power for (one-dimensional)
finite automata, and it is shown in {CKS81,LLS78] that "two-way" and
"alternation" also do not increase the accepting power for finite automata.
On the other hand, it is shown in [DHKRS89,HKRS90] that "synchronized
alternation" drastically increases the accepting power for finite automata,
i.e., two-way synchronized alternating finite automata recognize exactly
context-sensitive languages. Further, this result has been improved in
[HIRSTI90] by showing that one-way synchronized alternating finite automata
do the same.

In this paper, we are mainly concerned with two~dimensional finite
automata. The separation results among "determinism", '"nondeterminism", and
"alternation" for two-dimensional finite automata have been proved in
[BH67,ITT83], and the separation results among "four-way", "three-way", and

* This paper was -made -during -the stay of the first author at Yamaguchi
University.
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"two-way" for two-dimensional finite automata have been proven in
[Ro77,11T88,11T89]. This paper shows that four-way, three-way, and two-way
two-dimensional synchronized alternating finite automata all have the same
accepting power as rectangular array bounded automata [IN79]. This result
is a natural extension of the results (in [DHKRS89,HKRS90,HIRST90])
described above.

The next section is devoted to the definitions of two-dimensional
synchronized finite automata and rectangular array bounded automata. Sec-
tion 3 gives our main theorenm.

2. Definitions

Let Z bé a finite set of symbols. A two-dimensional tape over X is a
two-dimensional rectangular array of elements of X . The set of all two-
dimensional tapes over X 1is denoted by X (2), For each x in X (2}, @, (x)
denotes the number of rows of x and Q3 (x) denotes the number of columns of
X.

We refer to [ITT83] for a more formal introduction of a two-dimensional al-
ternating finite automaton (2-AFA). A four-way 2-AFA (FW-2-AFA) M has a
read-only (rectangular) input tape with boundary symbols #. Of course, M
has a finite control and an input head. A position is assigned to each cell
of the read-only input tape, as shown in Fig.l. A step of M consists of
reading one symbol from the input tape, moving the input head in direction
d (de {left,right,up,down,no move}), and entering a new state, in accord-
ance with the next move relation. If the input head falls off the input
tape, then M can make no further move. The state set of M is partitioned
into accepting, rejecting, existential and universal states.

A four-way two-dimensional synchronized alternating finite automaton {FW-
2-SAFA) M is a FW-2-AFA some states of which have a synchronizing element
(synchronizing symbol) from some given finite set. These states and the
configurations (see below) associated with them are called synchronizing

states and synchronizing configurations, respectively. When a process P en-
ters a synchronizing state, it stops and waits until all parallel processes
either enter the states with the same synchronizing element or stop in ac-
cepting states.

A configuration of a FW-2-SAFA M is of the form (x,(q,{(i,j))), where x is
the two-dimensional input tape, q is the state of the finite control, and
{i,j) is the input head position (0<i< Q3 (x)+1, 0<j< Qz(x)+1). [If x is
clear from the context, the configuration (x,{(q,{(i1,j))) is abbreviated by
(q,(1i,3)).1 The initial configuration of M on input x is
Im(x)=(x,{q0,(1,1)), where qo is the initial state of M. A configuration is
called existential, universal, accepting, and rejecting, respectively, if
the corresponding state is existential, universal, accepting, and reject-




137

ing, respectively.

Given a FW-2-SAFA M, we write c Fu c’ and say c’ is'a successor of ¢ if
the configuration ¢’ follows from the configuration ¢ in one step of M ac-
cording to the transition rules. A sequence of configurations of M,
C0,Clysee,cm (m>0), is called a_sequential computation of M if co M c1
FM...Fu cm. If co = In{x) for some x, we call this sequence a computation
path of M on x. Let C be a sequential computation of M and ci,c2,...,cr be
a subsequence of ¢ which consists of all synchronizing configurations of c.
For each j (1<j<r), let Sj be the synchronizing element of the synchroniz-
ing state in cj. Then, the sequence S1,52,...,Sr is called the synchroniz-
ing sequence of C.

A computation tree of M is a (possibly infinite) labelled tree with the
following properties:

(1) Each node v of the tree is labeled with a configuration 2 (v).

(2) If v is an internal node (a non-leaf) of the tree, @ (v) is universal
and {c]| Q%(v) w c}={ci,...,¢k}, then v has exactly k children vi,...,vk
such that Q (vi)=ci (1<i<ck).

(3) If v is an internal node of the tree and Q(v) is existential, then v
has exactly one child u such that @ (v) +u 9 (u).

{4) For any two synchronizing sequences S=S14...,8 and T=T1,...,Tr cor-
responding to two paths of the tree beginning at the root; it must be
satisfied that Si=Ti for each i€ {1,2,...,min{p,r}}.

A computation tree of M on input x is a computation tree of M whose root
is labeled with IM(x). An accepting computation tree of M on x is a com-
putation tree of M on x whose leaves are all labeled with accepting con-
figurations. We say that M accepts x if there is an accepting computation
tree of M on x. Let T(M)={x]| M accepts x}.

A three-way two-dimensional synchronized alternating finite automaton (TR-
2-SAFA) is a FW-2-SAFA whose input head cannot move up, and a_two-way two-
dimensional synchronized alternating finite automaton (TW-2-SAFA) is a FW-
2-SAFA whose input head can move neither left nor up.

A rectangular array bounded automaton (RABA) is an extension of a linear
bounded automaton [HU69] to two dimensions. That is, an RABA M has a finite
control, a read-write two~dimensional tape with boundary symbols #, and a
tape head (see Fig.2). A position is assigned to each cell of the tape, as
shown in Fig.2. Initially, the tape of M includes its input x, and M starts
in its initial state with its tape head on the upper-left corner of x. A
step of M consists of reading a symbol on the tape cell under the tape
head, writing a new symbol on the tape cell, moving the tape head in
specified direction (one of left, right, up, down, and no move),, and enter-
ing a new state, in accordance with the next-move function. M accepts the
input x if it eventually enters an accepting state. The set of all two-
dimensional tapes accepted by M is denoted by T(M). In general, M is non-
deterministic... (See [IN79] for the formal definition of RABA. We note that
M cannot rewrite boundary symbols # by another symbols, and the tape head
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of M cannot move out of the boundary symbols #.)

For each X€ {FW-2-SAFA,TR~2-SAFA,TW-2-SAFA,RABA}, let £ [X] denote the
class of sets accepted by X’s. Thus, for example, 2 [FW-2-SAFA]l={T| T=T(M)
for some FW-2-SAFA M}.

3. Results

It is shown in {IIT88,1IT89] that four-way two-dimensional alternating
finite automata are more powerful than three-way two-dimensional alternat-
ing finite automata, which are more powerful than two-way two-dimensional
alternating finite automata. In this section, we show that the drastic two-
way restriction on the movement of the head of the two-dimensional
synchronized alternating finite automaton does not decrease the accepting
power. In fact, we show that FW-2-SAFA’s, TR-2-SAFA’s, and TW-2-SAFA’s all
have the same accepting power as RABA’s.

We first give several notions necessary for our proof. For each
synchronized alternating device M, a computation tree of M is defined as in
the previous section.

Definition 3.1. Let t be a computation tree of a synchronized alternating
device. The synchronization depth of a node v of t is the number of

synchronizing configurations on the path from the root to v (excluding the
configuration which is the label of v). A meaningful cut of t is a set ZI of
nodes in t having the same synchronizing depth d such that every infinite
path from the root and every path from the root to a leaf node with
synchronization depth greater than d contain exactly one node from Z. A
synchronization cut of a computation tree t is a meaningful cut containing
nodes labelled by synchronizing configurations only.

Before starting to prove our result, we present computing techniques in
order to explain our proof in a structured, readable form. For brevity of
description, we describe the computing techniques for one-dimensional
synchronized alternating devices. The techniques can easily be extended for
two-dimensional synchronized alternating devices.

Despite the fact that the definition of synchronization is uniform, i.e.,
all parallel processes must take part, we can achieve that in fact we
synchronize only specific processes with the rest in effect idling. The
idea of "idling techniques" is based on adding for each state s of a
synchronized alternating machine a special state s’ called idling counter-
part of s.

Let us first introduce the simpler version of "idling", so called
"deterministic idling". This version of idling is called deterministic be-
cause each process decides deterministically whether it will be active or
idling in the synchronizing period. Suppose that we have three processes A,
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B, and C (one may consider a group of processors instead of B or C) and we
want A and B to synchronize by some sequence of synchronizing states. Let
us assume that both A and B know that they want to synchronize each other,
and the process C knows that it has to be idling because the other
processes want to synchronize. So, all the processes A, B, and C deter-
ministically produce a special synchronizing symbol Sp (which denotes the
beginning of the synchronizing period), and after that A and B are engaged
in the synchronization, and C deterministically enters the idling counter-
part of its current state. In this idling state, C keeps on guessing the
sequence of synchronizing symbols used by A and B (entering synchronizing
states with the given idling state and corresponding synchronizing
symbols). When the synchronizing period of A and B is over, A and B deter-
ministically produce a special synchronizing symbol Sk (which denotes the
end of the synchronization period). C nondeterministically guesses the
synchronizing symbol Sg, leaves its idling state, and enters its "active"
counterpart.

Now, let us introduce a little more complicated idling technique. We as-
sume that the process A wants to communicate by synchronization with all
such processes from the set of all working parallel processes Bi,...,Bk
that have their input heads at the same position of the input tape as A
has, and all processes Bi,...Bk know it and are prepared to cooperate with
A. A starts deterministically by producing a special synchronizing symbol
Ss. Each one of the processes Bi,...,Bx deterministically produces Sp, and
nondeterministically decides either to remain active or to enter an idling
counterpart of its state. Let the processes Ci,...,Cmn€ {B1,...,Bxk} remain
active (i.e., they guess that they have their input heads at the same posi-
tion as A has) and the processes Diy...,Dv€ {Bi,...,Bk} decide to be idling
{(i.e., they guess that they have their input heads at another positions as
A has). Now, we can assume that all processes Di,...,Dv will be idling un-
til a special synchronizing symbol Si1 is produced, and the processes
A,C1,...,Cmn can start to check whether they have the input heads at the
same position. Each X€ {A,Ci,...,Co} universally splits itself into X and
X’, and X enters the idling counterpart of its state remaining there until
the synchronizing symbol Si is produced. Each X’ starts to move its input
head to the right, and produces the synchronizing symbol Sc in each step.
¥hen X’ reaches the right endmarker $, it produces the synchronizing symbol
Si1 and stops in an accepting state. Since each X' produces so many
synchronizing symbols Sc¢ as the distance of the head of X to the right
endmarker $, the computation can continue only if the heads of all
processes A;Ci,...,Ca coincide.

After the synchronizing cut labelled by the synchronizing symbol Si, the
computation starts to check whether the head of A does not coincide with
any head of processes Di,...,Dv. Now, the processes Ci,...,Cm start again
to be idling, and each Y€ {A,D1,...,Dv} universally splits itself into Y
and Y. Each Y deterministically enters its idling counterpart. After that,
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A moving its input head to the right produces so many synchronizing symbols
Sc as the distance, say d, of its head to the right endmarker $, and A
stops in an accepting state after producing a special synchronizing symbol
-82. For each i€ {1,...,v}, Di existentially decide if it produces several

(at least one) synchronizing symbols Sc without a head movement or it moves
its head some (at least one) cells to the right without producing
synchronizing symbols. Afterwards Di starts to work deterministically by
moving its input head to the right and by producing the synchronizing sym-
bol Sc in each step. When Di reaches the right endmarker, it produces the
synchronizing symbol S2 and stops in an accepting state.

Unlike A each Di produces the greater or less number of the synchronizing
symbols Sc¢ (before Sz is produced) than the distance of its head to the
right endmarker. Obviously, if there is such Di (Di), for i€ {1,...,v},
that the head of Di coincides with the head of A, then this synchronization
cannot be successful. On the other hand, if the distance of the head of Di
to the right endmarker is d+r (d-r) for some r>1, then Di nondeterministi-
cally moves its head r cells to the right (or produces r symbols Sc,
resp.), before it becomes deterministic. In such case Di produces exactly d
synchronizing symbols Sc, and the checking procedure is successful.

After the synchronizing cut labelled by S2, we have only the original
processes A,Ci;...;Cn,D1,...,Dv, and we are already in the same situation
as in deterministic idling. Now, the processes Di,...,Dv will be idling and
the processes A,Ci,...,Cm will communicate with each other by synchroniza-
tion. When the synchronization period of A,Ci,...,Cm is over, then the spe-
cial synchronizing symbol Sg (end of synchronization) is produced, all
processes A,C1,...,Cm,D1,...,Dv are active again and can continue in the
computation.

Note that the idling technique works also for devices with one-way input
tape because we have used only movements to the right in the checking pro-
cedures. We turn your attention to the fact that the idling technique can
be used also for the following situations:

The process A wants to communicate by synchronization with

1. all processes which are in the same state

2. all processes which have the same contents on the working tape {or on

another type of memory): »

3. all processes reading the same symbol on the input (working) tape

4, all processes which have the same positiorn of the head on the working

tape (the same length of the working tape, pushdown, counter, etc.).

We are now ready to prove our result.
Theorem 3.1. E{TW-2-SAFA]=2£ [TR-2-SAFA}=2 [FW-2-SAFA]=£ [RABA].

Proof. The inclusions <& [TW-2-SAFA]JES £ [TR-2-SAFA]l< £ [FW-2-SAFA] are
trivial. In order to prove our theorem, we shall show that & [FW-2-SAFA]S
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L [RABA] and 2 [RABA]< .2 [TW-2-SAFA].

Let us first show that £[FW-2-SAFAJ< 2[RABA]. To do 36, we shall use the
simulation technique from [DHKRS’89]. Let A be a FW-2-SAFA. It is shown in
[DHKRS’89] that each synchronized alternating device B can be simulated by
any nondeterministic device which is able to store the set of all distinct
configurations of any meaningful cut of B, and to simulate one step from
one configuration to its successor. Thus, we first show that an RABA M is
able to store any subset S of the set of ‘all configurations of A. To store
a configuration (q,{(i,j)) of A, M writes the symbol {q} on the (i,j)-cell
of its tape. That is, each cell of the tape of M will contain a symbol rep-
resenting a subset (possibly empty) of the finite set of all states of A.
If a cell (i,j) contains a set {p1,...,pk}, it means that the configura-
tions (p1,(isj))ye++, {(Px,(1i,J3)) are in the given subset S (meaningful cut)
of the set of all configurations of A. Using this representation of mean-
ingful cuts of the computations of A, one can easily see that M is able to
change (in its representation) any configuration of A by its successor in
the computation of A. Thus, we have £ [FW-2-SAFA]E £ [RABA]. ,

Now, let us show that £ [RABA]< £ [TW-2-SAFA]. Let A be an RABA. We shall
construct a TW-2-SAFA B which simulates A. Given an input tape w with@
1{w)=m and Q2(w)=n, B uses one parallel process-Bi,j for each tape position
(i,j) (i€ {0,1,...,m+1} and je€ {0,1,...,n+1}). Bi,j keeps its input head
stationary on the (i,j)-cell of the input tape through the whole simula-
tion, and Bi,j stores the current symbol bi,j on the (i,j)-cell of the tape
of RABA A in its finite control. [It will be obvious that any contents of
the tape of A can be stored by B in this wayv.] Furthermore, B uses one
parallel process H positioned at the current head position of A and storing
the current internal state of A. Another special parallel process P is
positioned at the upper-left corner of the input w through the whole
simulation, and we use it to simulate the movement of the head of A to the
left and up. During the simulation several another auxiliary processes will
be used in order to check the coincidence of head positions of H and some
Bi,j. Clearly, the parallel processes (finite automata) H and Bi,;j’s unam-
biguously represent a configuration of A. So, we can start to describe the
computation of B that simulates one step of A from one configuration to its
successor. Note that the initial configuration of A on an input tape can
be obtained by a gradual splitting of B into Bi,j’s with each Bi,; adjusted
exactly at the (i,j)-cell of the input.

1. Let all the processes P, H, and Bi,j’s be synchronized with a special
synchronizing symbol Si (S1 denotes the beginning of the simulation of one
step of A). After that, P starts to be idling.

2. Suppose that the head of H is positioned at an (r,s)-cell for re
{0,1,...,m+1} and s€ {0,1,...,n+1}. All Bi,j’s except Br,s are supposed to
enter their idling states and to remain idling until a special synchroniz-
ing symbol Si1’ is produced (Si1’ denotes the end of the simulation of one
step of A). Br,s nondeterministically guesses the current state q of A, H
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nondeterministically guesses br,s (the symbol scanned by Br,s on the (r,s)-
cell), and they confirm the guesses by synchronizing themselves by the
synchronizing symbol (q,br,s).

3. Br,s and H check the coincidence of their head positions by the idling
technique described above. [If another parallel process Bu,v (u#r or v#s)
decided to be active in step 2, then Bu,v is also required to check the
coincidence of its head position with the head position of H. Clearly, the
head positions do not coincide, and the computation cannot be accepting in
this case.] Let the end of the checking of the head coincidence be marked
by a special synchronizing symbol S2. After that, only H and Br,s are ac-
tive.

4, Now, both H and Br,s know the current state of A and the symbol read by
A. Since A is nondeterministic, H and Br,s nondeterministically guess the
same action (p,b,Z) (where p‘is a new state, b is a new symbol on the
(r,s)-cell, and 7€ {left,right,up,down,no move} describes the next movement
of the head of A), and check this common guessing by producing {[p,b,Z] as a
synchronizing symbol. After that, P starts to be active, P and H remember
the new state p, and Br,s stores the symbol b instead of br,s in its finite
control. '

5, If Z€ {right,down,no move}, then H simulates the movement of the head
of A and the simulation continues in the following step 6. If Z€ {left,up}
(i.e., the head moves to the left or up), then Br,s starts to be idling,
and P splits itself into two copies P and P’. Then P starts to be idling
and P’ starts to move its head to the right and down until P’ nondeter-
ministically guesses that its head is one cell left from the head of H (if
Z=left) or that its head is one cell up from the head of H {if Z=up). Using
the idling technique, the correctness of the guess of P’ is checked, and H
finishes its role in an accepting state. Now, P’ starts to play the role of
H in the next simulation step.

6. All processes P, H (P’), Bi,j's produce the synchronizing symbol Si’
(which denotes the end of the simulation of one step of A), and all these
(m+2)(n+2)+2 processes again become active in order to simulate the next
step of A.

If the state p (see step 4) is an accepting state of A, then the processes
H and Br,s produce a special synchronizing symbol S (which denotes the end
of the computation). After that, all parallel processes finish their works
in an accepting state.

Obviously, A accepts an input w iff B does it. This completes the proof of
"o£ [RABAlS £ [TW-2-SAFA]". Q.E.D.
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Fig.1. Two-dimensional alternating finite automaton



