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A problem on maximal clones in universal algebra leads to the natural concept of orthogo-
nal orders and their characterization. Two (partial) orders on the same set P are orthogonal if
they share only trivial endomorphisms i.e. if the identity selfmap of P is the sole non-constant
selfmap preserving (i.e. compatible with) both orders. We start with a neat and easy char-
acterization of orthogonal pairs of chains (i.e. linear or total orders) and then proceed to
the study of the number (k) of chains on {0,1,...,k — 1} orthogonal to the natural chain
0<1l...<k—1. We obtain a recurrence formula for ¢(k) and prove that the ratio g¢(k)/k!
(of such chains among all chains) goes to e~? = 0.1353... as k — 0o. Results are formulated
in terms of permutations.

1. Introduction

1.1.

Let k be an integer, £ > 2 and k := {0,1,...,k — 1}. For a positive integer n an
n-ary k-valued logic function is a map f : k™ — k assigning a value from k to every
n-tuple (a1,...,a,) over k . For example, for i = 1,...,n and a € k the i-th projection
(or trivial function) e? and the constant c* are defined by setting el(ai,...,a.) = a;
and c? (aj,...,a,) := a for all a;,...,a, € k. Denote P,S") the set of all n-ary k-valued
logic functions and put P := U;‘,‘_;IP,S"). A composition closed subset of P containing all
projections is a clone on k . Clones may be seen as multiple-valued analogs of transfor-
mation monoids (whereby the projections replace the neutral element) and they are basic
for universal algebra, the propositional calculus of k-valued logics (or k-valued switching
functions), theoretical computer science and automata theory. The set L of clones on k
, ordered by inclusion, is an (algebraic) lattice. The dual atom (or co-atoms, i.e. clones
covered by the clone Py), called mazimal (or precomplete) clones, are known. In the
difficult problem of basis classification (known only for k = 2 [Jab52] and k = 3 [Miy71]
and some other clones, cf. [MSLR87]) a subproblem is to find all sets of maximal clones
intersecting in a proper clone and maximal with respect to this property (i.e. if we add
any maximal clone to the set, the intersection will be the least clone Ji of all projections).
We address this problem in a very special case.
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1.2.

Let < be a (partial) order on k (i.e. a reflexive, antisymmetric and transitive bi-
nary relation on k ). The order is bounded if it has a least element o and a greatest
element e (ie. 0 < z < e holds for all z € k). A function f € P,E") is <-isotone
(monotone, order preserving or order-compatible) if f(ay,...,an) < f(by,...,b,) when-
ever a; < by,...,a, < b,. Denote Pol < the set of all <-isotone f € P;. It is easy to
see that Pol < is a clone. Martiniuk [Mar60] showed that Pol < is a maximal clone if
and only if < is bounded. Let < and <’ be two orders on k . Denote T' the set of all
projections and constants on k . It is easy to see that T is a clone and that Pol < N
Pol<'DT.

The discussion of Subsection 1.1 leads to the following problem: when is Pol <
N Pol <'= T ? This problem actually reduces to the following simpler problem (cf
[DMRSS90]). A unary <-isotone operation is an endomorphism of < and End < :=

P,fl) N Pol <. The orders < and <’ are orthogonal if
End <0 End <'=TW := {1 a € k} U {e}},

i.e. if the identity selfmap is the only non-constant joint endomorphism of both < and
<'. Clearly End < = End > and therefore < and <’ are orthogonal exactly if > and
<' are orthogonal. In other words, < and <’ are orthogonal if and only if {<,<'} is a
semirigid relational system [LaPo84]. In [DMRSS90] we found a pair of orthogonal orders
of height 1 for all £ > 5 (with the exception of k = 7 but this can be fixed by another
construction).

If we ask the question for bounded orders, chains (linear or total orders) are the simplest
bounded orders to investigate. The above result easily yields the existence of 4 chains
<1,...,<¢ on k such that N, End <;= T(®). A computer program found all pairs of
chains orthogonal to 0 < 1 < ... < k—1for k¥ < 7 (cf. Tables 1-3) and this lead
directly to a very simple characterization of orthogonal chains in Lemma 11 below. Now
it was natural to ask about the number (k) of chains orthogonal to the natural chain
0<1<...<k-—1 Ourresults for this enumeration problem, obtained in May-July
1990, are presented below. The fourth author presented the results of [DMRSS90] and
work in progress at the CMS Summer Meeting (Halifax, N.S., Canada, June 1-3, 1990)
and this lead to M. Haiman’s independent results [Hai90] mentioned at the conclusion of
this paper.

2. The number ¢(k)

2.1. Permutations and chains
We prefer to work with permutations rather than chains.

Definition 1. A permutation o (i.e. a injective selfmap) of k induces the following chain
(linear order relation) R(o) on k

c0)co(l)C...Co(k-1).

For example, the identity e induces the natural order R(e;):

0<l<...<k-1.

Example 2. We represent a permutation o by the k-tuple (¢(0)a(1)...o(k —1)). For
example, (021) represents the permutation (g;'f), and therefore R(021) stands for the
order0C2C 1.
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Definition 8. Permutations o and 7 are orthogonal if the chains R(c) and R(r) are
orthogonal, i.e. if

End(R(o)) N End(R(r)) = TV,

A permutation can be regarded as a “renaming” of elements of k. From this it follows
that permutations o and 7 are orthogonal iff o7~! and e are orthogonal. Thus the set of
permutations orthogonal to an arbitrary permutation = can be obtained if one knows the
set Q(k) of permutations orthogonal to the identity permutation e;. Put

R(E) := S, \ Q(k), (k) := |Q()] and r(k) := | R(¥)|
where Si, denotes the symmetric group of all permutations of k . We have ¢(k)+r(k) = k!.
Definition 4. A segment E of a permutation o is a set of consecutive elements in o:
{e(3),0(i +1),...,0(G+1-1)}.
and F is nontrivial if 1 <1 < k.

Example 5. The nontrivial segments of the permutation e, = (0123) are {{0, 1}, {0, 1, 2},
{1,2},{1,2,3},{2,3}}. The nontrivial segments of the permutation o := (2031) are

{{o0,2}, {0,2,3}, {0,3}, {0,1,3}, {1,3}}.

Lemma 8. Two permutation o and T of k are orthogonal if and only if they share no
nontrivial segment.

Proof. («<=). Let o and 7 be not orthogonal. Then a non-constant selfmap & of k different
from e is both R(o)-isotone and R(r)-isotone. Since R(c) is a chain, clearly A is not a
permutation and so 1 < |h™!(a)| < k for some a € k. It is easy to see that A~'(a) is a
segment of both o and 7.

(=). Let E be a common nontrivial segment of o and 7, and a be an arbitrary element
of E. Define a function k as follows:

h(z)::{ z ff:ng,
a ifz € E.

It is easy to see that k is nontrivial and both R(o)-isotone and R(r)-isotone. Hence the
permutations o and 7 are not orthogonal. O

Example 7. It is easy to check that ¢(2) = ¢(3) = 0. The permutations e and ¢ in
Example 5 share no nontrivial segments. The permutation o and its reverse o/ = (1302)
are the only permutations orthogonal to the permutation e and so g(4) = 2. For example,
the cyclic permutation 7 := (1230) shares nontrivial segments {1,2}, {1,2,3} and {2,3}
with e;.

2.2. A recursive formula for g(k)

Definition 8. A natural segmentation is a nontrivial partition 7 of k into intervals. A
permutation o is compatible with = if each interval of 7 is a segment of o.

Denote R(k,s) the set of all permutations of k compatible with some natural segmen-
tation having exactly s segments. Further put R*(k,2) := R(k,2) and

R*(k,s) := R(k,s) \U:;;R*(,‘% r)

for all s > 3.



Lemma 9. ‘
(1) R(k)=UiZiR(k,s) = UiZ3 R*(k, s),

(2) R*(k,s)NR*(k,s')=¢ ifand only if s# s

Note that o € R(k) belongs to R*(k,s) if and only if s is the least size of a natural
segmentation 7 such that o is compatible with .

Definition 10. For a natural segmentation m of k with at least s intervals denote by

R*(k, s;w) the set of all permutations in R*(k, s) compatible with = and put r*(k, s; 7) :=
|R*(k, s; 7)].

Example 11. Consider the segmentation m := {{01},{23}}. Then
R*(4,2;7) = {(0123),(0132), (1023), (1032), (2301), (2310), (3201), (3210)}.
For an order < on k we say that E C k precedes E' C kin <ifa<bforalla€ F
andbe E'.

Lemma 12. Let E and E' be segments of a permutation o.
(1) If E and E' are not disjoint then their intersection EN E' is also a segment of o.
2) If E and E' are disjoint then either E precedes E' or E' precedes E in R(o).
p p

Proof. Obvious., O

Definition 13, Let = := {E;...,E,_1} be a natural segmentation of k with E; =
[ai,aig1 —1) (:=0,...,s—1) and 0 = ap < a; < ... < @, = k. Let o be a permutation
compatible with = and let Ej,,..., E;,_, be the blocks of = as they appear in o (from left
to right). We denote the permutation (io...1,-1) of 8 by 6™ and call it the intersegment
permutation induced by o and . '

2.2. 1 Evaluation of R(k,2).

Definition 14, For0 < j < k denote m; = (0...j—1|5... k—1) the natural segmentation
{{0,...,5 -1} {s,..., k—1}}.

Lemma 15. ;
(1) |R*(k,2;7;)| =2 §i(k — §)! forall0<j<k-1.

(2) |R*(k,2;m;) N R*(k,2;m;,) 0 ... N R*(k, 2;m;_,)|
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=2 5lGe =)+ oo (B —jie1)!  forall0 < jy <ja...< jeor <k—1.

Proof. (1) A permutation o compatible with 7; is determined by 1) the intersegment per-
mutation 0™ € S3, 2) a permutation of {0,...,7—1} and 3) a permutation of {j,...,k—1}.

(2) Let 0 € R*(k,2;7;,) N R*(k,2;7;,)...N R*(k,2;7;,_,). By Lemma 12 the permu-
tation o is compatible with the natural segmentation

7T={0,1,...,j1 —1},...,{j¢_1,...,k—1}.

Put ¢ := 0™(0). We have that ¢ € {0,t — 1} because, were 0 < i < t — 1 then
{71,...,k — 1} would not be a segment of o. First consider the case i = 0. Using
o € R(k,2,7;,) for s = 1,...,t — 1, an easy induction shows that 6™ = 01..-(¢ — 1).
Similarly, if { =t — 1 we get 0™ = (¢t — 1)(t — 2).--0. The formula follows in the'same
way as in (1). O

Example 186.

R*(5,2;m)NR*(5,2; m5) = {(01234), (01243), (10234), (10243), (34201), (34210), (43201), (43210)}.
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Lemma 17. r*(k,2) = 23F_,(=1)* S, 4nattn,zk D102l 001l
(where the second sum is over positive integers ny,...,n,).

Proof. * We apply Lemma 15 and the “principle of inclusion and exclusion (the sieve
formula)” to the union of R*(k,2;7)’s.

k-1 .
|R*(k,2)| = 2_(-1)* X Rk 2m) N 0 RY(E, 25

=1 0<j1 <<t Sk=1
k=1 :

=3y (-1)"*2 Y AR CESAE
t=1 0<j1<j2...<je<k-1

By putting s :=t + 1, ny := j;, ng := J2 — j1, ...and n, := k — j; we have the desired
formula. O

Lemma 18. Let 7 and ' be distinct natural segmentations with s and s’ segments where
3 < s> . If a permutation o is compatible with both = and n' then:

(1) The induced intersegment permutation o™ (on 8) is not in Q(s).

(2) The permutation o is not in R*(k,s;x), i.e. it is contained in R(k,s") for some
s" < s. '

Proof. 1) Since s > s’ and 7 # «’, there is an segment E' of =’ not contained in any
segment of w. Let 7 = {Ey,...E,_;} where the segments are listed in their natural
order. Put L:= {{ € s: E'NE; # ¢} and ¢ = minL, j = maxL. Then i < j and
E'QE;UE,'.HU...UEJ'.

a) First consider the case's = 0 and j = s — 1. Since 7' is a proper partition, at least
one of the sets Ey \ E' and E,_; \ E’ is non-empty, say Eo \ E' # ¢. However, then Ej is
an initial or terminal segment of o and so {1,...,s — 1} a segment of 0™ and o™ & Q(s)
due to s > 3.

b) Thus let ¢ # 0 or j # s — 1. The permutation o is compatible with the nontrivial
natural segmentation Ey,...,E;_{,E;U...UE; E;y,...,E,_,. Thus the set {3,...,7}
is a nontrivial segment of the permutation ¢”, and hence o™ is not in Q(s) proving 1).
Moreover, in both cases a) and b) the assertion (2) is easily verified. D

Corollary 19. Let r and n' be distinct natural segmentations of k with s segments where
823,
(1) Let o € R(k,s) be compatible with m. Then o € R*(k, s) if and only if o™ € Q(s).
(2) R*(k,s;7) N R*(k,s;7') = ¢.

Proof. 1) Let # = {Ey, ..., E,_,} where Ey,...,E,_; are in natural order. (=>). Suppose
o™ & Q(s). Then there is a nontrivial segment {3;...,7} of o™ and o is compatible with
the non-trivial segmentation E, ..., E;_y, E;U...UE;, E;14,..., E,_, having less than s
segments proving o & R*(k, s; 7).

(«). Let o € R*(k,s;m). By definition then s > 3 and o € R(k,s’) for some &' < s.
Denote 7' the corresponding natural segmentation. According to Lemma 18 we have
o" ¢ Q(s).

(2) If 0 € R*(k,s;7) then by what we have proved o™ € Q(s), and hence by Lemma
18 (1) (with s’ = s) we have o ¢ R(k,s, ') D R*(k,s;n'). O

Definition 20. Put g(k,s) := ¥y, tny4...4n,=k n1!n2! -+ - n,!, (where we sum over positive
integers ny,...,n,). Notethat g(k,1) := k! and g(k, k) = 1 and r*(k,2) = 2% ,(—1)*g(k, s).
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2.2. 2 Evaluation of r*(k,s) for s > 3.

Recall that by' Definition 13 every permutation o compatible with 7 induces the
intersegment-permutation o™ of the segments of .

Lemma 21. Let s > 2. Then

(1) If = is a segmentation of k with segments E; of size n; (i = 0,...,s — 1) then
r(k,s;m) = g(s) ny!e o nl.

(2) r*(k,s) = q(s)g(k,s).

Proof. (1) A permutation o compatible with 7 is determined by o™ and the permutations -
of E; (1 =0,...,s —1). Now o € R*(k,s;) if and only if o™ € Q(s). Therefore the
number of permutations in R*(k, s; 7) is given by g(s)ny!- ...  n,h

(2) By Corollary 19 the sets R*(k s;m) and R*(k,s; 1r) are disjoint for distinct seg-
mentations 7 and #’. Therefore :

r*(k,s) = D q(s)my!-.. - n,l =q(s)g(k,s).

ny+.$n,=k
O

The following will serve for a recursive formula for g(k).
Theorem 22.

= 2((—1)‘2 + q(s))g(k, s).

Proof. By Lemmas 17 and 21

ko= r(k)+g(k) =r(k,2) +E (k,s) + q(k)

§=3

k k=1
= 2(=1)2-g(k,s) + 3 a(s)g(k,s) + a(k).
=2 =3
Since ¢(2) = 0 and g(k, k) = 1, the above equation becomes

k

= 312 gk, s) + S a()ak ) = 3((~1)2 + a(s))a(k, o).

8=2 8=2 =2

0
Corollary 238.

g(k) = k! — (-1)*2 - Z 1)°2 + ¢(s))g(k, s).

=2

Example 24. We recalculate ¢(3). Since 3 = 2 + 1, we have ¢(3,2) = 2(1!2!) = 4 and
using ¢(2) = 0 from Example 7

g(3)=3'+2-(2+4¢(2)9(3,2) =8—-2-4=0.
Now we recalculate g(4). We have
g(4) = 4! — (2 +¢(2))9(4,2) + (-2 + ¢(3))9(4,3) = 4! — 29(4,2) + 29(4,3).

From4=3+4+1=2+2 weget g(4,2) =2.3! 4+ 2!2! = 16. Similarly from4=2+1+1
we obtain g(4,3) =3.2! =6 and so

q(4) =24 —2-32+12=2,

6
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the same value we found in Example 7.
Using ¢(5,2) = 72, g(5,3) = 30 and g(5,4) = 8 we obtain

g(5) =51+2~(2-72-2-30+4-8) =6,
(cf Table 4 at the end of the paper).

In the following tables we list one half of the set Q(k) (of all the permutations orthog-
onal to e;) for k = 5,6,7. To obtain Q(k) just add the reverse permutations.

3. The asymptotic behavior of g(k)/k!

In what follows we consider the ratio g(k)/k! (the proportion of permutations orthog-
onal to e; among all permutations). We show that this ratio tends to e~ when k tends
to infinity (where e = 2.7182... is the base of natural logarithms). The key is our equality

from Theorem 22 .

B = 3(-1)" + a(s))a(k, ).

8=2
Lemma 25.

k
;C(S)S!g(k,S)/k! =1.

Later we will need the following properties of g(k).

Lemma 26. (1) q(k) > (k—4)g(k—1) for all k = 5,
(2) q(k) > (2k —8)q(k — 1) — g(k — 2) for all k > 5,
(3) q(k) =2 (k—3)g(k—1)+2k+4 forall k> 1.

Proof. 1) Let T € Q(k—1) and let 7(1) =k —2. Forj € {1,...,k—2}\ {i,7 + 1} define
) € S, by TO(1) := r(I) for | < §, 7U(j) := k — 1 and 7O)(1) := 7(I = 1) for | > j.
For example, if k¥ = 5 and 7 = 1302 we have 7(® = 13042, Using 7 € Q(k — 1) it is not
difficult to see that 7() € Q(k) and (1) follows.

(2) Let 7 € Q(k—1)and 7(3) = 0. Forj € {1,...,k—2}\{¢,44+1} put 7(;)(!) := 7(I)+1
forl < j, 7;)(5) := 0 and 7(;)(1) := 7(1 - 1) +1 for I > j. Again ;) € Q(k) and so we get
k—4 elements of Q(k). However, it is possible that 7(9) = ;) for some 7,0 € Q(k—1) and
53’ €{1,...,k—2}. It may be shown that this happens exactly if there is A € Q(k — 2)
such that 7 = Aj) and o = (™) for some | and m. For example, if A = 1302 we have
7= A® = 13042 and ¢ = A(;) = 20413 and 75) = o(*) = 204153. Now it is easy to see
that (2) holds.

(3) By (1) we have g(k —1) > (k — 5)g(k — 2) and so

(k=5)q(k—1) > (k- 5)%q(k — 2). | 1)

By direct computation the real function ¢(z) := (22 + 4)/((z ~ 5)% — 1) is decreasing
for £ > 7 and so its maximum on [7,00) is ¢(7) = 6. Now by Example 24 we have
g(k —2) 2 q(5) =6 > (k) = (2k + 4)/((k — 5)* — 1). Finally by 2) and (1)

o(k) 2 (2k—8)g(k—1) —q(k —2) = (k- 3)g(k — 1) + (k —5)g(k — 1) — g(k - 2)
> (k—3)g(k—-1)+2k+4. O

Put ¢(s) := (2(=1)* + g(s))/s!. Obviously ¢(s) ~ g(s)/s! for large s.
Note 27. From Example 24 we have: ¢(2) =1, ¢(3) = —1/3, c¢(4) = 1/6, ¢(5) = 1/30.

7
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Lemma 28,
(1) e(k) 2 (k=3)e(k-1)/k fork 2T,
(2) (k) £ 1 fork>2.
Proof. (1) First we use Lemma 26(3):
o(k) = (2=1)+q(k))/k 2 (2(=1)* + (k - 3)q(k — 1) + 2k + 4)/k!
(k= 3)(2(=1)*" + q(k = 1))/k! + ((2(=1)* + 2k +4 = 2(=1)*"}(k - 3))/K!
(k=3)e(k—1)/k + (2(—1)* + 10+ 2(k — 3)(1 + (—1)*™))/k!
(k=3)c(k —1)/k. |
(2) Since the identity permutation e) and its reverse ((k — 1)(k — 2)--+1) are in R(k)
(and hence not in Q(k)), we have g(k) < k! — 2, and therefore

o(k) = (2(-1)* + q(k)/R! < (2 + q())/K S L.

v I

(]

Corollary 29.
1) es)z(k=r)k=r~1)(k—r—2)c(k—71)/(s(s—1)(s—2) fors>k—r>6
(2) ofs) < k(k—1)(k—2)c(k)/(s(s —1)(s —2)) fork2s26

Proof. (1) Repeated application of Lemma 28(1) and obvious cancellation. 2) From (1).
0

Now we derive bounds for g(k, s).
Lemma 30.
g(k,s) < ¢ Y k—s+1)! forl<s<k

Proof. We use induction on s > 1. First we show the equation for s = 2. From definition
20

g(k,2) = (k= 1)1+ (k=2)120 4+ -+, +11(k = 1)! < 2(k— 1)1+ (k—3)(k—2)12! < 4(k—1)\.

Assume g(K',s') < 4*'~'(k' — s’ 4+ 1)! holds for all s’ and k' such that for 1 < &' < ¥ <k
and s’ < s. Now, by definition 20 and applying twice the induction hypothesis

k—s+1 k—s+1
g(k,s) = Y nlg(k—n,s—1) <4 3 nl(k—n—s+2)! = 4° g(k—s+2,2) < 4°(k—s+1)L.
n=1 n=1

(]
Corollary 31. Forallk>r > 5,

148/k> zk: c(s)slg(k, s)/k!

a=r

Proof. The values c(s) are all positive except ¢(3) = —1/3. From Lemma 30 we have
g(k,3) <4*(k—2)! and since k—1 >4 s0

c(3)3!g(k,3)/k! = —2g(k,3)/k! > (-2)42/(k(k -1)) > -8/k
The statement is now immediate from Lemma 25. O

Denote IV the number {1,2,... } of positive integers and put A(k, s) := {(n1,...,n,) €
Nj:ny+...+n, =k} It is well known that ,H,_, := |A(k, s)| = ('::})

8
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Lemma 82. slg(k,s)/k! > s25=*/(k(k — s)!) for all1 < s < k.
Proof. Frorn‘n! > 271 we obtain ny! ... n,! > 2¥-*, Therefore
slg(k,s)/k! > sl Hy_, 25" [k} = s25=* [ (k(k — s)!).
0
L/e(r:ma 33.))If 1 < s < k-5 then slg(k,s)/k! < 1512/(k(k — 1)) + 24(—1/(k — s) +
1/(k—s—1)). :

Proof. Let ny,ng,...,n, be positive integers summing up to k. We divide the summation

of the products
nl!-...-n,! (2)

into partial sums, according to the value N := max{ny,...n,}.
1) Case 1. N = k— s+ 1. There is 1 such that n; = k — s +1 and n; = 1 for each

J # 1. There are s choices for such ¢ and so the sum of the products of the form (2)
is s(k — s+ 1)L

2) Case 2. N = k — s. In a similar way we have
s(s —1)(k — s)12! < 28%(k — s)\.

3) Case 3. N = k — s — 1. There are only two types of combinations of n;’s:
l.n;=k—s—1 and n; = 3 for some ¢ and 7, and
2. n; =k —s—1 and n; = n;» = 2 for some 4,5 and y'.

The sum of the products for these cases are 6s(s — 1)(k — s — 1)! and 4s(s — 1)(s —
2)(k — s — 1)!/2, respectively. Summing these two we have

2s(s® = 1)(k—s—1)! < 28°(k —s — 1)L

4) Case 4. N < k — s — 2. Every product (2) is bounded by (k — s — 2)! - 4!, Indeed,
suppose k—s—2>ny 2 ...n, >0and ny+...+n, = k Note that (z+1)!(y—1)! >
zly! whenever z + 1 > y > 1. Applying this several times we obtain the required
nyl...n,! < (k—s—2)14l1!.. .11 Since the number of all possible combinations of
n;'s is ,Hj_,, the partial sum of the products (2) for N < k — s — 2 is bounded by
(k= s—2)14!(k - 1)I/((k = s)!(s—1)1).

Thus g(k, s) is bounded by
s(k—s+ 1)1 +2s*(k—s)! +2s%(k—s—1)! +»(k' —s=2)4l(k—-1)t/((k=s)l(s=1)!1). (3)

Now we proceed to evaluate the bound (3) multiplied by s!/k! (as an upper bound for

slg(k, s)/k!).
(1) The first term of (3) can be rewritten as

e (o= 2o - 01k — 3 - )/~ 1) < 24/ — 1),
sinces<k—2and s—i<k—3—3qforalli.
(2) The second term.

s—~5

25%s)(k—s)!/k! = (s/(k—2))(s/(k—3))-(T] (s—i)/ (k—4—i))-2-41/ (k(k—1)) < 48/k(k—1).

i=0

9
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(3) The third term. In a similar way we have:

-7

283l (k—s+1)1/ k! = (s/(k—2))(s/ (k—3))(s/ (k—4))([[ (s—1)/ (k—5—i))-26!/ (k(k—1)) < 1440/k(k—1).

i=0

(4) The final term is easier.

sl(k—s—2)l(k—1)!/(k!(k—s)!(s —1)!) = s4!/(k(k—s)(k—s—1)) < 24/((k—s)(k—
s—1))=24(-1/(k—s)+1/(k—s—1)).
Summing up the results of (1) — (4) we have the desired result. O

Corollary 84. If5 <r <k —2 then SF] slg(k,s)/k! < 1488/k + 24/(r - 1).

Proof. 327 slg(k, s)/k! < 023 1512/k(k — 1) + 24 =25 (<1/(k — s) + 1/(k —s = 1)) <
(k — 1)1512/((k(k — 1)) + 24/(r — 1) — 24/(k — 2) < 1512/k + 24/(r — 1) — 24/k =
1488/k + 24/(r —1). O

Lemma 85. If k > s then g(k,s) < ¥f=; 211 (:) (":;l) (k=—s—t+2).

Proof. Consider positive integers ny,...,n, such that n; +... +n, = k. Let n;; > 2 for
Jj=1,...,tandny=1foralll € {1,...,s}\ {é1,...,1:}. Note that

Ny +...+n, =k—s+t.

In particular, 2t < n;, +...+n;, =k—s+tandsol <t < k—s. Forz >y > 2 wehave
zly! < 2(z+y—2)!, because zly! < (z+1)(y—1)! < (z+2)(y-2)! <... < (z+y—2)12L
Applying this successively

il <2 (g +. g, =2t - 1)) =2 (k—s—t+2)L

There are (:) choices of I := {1y,...,%;}. Moreover, n;, —1,...,n; —1 are positive numbers

summing up to k— s+t —t =k — s and so for a fixed I there are ;Hy_, = (k:_’_l'l) choices

of n;,...,n;,. Together this yields the upper bound. O
Corollary 36. If k > s > k/2 then

slg(k,s)/k! < 2¥°*/(k — s)! + D/k,
where D = 22¢°, '

Proof. If s = k then this inequality is obvious. Suppose that s < k. Then by Lemma 35

slg(k,s)/k! < kif W(t),

where W (t) := 2“’13!(") ("""1) (k= s—1t+2)!/kl. We have

¢ t~1

W(k - s) =241l (k : s) (11: . i)/ k= s_!s/i)!kz (kzk——;)!’

Nowfrom2s~k<s<kand2s—k+i<s+ifori=1,...,k—s wehave
slst (2s—k+4+1)---s
(2s—k)K! — (s+1)---k

and so W(k — s) < 2521 /(k —s)l.
Next, if t <k —s—1 then

<1

10
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_ ote1 8V 8 (k—=s—=1)!
Wl = eI D= =1
2t-1 st slik—-s—t+1)(k—s—t+2)
Et=1Ds—0lt! (k=1)(k-2)-(k—s)

(k-s—t+2)

Froms<k—1wehaves—i<k—1—-:(i=0,...,t —1) and froms < k-t —1 also
s—i1<k—-t—-1-i(2=0,...,s—t—3). Thus

sl(s —t)!/(stt!) s(s—1):-(s—t+1)s(s—1)---(t+1)

; (k=1)k—=2) - (k—t)(k—t—-1)(k—-t—2)--(k—s+2) (t+2)(t+1)
and so

2071 (k—s—t+1)(k—s—t+2)
k(t—1)! (k—s+1)(k—s)

" Thus we have

W(t) < (t+2)(t+1) <27t +2)(t+ 1)/t = 1)

k—s-1

slg(k,s)/k! < 282 J(k — s)! + (1/k) > (¢+2)(t +1)2"1/(t - 1)L

t=1
Since the infinite series of positive terms

St +2)(¢t + 1)2/(t = 1)!

t=

converges to D = 22¢? (differentiate twice the Maclaurin series for (1/2)z%e® and evaluate
at z = 2), we have
slklg(k,s) < 25=*/(k —s)!+ D/k. O

Theorem 37. limy_.. g(k)/k! = 2.
Proof. We prove the equivalent lim,_.o ¢(k) = e72. First we show that
limp—ooc(k) < e

By Corollary 31 (replace r by k — r)

: k
1+8/k> > cs)slg(k,s)/k!
s=k—r
for k — 5 > r. By Corollary 29(1)
k-r k—r—-1 k—=r-2 k-r k—r—-1 k-r-2
. . —-r)2 . , clk—r).
> =7 g kN2 T o k)
On the other hand, by Lemma 32 and summing by t := k — s
k sl k s 2k—s 1 (k_t)Zt r ot 9T gt-1
—g(k > - = - - = —_———
2 go(kse) 2 L FEo RS W XU RREoD

Let € > 0. When r (and k) is sufficiently large this value is greater than e? — e — (2/k)e?.
Thus we have

k—r k—r—l.k—r—2
k k-1 k—2
11

14+8/k> c(k —r)(e* — e — (2/k)e?).




If we let k go to infinity while keeping r constant, we have
1 > limpeeoc(k)(€? = &).
Since € was arbitrary, we get lim,_coc(k) < e72.
Now we show the inequality lim,_,..c(k) > e~2. Let k¥/2+1 > r > 5. By Lemma 25

k k—r ' k .
1= ch(s)s!g(k,s)/k! =" c(s)slg(k,s)/k! + kz c(s)slg(k,s)/k!.
= =2 s=k—r+1

By Corollary 34 the first sum is less than 1488/k + 24/(r — 1), while by Corollaries 36
and 29(2) the second one can be bounded as follows

k

k
3o c(s)slg(k,s) k< S (257*/(k = s)! + D/k)c(s)

s=k-r+1 s=k—r+1
k
< -§+I(2k_’/(k —s)l+ D/k)k(k — 1)(k — 2)c(k)/(s(s = 1)(s — 2))
< kfc-r'kf:i 1% 5:3 2c(k):_io(%_!+% <% : m_ f;i 1'% f:fgc(")(eerD"/k)-

If we let k go to infinity for a fixed r we have
| 1 <24/(r = 1) + €*limn—coc(k).
Since r can be taken arbitrarily large, we have
e~? < lim,_,oc(k).
This completes the proof of our theorem. O

Remark. Using formal power series Mark Haiman from M.L.T. independently obtained

results [Hai90] which include some of our results.
Put A(1) :=1 and A(s) := —2(—1)* — ¢(s) for s > 2 and consider the power series

p(z) = i h(s)z®, v(z) = i nlz™.

s=1 n=1
Then by our Theorem 22

k 0 fork>2
h k,s) = ="
,Z:, (s)g(k, ) { 1 fork=1.

leading to to u(v(z)) = z. This inversion can be directly calculated, for example, using
Mathematica. We got the following table from Mark Haiman [Hai90). The numbers
g(1)-g(7) coincide with the data we obtained by direct enumeration.

k 1 2 3 4 5 6 7 8 9 10
Rk) |1 -2 2 4 -4 48 -336 -2,928 -28,144 298,528
gk) |1 0 0 2 6 46 338 2,926 28,146 298,526
q(k)/k! 0.0 0.08333 0.05 0.06389 0.06706 0.07256 0.07756 0.08226

The convergence of the ratio g(k)/k! to e2 = 0.1353... can be seen from

k 20 30 40 50 60 70 80 90 100
q(k)/k! | 0.1086 0.1175 0.1219 0.1246 0.1264 0.1277 0.1286 0.1294 0.1300

12
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Table 1. ¢(5) = 6: orthogonal permutations to (01234)

(13042),(14203),(20413)

Table 2. ¢(6) = 48: orthogonal permutations to (012345)

(130524)
(140352)
(153042)
(241503)
(302514)

(135024)
(142053)
(203514)
(250314)
(315024)

(135042)
(142503)
(204153)
(250413)
(315204)

(135204)
(152403)
(205314)
(251304)

(140253)
(153024)
(240513)
(251403)

Table 3. ¢(7) = 338: orthogonal permutations to (0123456)

(1304625)
(135062 4)
(136052 4)
(1364205)
(140625 3)
(1426053)
(146205 3)
(1503624)
(1524063)
(1530462)
(1536204)
(1630524)
(1640352)
(2036415)
(2051386 4)
(2064135)
(2406153)
(2416305)
(2503164)
(2506413)
(2516304)
(2604135)
(2614053)
(2631504)
(3024615)
(305162 4)
(3062514)
(3150624)
(3162405)
(351602 4)
(3614025)
(362051 4)
(4136025)
(4206135)

(1305264)
(135064 2)
(1362405)
(14026305)
(1406352)
(1426305)
(1462503)
(1503642)
(1524603)
(1530624)
(16240335)
(163502 4)
(164203 5)
(2041635)
(2051463)
(2064153)
(2406315)
(2460315)
(2503614)
(251306 4)
(2516403)
(2604153)
(2615304)
(2640315)
(3025164)
(3052614)
(3140625)
(315206 4)
(3162504)
(3516204)
(3614205)
(4026135)
(4136205)
(4206315)

(1306425)
(1352064)
(1362504)
(1403625)
(1420635)
(1460253)
(1463025)
(1504263)

(1526304)

(1530642)
(1624053)
(1635042)

(1642053)

(2046135)
(2053164)
(2403615)
(2415083)
(2460513)
(25041863)
(2513604)
(2530614)
(2605314)
(2630415)
(2640513)
(3026415)
(3061425)
(3146025)
(3152604)
(3164025)
(3520614)
(3615024)
(4026315)
(4162035)
(4260315)

14

(135026 4)
(1352604)
(1364025)
(1405263)
(142506 3)
(146035 2)
(146305 2)
(152036 4)
(152640 3)
(1536024)
(1625304)
(1635204)
(1642503)
(2046153)
(2053614)
(2405163)
(241603 5)
(2461305)
(2504613)
(251406 3)
(2531604)
(2613504)
(263051 4)
(2641305)
(3041625)
(3061524)
(3146205)
(3160425)
(3164205)
(3602415)
(3615204)
(4031625)
(4163025)
(42613005)

(1350462)
(136042 5)
(136405 2)
(1405362)
(14260305)
(1462035)
(1502463)
(152046 3)
(1530264)
(1536042)
(1630425)
(164025 3)
(2035164)
(2046315)
(2063514)
(2406135)
(241605 3)
(2461503)
(2506314)
(2514603)
(2603514)
(2614035)
(2631405)
(2641503)
(3042615)
(3062415)
(315026 4)
(316052 4)
(350261 4)
(3602514)
(3620415)
(4130625)
(4203615)
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