
247

An Optimal Sorting Algorithm for Presorted Sequences

濱村博康 宮尾淳一 若林真一

Hiroyasu Hamamura, Jun’ich Miyao, and Shin’ichi Wakabayashi

広島大学 工学部

Faculty of Engineering, Hiroshima University

Abstract : A sorting algorithm is said to be optimal for presorted se-

quences if it utilizes the presortedness of the input sequences. In this

paper, we propose sequential and parallel sorting algorithms which are

optimal with respect to three measures of presortedness, which are

Runs, Radius, and Rem . We assume an SM EREW MIMD model for

the parallel algorithm.

1 Introduction

It is well known that the time lower bound to sort a sequence with length n is $\Omega(n\log n)$.

Several algorithms for sorting n elements achieve the lower bound(see [Knuth 73] for

example). In some applications, however, the sequences to be sorted do not randomly

consist of elements but are already partially sorted. Most $O(n\log n)$ algorithms do not

take the presortedness of the inputs into account. Therefore, the interest in sorting focused

on algorithms that exploit the degree of presortedness in the inputs.

A measure of presortedness is an integer function that reflects the difference from the

totally sorted sequence. Some measures of presortedness have been proposed until now,

which are Runs [Knuth 73], Radius [Altman $89a$] [Castro 89], Rem [Mannila 85], and Inv

[Mehlhorn 79]. Mannila [Mannila 85] gave the formal definition of optimal sorting algx

rithms for presorted sequences. Until now, sequential and parallel sorting algorithms for

1

数理解析研究所講究録
第 754巻 1991年 247-256

248

presorted sequences have been proposed[Altman $89a$] [Altman $89b$] [Castro 89] [Hamamura

91] [Levcopoulos 88] [Levcopoulos $89a$] [Levcopoulos $89b$] [Melhorn 79].

In this paper, we propose a sequential sorting algorithm and a parallel algorithm, which

are optimal with respect to Runs, Radius, and Rem . In Section 3, we describe the sequen-

tial algorithm which is based on merge sort. Any conventional merging algorithm takes

$\Theta(n)$ time for any input sequences, but the running time of our algorithm varies according

to the presortedness of the input. In Section 4, we extend the sequential algorithm to the

parallel algorithm. We adopt an MIMD model that has scheduling cost, and we evaluate

the upper bound of the number of processors, for which the proposed parallel algorithm is

cost optimal.

2 Preliminaries

Let $X=(x_{1}, x_{2}, \ldots, x_{n})$ be a sequence of length n from a totally ordered set. For simplicity,

we assume that the elements in X are distinct. For two sequences, $X=(x_{1}, x_{2}, \ldots, x_{n})$

and $Y=(y_{1}, y_{2}, \ldots, y_{m})$, their catenation XY is the sequence $(x_{1},$ $x_{2},$ $\ldots,$ $x_{n},$ $y_{1},$ $y_{2},$ \ldots ,

$y_{m})$. If $Y=(x_{f(1)}, x_{f(2)}, \ldots, x_{f(m)})$ and f : $\{1, 2, \ldots, m\}arrow\{1,2, \ldots, n\}$ is an injective and

monotonically increasing function, then Y is called a subsequence of X .

Let $||X||$ denote the length of sequence X and {X} denote the set, which consists of

elements of X. rank(e, X) denotes the number of elements of X less than e . Furthermore,

$|S|$ denotes the cardinality of a set S , and $\log x$ is defined as $\max\{1, \log_{2}x\}$.

A measure of presortedness is a function from a sequence X to integer m , that reflects

the difference of X from the totally sorted sequence. Let $X=(x_{1}, x_{2)}\ldots, x_{n})$ be the input

to be sorted. In this paper, we consider four measures of presortedness shown in Table

2.1. For example in the case $X=(1,3,4,6,2,5,7,8),$ $Runs(X)=2$, Radius(X) $=3$,

$Rem(X)=2$, and $Inv(X)=4$.

Mannila[Mannila 85] formalized the concept of an optimal sorting algorithm for sorting

presorted sequences. His definition indicates the time lower bound for sorting, evaluated

2

249
by not only the length of input sequence but also the presortedness of input sequence. The

lower bound of each measure is shown in Table 2.1.

Table 2.1 : Measures of presortedness.

3 A Sequential Algorithm

3.1 Description of Tree Merge Sort

Mergesort [Knuth 73] is an optimal sorting algorithm in the common sense, i.e., it sorts

a sequence with length n in $O(n\log n)$ time. But it takes always $\Theta(n\log n)$ time because

mergesort has $\log n$ stages and each stage takes linear time. So it is not optimal for

presorted sequences.

We newly propose TMSort, which has $\log n$ stages similarly with general merge sort,

but it does not always take hnear time at each stage. TMSort uses TMerge as the merging

algorithm, which is described bellow.

TMerge does not take linear time exactly to merge the sorted sequences, i.e., the running

time of TMerge varies according to the presortedness of the input sequence.

TMerge uses the level linked 2-3 [Brown 80] tree to represent the sorted sequences. The

level linked 2-3 tree is a data structure which allows both fast accessing and updating of

sorted sequences. Now we give the description of TMerge.

[Algorithm TMerge]

input: two level-linked 2-3 trees T_{A} and T_{B} , which represent sorted sequences

$A=(a_{1}, a_{2}, \ldots, a_{k})$ and $B=(b_{1}, b_{2}, \ldots, b_{k})$ respectively

output: a level-linked 2-3 tree, which represents the merged sequence of A and B

3

250

Stepl: {initialization}
$A_{-}tailarrow k$; $B_{-}headarrow 1$;

Step2: {find the sequences to be exchanged}

while $a_{A_{-}tail}>b_{B_{-}head}$ do

begin

$A_{-}tailarrow A_{-}tail-1$; $B_{-}headarrow B_{-}head+1$;

end

Step3: {insertion}

insert the sequence $\alpha=(a_{A_{-}tail+1,}a_{k})$ to T_{B} ;

insert the sequence $\beta=(b_{1}, \ldots, b_{B_{-}head-1})$ to T_{A} ;

Step4: {deletion}

delete the sequence α from T_{A} ;

delete the sequence β from T_{B} ;

Step5: {merge two trees}
if the height of $T_{A}=the$ height of T_{B} then begin

make new internal node N labeled by a_{k} ;

make vertical links between the root of the trees and N ;

make horizontal links between two trees;

end

else begin

connect the lower tree to the higher;

make horizontal links between two trees;

end \square

After initialization, we select the subsequences α and β in Step2. These subsequences have

the property that deletion of these sequences makes AB a sorted sequence. In step3, α and

β are inserted to T_{B} and T_{A} respectively, and deleted from the original tree in the following

step. Finally, the two level-linked trees are merged into one tree by making horizontal links

between the same depth nodes.

4

251

[Example 3.1] We show an example of TMerge in the case $A=(1,2,3,4,5,8,9,11)$

and $B=(6,7,10,12,13,14,15,16)$ in Figure 3.1. In $step2$ (Fig. 3.1 (a)), $\alpha=(9,11)$ and

$\beta=(6,7)$ are found. In step3, α and β are inserted to T_{B} and T_{A} respectively and deleted

from the original tree in $step4$(Fig. 3.1 (b)). FinaBy, horizontal links between two trees

are made. 口

T横 T_{B}

(a) After step2 (b) After step4

Figure 3.1 : An example of TMerge.

3.2 Analysis of TMSort

We define some notations to analyze the algorithm. Let $tm_{h,j}$ denote the j^{th} merger in the

h^{th} stage of TMSort(X), and the input sequences of $tm_{h,j}$ are $A_{h,j}(X)$ and $B_{h,j}(X)$. The

execution time of $tm_{h,j}$ is a function of its input sequences $A,$ B and denoted as $t_{T}(A, B)$.

And X^{h} denotes the output sequence of h^{th} stage mergers. The total execution time of

TMSort to sort X is denoted by $T_{T}(X)$. In the following, let $\Sigma\sum$ denote $\Sigma_{h=1}^{logn}\Sigma_{j=1}^{n/2^{h}}$.

We first analize the running time of TMerge.

[Lemma 3.1] TMerge merges two sorted sequences $A=(a_{1}, a_{2}, \ldots, a_{k})$ and $B=(b_{1},$ b_{2} ,

.. ., b_{k}) in $O(\Sigma_{i=1}^{r}\log(rank(b_{i+1}, A)- rank(b_{i}, A))+\Sigma_{i=r}^{k}\log(rank(a_{i+1}, B)- rank(a_{i}, B))+$

$\log k)$ time where r is an integer satisfying the condition $a_{k-r+1}>b_{r}$ and $a_{k-r}<b_{r+1}$.

Proof (Refer to [Hamamura 91].) 口

We show that TMSort is optimal with respect to Runs and Radius.

[Lemma 3.2] TMSort sorts the sequence X with 1 $X\Vert=n$ and Runs(X) $=m$ in

$O(n\log m)$ time.

Proof Let $R(X)$ be a set of elements defined by the following.

5

252

$R(X)=$ { $x_{j}|(1\leq j\leq n)x_{j}>x_{j+1}$ or x_{j-1} $>x_{j}$ }

If $(\{A_{h,j}(X)\}\cup\{B_{h,j}(X)\})\cap R(X)=\phi$ then the input sequence $A_{h,j}(X)B_{h,j}(X)$ is

already sorted, because if a subsequence of X had no element of $R(X)$ then it would be

included by a run of X . So, the running time of the merger is bounded by constant. If

$(\{A_{h,j}(X)\}\cup\{B_{h,j}(X)\})\cap R(X)\neq\phi$, the merger may take $\Theta(2^{h})$ time.

Furthermore, $|R(X)|\leq 2m$ holds, then in each stage there are at most $2m$ mergers,

each of which takes $\Theta(2^{h})$ time and the remaining takes constant. So the total running

time of TMSort is bounded as follows.

$T_{T}(X)=\Sigma\Sigma t_{T}(A_{h,j}(X), B_{h,j}(X))$

$=O(\Sigma_{h=1}^{\log(n/2m)}\{2m2^{h}+(n/2^{h}-2m)\log 2^{h}\}+\Sigma_{h=\log(n/2m)+1}^{\log n}n/2^{h}(2^{h})$

$=O(n\log m)$ 口

For Radius, we get the following lemmas. The proofs are described in [Hamamura 91].

[Lemma 3.3] TMSort sorts the sequence X with II $X||=n$ and Radius(X) $=m$ in

$O(n\log m)$ time. 口

[Lemma 3.4] TMSort sorts the sequence X with 1I $X||=n$ and $Rem(X)=m$ in

$O(n+m\log m)$ time. \square

The problem whether TMSort is Inv-optimal or not is open.

From Lemma 3.2, 3.3, 3.4 and the time lower bounds of each measure, we can show the

next theorem.

[Theorem 3.1] TMSort is optimal with respect to Runs, Radius, and Rem . \square

4 A Parallel Algorithm

4.1 Model of Computation

We assume an MIMD model for parallel computation. Figure 4.1 illustrates the structure

of this model. This MIMD model consists of a scheduler, p processors and a shared mem-

ory. The scheduler manages the created processes using an FIFO queue, and distributes

processes to idle processors. The processor executes the assigned processes and becomes

6

253

idle state if finished. We put the following assumptions on this model.

(i) Each processor has the same performance.

(ii) The concurrent read and concurrent write are not allowed.

(iii) It takes $d\cdot\log p$ time between the time a processor becomes idle and the time a new

process is assigned to this processor (d is a constant).

The assumption of (iii) is reasonable if the scheduling is done using paraJlel prefix sum

computation [Hamamura 91]. The following observation holds with respect to this model.

[Observation 4.1] Suppose that there are k pro-

cesses in the queue of scheduler and each process

needs t time. When p processors execute these pro-

cesses, the sum of the time in which each processor

is in idle state is not greater than $p(t+d\log p)+$

$k\cdot d\cdot\log p$. ロ

Figure 4.1: Model of computation.
4.2 Parallel Tree Merge Sort

PTMSort is a parallel implementation of TMSort on the MIMD model. The same stage

mergers of TMSort can be executed in parallel, so we decompose TMSort to n merging

processes and execute these processes concurrently. The algorithm is as follows.

[Algirthm PTMSort]

Process PTMSort(X, n) Process PTMerge(X, $h,$ $j,$ n)

begin begin

for $j:=1$ to $n/2$ do TMerge(X, h,j);

create process PTMerge(X, 1, $j,$ n); if $h<\log n$ then

end if $Wait_{\lfloor(n/2^{h}+j-1)/2\rfloor}=complete$ then

create TMerge(X, $h+1,$ $\lceil j/2\rceil,$ n)

else

$Wait_{\lfloor(n/2^{h}+j-1)/2\rfloor}=complete$;

end 口

7

254
At first, PTMSort creates the first stage mergers. Each merging process executes

TMerge sequentialy, and creates the merging process of the above stage if finished. When

creating the above stage process, each process checks an array Wait to examine whether

the partner of merging process has been finished or not.

4.3 Analysis of PTMSort

We analize the running time of PTMSort.

[Lemma 4.1] PTMSort sorts the sequence X in $O(n\log m/p+n)$ time, where p is the

number of available processors $(p\leq n),$ $n=||X||$ and $m=Runs(X)$.

Proof Between the start and the end of sorting, an processor executes merging process or

is in idle state. The sum of the execution time of merging processes is $O(n\log m)$ because

the sequential algorithm is optimal with respect to Runs. So if we can say that the sum

of idle time is bounded by $(n\log m)$, the total running time is $O((n\log m)/p)$.

In the h^{th} stage of PTMSort, there are $n/2^{h}$ merging processes each of which takes

$O(2^{h})$. Therefore, from observation 4.1 we can say that the sum of the idle time in the h^{th}

stage is $O(p(2^{h}+\log p)+(n/2^{h})\log p)$.

If $p\leq\log m$ holds, the total idle time is computed as $\Sigma_{h=1}^{\log n}O(p(2^{h}+\log p)+(n/2^{h})\log p)=$

$O(n\log m)$.

So, if $p\leq\log m$ holds, the running time is $O(n\log m/p)$. Even if p becomes greater than

$\log m$, The running time does not increase than linear time. Therefore, we get $T_{T}(X)=$

$O(n\log m/p+n)$. 口

By the same way, we get the following lemmas for the other measures. The proofs are

described in [Hamamura 91].

[Lemma 4.2] PTMSort sorts the sequence X in $o(n\log m/p+n)$ time, where p is the

number of available processors $(p\leq n),$ $n=||X||$ and $m=Radius(X)$. \square

[Lemma 4.3] PTMSort sorts a sequence with $||X||=n$ and $Rem(X)=m$ in $O((n+$

$m\log m)/p)$ using p processors where $p\leq 1+m\log m/n$. \square

From Lemma 4.1,4.2, 4.3, we can show the next theorem.

8

255

[Theorem 4.1] PTMSort is cost optimal with respect to measures, shown below if the

number of processors satisfies the following inequations.

Runs: $1\leq p\leq 1ogRuns(X)$

Radius: $1\leq p\leq\log$ Radius(X)

Rem : $1\leq p\leq 1+Rem(X)1ogRem(X)/n$ 口

Until now, some parallel sorting algorithms for presorted sequences have been proposed

[Altman $89a$] [Altman $89b$] [Levcopoulos 88] [Levcopoulos $89a$]. These algorithms run on

PRAM, and TMSort run on the MIMD model, so we can not compare the proposed algo-

rithm with conventional algorithms directly. But, there exists no PRAM sorting algorithm

which is shown to be optimal with respect to Runs, Radius, and Rem .

5 Conclusion

In this paper, we proposed sequential and parallel sorting algorithms which are optimal

with respect to Runs, Radius, and Rem . We are now interested in the optimality of

TMSort with respect to Inv .

Acknowledgement
The authors would like to thank Prof. Noriyoshi Yoshida for his kind support and encour-

agement.

References

[Altman $89a$] T. Altman, and Y. Igarashi: Roughly sorting: Sequential and parallel

approach,” Journal of Information Processing, Vol. 12, pp.154-158 (1989).

[Altman $89b$] T. Altman: “Sorting roughly sorted sequences in parallel,” Information

Processing Letter, Vol. 33, pp.297-300 (1989).

[Brown 80] M. R. Brown and R. E. Tarjan: “Design and analysis of a data structure

for representing sorted lists,” SIAM Journal of Comput., Vol.9, No.3, pp.594-614 (1980).

9

256

[Castro 89] V. E. Castro and D. Wood: A new measure ofpresortedness,” Information

and Computation, 83, pp.111-119 (1989).

[Hamamura 91] H. Hamamura: ”Optimal sorting algorithms for presorted sequences on

an MIMD model,” Thesis for the degree of Master of Engineering, Hiroshima University

(1991).

[Knuth 73] D. E. Knuth: “The Art of Computer Programming, Vol.3: Sorting and

Searching, ” Addison-Wesley (1973).

[Levcopoulos 88] C. Levcopoulos and O. Peterson: “An optimal parallel sorting algo-

rithm for presorted files,” Proc. 8th Conference on Foundations of Software Technology

and Theoretical Computer Science, Lecture Notes in Computer Science, 338, pp.154-160,

Springer-Verlag (1988).

[Levcopoulos $89a$] C. Levcopoulos and O. Peterson: “Heapsort-Adapted for presorted

files,” 1989 Workshop on Algorithms and Data Structures, Lecture Notes in Computer

Science, 356, Springer-Verlag (1989).

[Levcopoulos $89b$] C. Levcopoulos and O. Peterson: A note on adaptive parallel sorting

,” Information Processing Letters, Vol. 33, pp.187-191 (1989).

[Mannila 85] H. Mannila: ”Measure of presortedness and optimal sorting algorithms,“

IEEE Trans. on Computer, Vol.C-34, No.4, pp.318-325 (1985).

[Mehlhorn 79] K. Mehlhorn: ”Sorting presorted files,” Proc. 4th GI Conference on Theory

of Computer Science, pp.199-212 (1979).

10

