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Abstract: In this paper, a path controlled embedding graph grammar (PCE graph grammar)
having the confluent property is proposed. Then the relationships between confluent PCE
grammars and array languages are investigated.

1. Introduction

In the recent years, many models for context-ffee graph grammars have been proposed (see,

e.g., Ehrig, et al. [2]). Some grammars are node rewriting and others are edge (or hyper-edge)
rewriting. These grammars are context-free in the sense that one node is replaced without
considering any other part of the rewrited graph. However, they may still be context-sensitive
in the sense that generated graph depends on the order in which the production rules are applied.
A graph grammar that does not suffer ffom this context-sensitivity is said to be confluent (see,

e.g., Engelfriet [3]).

In general, graph grammars are less powerful to describe structures in contrast of their
generative power. In Aizawa and Nakamura [1], we $in\alpha oduced$ a graph grammar called node-
replacement graph grammar with path controlled embedding ($nPCE$ grammars) which use a
sequence of edges instead of the single edge to emkdding a newly replaced graph into the host
graph. It has been shown that there exists a subclass of $nPCE$ grammars generating context-
ffee array languages. In this paper, a path controlled embedding graph grammar (PCE graph
gcammar) having the confluent property is proposed. Then the relationships between confluent
PCE grammars and array languages are investigated.

We assume for readers to be familiar with the theories of two-dimensional grammars and
graph grammars (see e.g., Nagl [5] and Rosenfeld [6]). The following notations will be used
in the rest of this paper.

(1) Let X be set. By $2^{X}$ we denote the set of subsets ofX and if X is finite, then $\#X$ denotes
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the cardinality of X.
(2) Let $\pi=\{c_{1}c_{2}\ldots c_{i}\}$ be a string. By $\pi^{R}$ we denote the reverse string of $\pi$ , i.e.,

$\pi^{R}=\{c_{i}\ldots c_{2}c_{1}\}$ , and $1\pi 1$ denotes the length of $\pi$ , i.e., $i$ .
(3) A graph is a system $H=(V, E, \Sigma V, \Sigma E, \phi_{V}, \phi_{E})$ , where V is a finite nonempty set of

natural numbers called the set ofnodes, $E$ is a set of pairs of two elements ffom V called
the set of edges, $\Sigma V$ is a finite nonempty set called the set of node labels, $\Sigma E$ is a finite

nonempty set called the set of edge labels, $\phi_{V}$ is a mapping from V into $\Sigma V$ called the

nodes labelling function, and $\phi_{E}$ is a mapping from $E$ into $\Sigma E$ called the edges labelling

function. $H$ is called a graph over $(\Sigma\Sigma)$ . Throughout of this paper, V(H) and $E(H)$

denote the set of nodes and the set of edges of $H$, respectively.
(4) Let $H=(V, E, \Sigma\Sigma, \phi_{V}, \phi_{E})$ be a graph and let (x,y) is an edge of H. We say that the

edge (x,y) is incident with the nodes $x$ and $y$ , and the nodes $x,$ $y$ are neighbors.
(5) Let $H=(V, E, \Sigma\Sigma, \phi_{V}, \phi_{E})$ be a graph and let $x$ be a node of H. Then the degree of

$x$, denoted as deg(x), is the number of edges incident with $x$ .
(6) Let $A=(V, E, \Sigma\Sigma, \phi_{V}, \phi_{E})$ and $B=(V’, E’, \Sigma\Sigma, \phi_{V}’, \phi_{E}’)$ be graphs. A is a

subgraph of$B$ if $V’\supseteq V,$ $E’\cap\{(x, y)1x,$ $y\in VI\supseteq E,$ $\Sigma v\supseteq V,E’\supseteq E$

$\forall x\in V,$ $and\phi_{E}’((x, y))=\phi_{E}((x, y))for\forall(x, y)\in E$ . ln this case, we callA the subgraph
spanned by $V$ in $B$ . By B-A we denote the subgraph spanned by $V\backslash V$ in B.

(7) Let $A=(V, E, \Sigma V, \Sigma E, \phi_{V}, \phi_{E})$ and $B=(V’, E’, \Sigma V, \Sigma E, \phi_{V}’, \phi_{E}’)$ over $(\Sigma V’\Sigma E)$ . An

isomorphismfrom $A$ into $B$ is a bijective mapping $h$ from V into V’ such that $\phi_{V}’ h=\phi_{V}$

and $E’=\{(h(x),h(y))1(x, y)\in E\}$ . We say that $A$ is isomorphic to $B$ .
(8) A graph $A=(V, E, \Sigma V, \Sigma E’\phi_{V}, \phi_{E})$ is connected if for every $x,$ $y$ in V, there exists a

sequence $x_{1},$ $x_{2},$ $\ldots$ , $x_{n}$ of nodes in V such that $x_{1}=x,$ $x_{n}=y$ and for $1\leq i\leq n- 1,$
$x_{i}$ is a

neighbor of $x_{i+1}$ .

2. Path controlled embedding

In this section, we define a kind of graph grammars called U-nPCE graph grammars and
languages. They are restricted version of $nPCE$ graph grammars proposed in Aizawa and
Nakamura [1].

$Defin\ddagger t\ddagger on2.1$ . For any given graph $H$, its node $P$, and a string $\pi=\{c_{1}c_{2}\ldots c_{i}\}$ of its edge
labels, $P\pi$ is realizable on $H$ if and only if there exists a set of nodes $\{P_{0}, P_{1}, \ldots , P_{i}\}$ such
that $P_{0}=P$ and $P_{j}$ is a neighbor of $p_{j- 1}$ joined by an edge labelled with $c_{j}$

$(1\leq j<\lrcorner)$ .

$Definit\ddagger on2.2$ . A node-replacement graph grammar with path controlled embedding,
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denoted as $nPCE$ grammar, is a $cons\sigma uction$

$G=<\Sigma,$ $\Sigma P,$ $Z,$$\Delta\Delta NE,N’ E>$ , where
$\Sigma N$ is a finite nonempty set of node labels,

$\Sigma E$ is a finite nonempty set of edge labels,

$\Delta_{N}$ is a finite nonempty subset of $\Sigma N$, called terminal $n\alpha k$ labels,

$\Delta_{E}$ is a fmite nonempty subset of $\Sigma E$
’ called termind edge labels,

$P$ is a finite set of productions of form $(a, \beta, \psi)$, where a is a node, $\beta=(V,$ $E,$ $\Sigma\Sigma$ ,

$\phi_{V},$ $\phi_{E}$) is a connected graph, $\psi$ is a mapping ffom $\Sigma E^{+}$ into $V(\beta)\cross\Sigma E\cdot\psi$ is called
embedding function.
$Z$ is a connected graph over $(\Sigma\Sigma)$ called the axiom.

A direct derivation step in a $rPoe$ gammar is perforned as follows:
Let $H=(V, E, \Sigma\Sigma, \phi_{V}, \phi_{E})$ be a graph. Let $p=(a, \beta)$ be a production in $P$ and V be

the embedding function. Let $\beta$

’ be isomorphic to $\beta$ (with $h$ an isomorphism from $\beta$

’ into $\beta$),

where $\beta$

’ and H-a have no common nodes. Then the result of the application of $p$ to $H$ (by

using h) is obtained by frst removing a from $H$, then replacing a with $\beta$

’ and finally adding
edges (u,v) between every nodes $u$ in $\beta$

’ and every $v$ in H-a such that there exists a path
$p\in domain(\psi)$ with $v=a\pi$ in H. The production $p$ is applicable to the graph $H$ if following
conditions hold.

(1) If a has at least one neighbor in $H$, there exist at least one realizable path $\pi$ , and
(2) if a node $v$ of H-a is adjacent to the node labelled with a in $H,$ $v$ must be adjacent to

the node 1 of $\beta’$ .
Note here that the embedding function $\psi$ bring no significant context into the generation

procedure of an $nPCE$ grammar since no node labels are referred in any place of embedding
steps except the one of the newly replaced graph.

Formally the notion of a direct derivation step is defined as follows:

DefinitIon 2.3. Let $G=<\Sigma N,$ $\Sigma E,$ $P,$ $Z,$ $\Delta_{N},$ $\Delta_{E}>be$ a $nPCE$ grammar and let $H,$ $H$’ be

graphs over $(\Sigma V, \Sigma E)$ .
(1) $H$ directly derives $H$’ in $G$ , denoted as $H\Rightarrow G^{H}’$ , if there exists a production $p=(a,$ $\beta$ ,

$\psi)$ in $P$, a graph $\beta$

’ with $V(\beta’)\cap V(H- a)=\emptyset$ and an isomorphism $h$ ffom $\beta$

’ into $\beta$ such that
$H$ ’ is isomorphic to the graph X constructed as follows:

$X=(V, E, \Sigma\Sigma, \phi_{V}, \phi_{E})$, where
$V=V(H- a)uV(\beta’)$ ,

$E=$ { $(x,y)1x,y\in$ V(H-a) and $(x,y)\in E(H)$ }
$u$ { $(x,y)1x,y\in V(\beta’)$ and $(h(x),h(y))\in E(\beta)$ }
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$u\{(x,y)|x\in V(\beta’),$ $y\in$ V(H-a), there exists a path $\pi\in domain(\psi)$

with $y=a\pi$ and $<h(x),$ $e>\in\psi(\pi)$ for some $e$ in $\Sigma E$ },

$\phi_{V}$ is equal to the node labelling function of $H$ for nodes in V(H-a), equal to the node

labeUing function of $\beta$

’ for nodes in $V(\beta’)$ ,

$\phi_{E}$ is equal to the edge labelling function of $H$ for edges between the nodes of $H$, is

equal to the edge labelling function of $\beta$

’ for $n\alpha ks$ in $V(\beta’)$ ,

We also say that $H$ ’ is derived ffom $H$ by replacing a using the production $p$ .
(2) We will denote the reflexive and the transitive closuIe $of\Rightarrow Gby\Rightarrow G^{*}$ and the transitive
closure $of\Rightarrow Gby\Rightarrow G^{+}$ .
(3) The language of $G$, denoted as $L(G)$ , is defined by $L(G)=\{H$ I $H$ is a graph over ($\Sigma V$

’

$\Sigma E)$ and $Z\Rightarrow_{G^{*}}H$ }.

We here present an example of the derivations of $nPCE_{\Psi}ammars$ .

Example 2.1. The application of the production in Fig. la to the graph in Fig. lb results the
graph in Fig. lc.

By making use of the path controlled embedding mechanism defined above, it is possible to
construct $nPCE$ grammars generating array languages under some way to regard a graph as a
two-dimensional array. In Aizawa and Nakamura [1], it is shown that, for any given context-
ffee array grammar $G$, there exists an $nPCE$ grammar $G$

’ such that $L(G’)$ is regarded as a set of
two-dimensional array, $L(G)$ . However, describing the $nPCE$ grammars generating array
languages needs somewhat clumsy production rules especially in path descriptions. So, $nPCE$

grammars using partial path group to describe paths in the embedding functions seems to be
more suitable for describing patters having some geometrical structures. We review here the
definitions of the partial path groups. For more precise definitions of the partial path groups,
see Rosenfeld [7].

Definition 2.4. Let $H$ be a connected graph of degree $d$, i.e., no more than $d$ edges emanate
ffom any node. By an edge coloring of $H$ we mean an assignment of colors to the edges of $H$

such that the edges emanating ffom any given node $aU$ have different colors.

Definition 2.5. Let $p$ be a node of a graph $H$ and let $\pi$ be a string of colors. Then $p\pi$ is
defmed as the terninal node of the path defined by $\pi s$tarting ffom $p$ , provided this path is
realizable. For convenience, let us defme a fictitious “blank” color representing “no move”. It
is obvious that the structure defined above resembles a group structure called”partial group”.
From now on we $shaU$ refer to this partial group as the partial path group of $H$ defined by
given coloring, and denote it by $\Pi(H)$ .
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Note that the partial path groups can be defined on a graph generated by a graph grammar
by regarding the edge labels of the generated graph to the $col\alpha s$ mentioned in above defmitions.

Definition 2.6. Let $a=c_{i_{1}}c_{i_{2}}\ldots c_{i_{k}}$ be a string of colors. The string $a$
’ is called an

elementary reduction of $\alpha$ if one of following statements is true:
a) $k>1$ ; for some $1\leq j\leq k$ we have $c_{i_{j}}=c_{0}$ ; and $a’=c_{i_{1}}\ldots c_{i_{j- 1}}c_{i_{j+1}}\ldots c_{i_{k}}$ .
b) $k>2$; for some $1\leq j<k$ we have $c_{i_{j}}=c_{i_{j+1}}$; and $a’=c_{i_{1}}\ldots c_{i_{j- 1}}c_{i_{j+2}}\ldots c_{i_{k}}$ .
c) $k=2;c_{i_{1}}=c_{i_{2}}$ ; and $a’=c_{0}$ .
The string $\alpha$

’ is called a reduction of $a$ if there exists strings $\alpha=\alpha_{0},$ $\alpha_{1},$ $\ldots,$ $a_{m}=\alpha$
’ such that

$\alpha_{i}$ is an elementary reduction of $a_{i- 1},1\leq i\leq m.$ $a$ is calledfully reducible if $\alpha=c_{0}$ , or if $c_{0}$ is a
reduction of $\alpha$. $\Pi(G)$ is calledfree if $P\alpha=P$ implies that $a$ is fully reducible.

Definition 2.7. A partial path group $\Pi(H)$ is called near-abelian if each color except blank
color commutes with all but one of the other colors, and does not commute with the remaining
one.

It is shown in Rosenfeld [7] that the free near-abelian partial path groups with four colors
correspond to a subgraph of a two-dimensional array.

We define $nPCE$ grammars using embedding functions with near-abelian partial path
groups to describe paths.

Definition 2.8. A $nPCE$ grammar with 4 colors free near-abelian partial path groups,
denoted as $nPCE_{\Pi 4}$ grammar, is a construction
$G=<\Sigma\Sigma,$ $P,$ $Z,$ $\Delta_{N},$ $\Delta_{E}>$ , where $\Sigma\Sigma,$ $Z,$ $\Delta_{N},$ $\Delta_{E}$ are same as in the definition of
$nPCE$ grammars provided that $\Sigma=\Delta$ and $I\Delta_{E}1=4$ . $P$ is a finite set of production rules of forn
$(a, \beta, \psi_{\Pi 4})$ , where $\psi_{\Pi 4}$ is a mapping from $\Sigma E^{+}$ into $(V(\beta)\cross\Sigma E)$ provided that if $\psi_{\Pi 4}$ maps $\pi$

into $(i, c)$ for some $c\in\Delta_{E}$ , then $c$ is the reduction of $\sigma\pi$ , where $\sigma$ is the path between node 1 to $i$

in $\beta;\psi_{\Pi 4}$ is called embedding function with 4 colors near-abelian partial path groups. For a
path $\pi,$ $\psi_{\Pi 4}(\pi)$ implies the shortest realizable path equivalent to $\pi$ under near-abelian partial

path groups instead of $\pi$ itself.

In the $nPCE_{\Pi 4}$ grammars, we use $\psi\Pi 4$ instead of the embedding function $\psi$ of $nPCE$

grammars. In this case, $arbi\alpha arily$ long paths can be used to embed the newly replaced graphs.
Since the derivation steps of our $nPCE_{\Pi 4}$ grammars are proceeded in the context-free node-
replacement style, there are no insurance that the degree of each node is always at most 4 and
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the edges emanating from any given node have always different colors. In such cases, even if
$a$ is fully reducible, $Pa$ may not be P. However, the embedding mechanism of $nPCE$

grammars $s\dot{u}u$ works correctly for such cases as far as using the shortest realizable paths.
One of the advantages to introduce the partial path groups into the path controlled

embedding mechanism is flexibility of describing various structures. As mentioned above,
two-dimensional square arrays correspond to free near-abelian groups with 4 colors, and other
types of arrays (triangular, hexagonal) correspond to other types of abelian groups. The partial
path groups allow us to treat other classes of graphs (such as trees and hypercubes etc.) in
addition to arrays, and they have very simple characterizations. For detail discussions of those
structures, $s$ee Rosenfeld [7]. The partial path groups for more complicated structures are
discussed in Melter [4].

DefinItion 2.9. An $nPCE_{\Pi 4}$ grammar is called having uniform embeddingfunction, denoted
as $U- nPCE_{\Pi 4}$ grammar, if the following conditions for embedding function$s$ hold.

(1) For each pair of production rules $p_{i}=(a_{i}, \beta_{i,\psi\Pi 4_{i}}),$ $p_{j}=(a_{j},$ $\beta_{j},$
$\psi\Pi 4_{j^{)}}$ and a path $\pi\in\Sigma E^{+}$ ,

if both of $\psi\Pi 4_{i^{(\pi)}}$ and $\psi_{\Pi 4_{j}}(\pi)$ are defined, then $\psi_{\Pi 4_{i}}(\pi)=\psi_{\Pi 4_{j}}(\pi)$ .
(2) For each production rule $p=(a,$ $\beta,$ $\psi\Pi 4^{)}$, if $\psi_{\Pi 4}(\pi)=(v, c)$ is defined for some $\pi\in\Sigma E^{+}$ and

$v=1$ , then $\psi\Pi 4^{(\pi^{R})}$ is also defined and $\psi_{\Pi 4}(\pi)=\psi_{\Pi 4}(\pi^{R})$ .
(3) For each production rule $p=(a,$ $\beta,$ $\psi\Pi 4^{)}$ , if $\psi_{\Pi 4}(\pi)=(v, c)$ and $v\neq 1$ , then there exist $p$ and

$\sigma$ such that $\pi=p\sigma^{R},$
$\psi\Pi 4^{(}P$)$=\psi\Pi 4^{(}P^{R_{)=(1,c)}}$ and $\psi\Pi 4^{(}p^{R}\sigma$) $=\psi\Pi 4^{(\pi)}$ are defined, and $\sigma$

is a shortest realizable path between node 1 and $v$ in $\beta$ .

So we can describe a $U- nPCE_{\Pi 4}$ grammar $G$ as a construction $G=<\Sigma N,$ $\Sigma E,$ $P,$ $\psi_{\Pi 4},$
$Z$,

$\Delta_{N},$ $\Delta_{E}>$, where $\psi_{\Pi 4}=U_{Pi\in}p\psi_{\Pi 4_{i}}$ and each production rule has no exclusive embedding
function.

3. Confluent derivations on PCE embedding

As defmed in the last section, $nPCE$ grammars are context-free in the sense that one node is
replaced without considering any other part of the rewrited graph. However, the grammar may
still be context-sensitive in the sense that generated graph depends on the order in which the
production rules are applied. A graph grammar is said to be confluent, if derivation steps on
distinct verices can be done in any order.

Definition 3.1. Let $G$ be an $nPCE$ grammar. $G$ is confluent, denoted as C-nPCE grammar,
if the following condition holds for every sentential form $H$ of $G$ : Let $v_{1}$ and $v_{2}$ be distinct
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nodes of $H$ labelled with nontenninal labels, and let $P1$ and $P2$ be production rules applicable to

$v_{1}$ and $v_{2}$ , respectively. If $H_{12}$ is derived from $H$ by applying $P1$ at frst then $P2$ and $H_{21}$ is
derived by applying $p_{2}$ at frst then $p_{1}$ , then $H_{12}=H_{21}$ .

The class of $aU$ graph languages generated by U-nPCE grammars are included in the class
of $aU$ graph languages generated by C-nPCE $\Psi^{ammars}$ .

Theorem 3.1. For any given $nPCE_{\Pi 4}$ grammar $G,$ $G$ is confluem if $G$ has uniform
embedding function.

Proof: Let $G=<\Sigma NE,\Pi 4$

sentential form $H$ of $G$, let $v_{1}$ and $v_{2}$ be distinct nodes of $H$ labelled with nonterminal labels,

and let $p_{1}=(a_{v_{1}}, \beta_{1})$ and $p_{2}=(a_{v_{2}}, \beta_{2})$ be production rules applicable to $v_{1}$ and $v_{2}$ ,

respectively. If $v_{1}$ and $v_{2}$ are not neighbors of $H$ and any pair of nodes Rom $\beta_{1}$ and $\beta_{2}$ do not

become neighbors by applying both rules, then obviously $H_{12}=H_{21}$ . If $v_{1}$ and $v_{2}$ are
neighbors of $H$ and the node ls of $\beta_{1}$ and $\beta_{2}$ are not neighbors, then at least one of the
production mles is not applicable. This is a contradiction. Assume here that $v_{1}$ and $v_{2}$ are not

neighbors in $H$ and become neighbors after applying $p_{1}$ and $p_{2}$ . There exist four possible
cases.
Case 1: Node ls of $\beta_{1}$ and $\beta_{2}$ become neighbors.

From the definition of uniform embedding, there exists a path $\pi$ ffom $v_{1}$ to $v_{2}$ and
$\psi_{\Pi 4}(\pi)=\psi_{\Pi 4}(\pi^{R})=(1, c)$ . Thu$s$ obviously $H_{12}=H_{21}$ .

Case 2: Node $i\neq 1$ of $\beta_{1}$ and node 1 of $\beta_{2}$ become neighbors.

From the definition of unifonn embedding, there exists a path $\pi$ ffom $v_{1}$ to $v_{2}$ such

that $\psi_{\Pi 4}(\pi)=(i, c)$ and $\pi=p\sigma$ where $\sigma$ is the path between node 1 to $i$ in $\beta_{1}$ and $c$ is

the reduction of $p$ . $\psi\Pi 4^{(}P^{R}$)$=(1, c)$ is also defined. Since $c$ is an element of $\Delta_{E},$ $c$

is also the reduction of $p^{R}$. Then $H_{12}=H_{21}$ .
Case 3: Node 1 of $\beta_{1}$ and node $i\neq 1$ of $\beta_{2}$ become neighbors.

Same as in the Case 2.
Case 4: Node $i\neq 1$ of $\beta_{1}$ and node $j\neq 1$ of $\beta_{2}$ become neighbors.

In this case, the path $\sigma_{i}$ ffom node 1 to $i$ in $\beta_{1}$ is equal to the path $\sigma_{j}$ from 1 toj in $\beta_{2}$

under $\Pi 4$ since $c$ of $\psi_{\Pi 4}(\pi\sigma_{j})=(i, c)$ is the reduction of $\pi$, and also the reduction of
$\sigma_{i^{R}}\pi\sigma_{j}$ . Then from the fact $\psi_{\Pi 4}(\pi\sigma_{j})=\psi_{\Pi 4}(\pi^{R}\sigma_{j^{R}}),$ $H_{12}=H_{21}$ .

The case in which $v_{1}$ and $v_{2}$ are neighbors in $H$ and are also neighbors after applying $P1$ and $P2$

is proved in the almost same way as in the above case.
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4. Array languages defined by U-nPCE grammars

In this section, we introduce two mappings which map graph languages generated by U-
$nPCE_{\Pi 4}$ grammar into the set of amy languages. Then, we investigate the generative powers
of $U- nPCE_{\Pi 4}$ grammars as the amy patterns generators.

$Definit\ddagger on4.1$ . A mapping $k$ from a graph generated by $U- nPCE_{\Pi 4}$ grammars into two-

dimensional arrays is such that
(1) The horizontal neighborhood on array is defined as the set of edges labelled with two
colors, say $h$ and $h’$ , which do not commute each other.
(2) The vertical neighborhood on array is defined as the set of edges labelled with remaining
two colors, say $v$ and $v’$ , which also do not commute each other.
(3) The label of each node is the symbol in the corresponding position of array.
(4) For a graph $H$ which has $mlore$ than one node mapped to a position, $k(H)$ is undefined.

The mapping $k$ can be extended to the set of graphs in two different ways.

Definition 4.2. For any given graph language $L(G)$ generated by a $U- nPCE_{\Pi 4}$ grammar,

(1) $K(L(G))=\{_{undefined^{otherwise^{defined}}}^{K=\{k(g)g\in L(G)\}_{ifk(g)is}}|$
for $aU$ elements of $L(G)$

(2) $K’(L(G))=$ { $k(g)1g\in L(G)$ and $k(g)$ is defined}.

Both $K$ and $K$ ’ can be extended to the families of languages in the natural way, i.e.,
$K(X)=$ { $K(L(G))$ I $G$ is a grammar in X} and $K’=$ { $K’(L(G))$ I $G$ is a grammar in X}.

From the definitions of $nPCE_{\Pi 4}$ grammars and uniform embedding, it is not so difficult to

see the following lemma holds:

Lemma 4.1. $RK’(U- nPCE_{\Pi 4}))=\mathcal{F}(CFAG)$ .

The same result is obtained in Aizawa and Nakamura [1] but the concept of uniform
embedding is not used in it. If $aU$ production rules of a $U- nPCE_{\Pi 4}$ grammar is restricted to be
strongly linear, i.e., the right hand $s$ide of each rule has at most one nonterminal$s$ and there
exists a single-stroke path covering the whole of the right hand side (see Yamamoto, et al. [8]

for more detail definition), denoted as $U- nPCE_{\Pi 4}$-SLAG grammar, then following corollary is
obtained:

Corollary 4.1. $\mathcal{F}(K’(U- nPCE_{\Pi 4^{-}}SLAG))=\mathcal{F}(RAG)$ .
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Once we use the mapping $K$ instead of $K’$ , the situation is entirely changed. In fact,
$RK(U- nPCE_{\Pi 4})$ is no longer equal to S(CFAG).

Lemma 4.2. $\mathcal{F}(K(U- nPCE_{\Pi 4}))\subset$ I(CFAG).

$RK(U- nPCE_{\Pi 4}))$ is incomparable with RRAG).

Proof.$\cdot$ It is easy to see that $\mathcal{F}(K(U- nPCE_{\Pi 4})\subseteq \mathcal{F}(CFAG)$. Thus, to prove $\mathcal{F}(RAG)$ is not

included in $\mathcal{F}(K(U- nPCE_{\Pi 4}))$, assume that there exists a $U- nPCE_{\Pi 4}$ grammar $G$ such that
$K(G)$ is the set $R$ of $aU$ rectangles. As shown in Yamamoto, et al. [8], $R$ is in RRAG). If such
grammar $G$ exist, at least one production rule $P$ is applied to a nonterminal node which is
generated from a nonteminal node of the right hand side of $P$ itself. Since otherwise $arbi\alpha ary$

large pattem cannot be generated by application of rules whose right hand sides have constant
size. If so, we can remove the array pattem generated from the frst application of $P$ and then
connect the array pattern generated from the second application of $P$ without any shearing
effects since $K$ is defined for G. Such a removed array pattern is finitely large unless there
exists another repeated rule $P’$ . So $G$ is not the set of $aU$ rectangles. If such $P$

’ exists, then
repeated application process of these rules proceed independently. Again $G$ is not the set of all
rectangles. This is a contradiction.

The results of this section.are summarized in the following theorem:

Theorem 4.1. The diagram in Fig. 2 holds.
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$O_{1}arrow$

$\psi(h)=(1,$ h)

$\psi(v)=(1,$v)

$\psi$
(vh) $=(2,$v)

(a) (b)

(c)

Fig. 1. An example of derivations of nPCE grammar.

$\mathcal{F}(K’$ (U-nPCE $\Pi 4^{))}=\mathcal{F}(CFAG)$

Fig. 2. Hierarchical results.


