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Existence of positive entire solutions

for semilinear elliptic systems

Yasuhiro Furusho (Saga University)

(& 72 . )

1. Introduction

The existence of entire solutions of semilinear elliptic

systems

Lu¥ = af¥x,u,pu¥) inRY, N>22, k =1,2,....M (1)

with conditions

u(x) > 0 in RY and 1im u(x) = ¢ 20 (2)

[X |-
will be considered, where L is a uniformly elliptic operator of
second order in RN, A is a real constant, u = (ul....,uM), and ¢
= (gl,...,gN), M > 1. A vector valued function u is said to be
an entire solution of (1) if it is of class C2(RN;RM) and
satisfies (1). 1Inequalities between vectors are defined to hold
componentwise.

For the scalar equations, i.e. M = 1, the existence theor&
of positive entire solutions of (1) with (2) has been greatly
developed by many authors (see eg. [3]-[61, [8], [15], [16] and
references therein). On the other hand; for the systems,
although thére are some interesting works on the existence of
positive solutions ({1], [2], [8]-[11], and [16]), most of the
literature has been devoted to systems of the form

Lu¥ = ar¥x,u) inRY, k = 1,2,....M, | (3)
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with the structure condition thét + is quasimonotone in u, that
is, each fk is either‘increasing or decreasing in uJ for j # k.
However, very little is known about systems even for (3) unless
f satisfies monotonicity conditions.

The objective 6f this paper 1is to deveiop the existence
theorem on positive entire solutions for general systems of the
form (1). More precisely, we give sufficient conditions for
system (1) to have entire solutions satisfying (2) regardless
the monotonicity condition for ¥. Further peculity of our

consideration is that we can treat system (1) in which fk

contains on the gradient of uk.

OQur results can be applied to the following systems

- au v c()u = M@ (U + @, (VP + & (x) DUl
| (A)

- AV + e(X)V = M@y (x)UP + Dpp (X)IVT + Bya(x) IDVIT)

in RN, N 2 3,

and

x@(x)uavs(l + pllu? vb)

!

>

[=
]

* Pig
(B)

- Av

fTRRY o T R N
AP(x)uv7 (1 + Py U+ Py,V ),- in R, N > 3,

where A is N-dimensional Laplacian, c¢ is a nonnegative function
in RN, A is a real constant, o, 8,..., T are nonnegative andvpij
are constants. Although these systems have.very simple forms,
the previous existence theorems cannot be applied to (A)
provided that either one of ¢,, and ®,, changes sign in RY or
le(x)'®21(x) < 0 at some points in RN, even if nbt only ®13 Z 0

and @23 # 0 but aolso @13 = ®23 = 0. For system (B) with
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positive ¢ and ¥, since the monotonicity condition generally

breakes in the case Pio # 0, we cannot directly apply the

"Pa1
previous results. Applying our theorems to the systems (A) and
(B), we see that there exist infinitely many positive entire

solutions of (A) and (B) tending to positive constants as [x| =

o, provided c, Qij’ ® and ¥ satisfy the integral condition such

00
that I rh*(r)dr < o, where h*(r) = max lh(x)| for continuos
0

IXl=r
function h in RN. We are also able to see the existence of
decaying solutions for (A) and (B). For the detail see Examples
1 and 2 below.

The main tool of the proof of existence theorem is the
barrier method (supersolution-subsolution method).  The varrier
method for systems was first established by Sattinger[18] for
the boundary value prqblems in bounded domains and then extended
by Kawano[8] in the entire space case for M = 2. Furthermore,
in the recent preprint Kusano and Swanson[11l] also generalize
the theory to M > 2, and apply to the study of even order
elliptic equations. These barrier methods are based on the
monotone iterative technique, and so the quasimonotonicity for
f in u is essentially assumed. Therefore, we cannot use the
previous theory to see the existence of solutions for general
systems (1). So, we first prepare thé generalized barrier
method for systems (1) in Lemma 2 below. This method was first
established by Tsai[21] for the boundary value problems in

bounded domains (see Lemma 1 below). Especially, if each fk

in
(3) is increasing, Lemma 2 covers the results of Kawanol[8;
Theorems 5.1 and 5.2} and of Kusano and Swanson [11; Theorem

2.1]. To apply the barrier method for (1), we employ the
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Jexistence and asymptotic behavior at infinity of solutions for
fsecond order linear elliptic equations.
Our main results are stéted in Section 2 and are proved in
section 3. In the final section, we give some corollaries and

typical examples illustrating our theorems.

2. Statement of main results

Let L in (1) be a second order differential operator of the

form

N N
L = - ( > aij(x)Di' Elbi(x)Di) + ¢ (x)-,

+
i,j=1 J g
_ _ A2
where D, = 8/8xi and Dij =9 /axiaxj, 1 <1i,j £ N. VWe use
the following notation:

A(x)

It

N 2
i,§=laij(X)xixj/IXI ,
N
2

B(X) {bi(xi)xi + aii(x)} - A(X) /IX]:

i=1

h*(r) = max Ih(x)I/A(x), r > 0, for a h € C(RY;R).
Ix|=r :

A vector u = (ul,...,uM) is said to be positive (or

nonnegative) and is denoted by u > 0 (or u > 0), if all the
components are positve (or nonnegative). Furthermore, we denote
the vector (1,...,1) by 1.

Throughout this paper, we assume that L satisfies the
following conditions (Hl)—(Hs):

0 N, ]
1OC(R iR), ceC

a,., Cl+9(RN;R), b loc

N.g

i
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1 <1i,j £ N, where R+ = [0, ») and 0 < 8 < 1.

(H2) Matrix Caij(x)) is uniformly positive definite in RN.

. . 0 .
(H3) There exists a function B, € Cloc(R+’R) such that

B*(r) < minlx|=rB(X)/A(x) for r > 0 and

00

Ilexp(-fZB*(s)ds)dr < o,

For the examples of L satisfying (Hl)—(H3) we refer to
[4]-[6](see Remark 4 below).
To state our main results we need the following functions

P, and n, defined by, respectively,
r 00
p*(r) = exp(j B*(s)ds) and n*(r) = f ds/p*(s)- for r > 1.
1 r

For the nonlinear term f = (fl,...,fM) some of the

following conditions are assumed to be satisfied:

(F,) + € Cgéc(RNxRMxRN;RM) and for each k and for any

1
bounded domain Q there exists a nondecreasing function

q:g € C(R_:R,) such that

1£%(x,u,p) | < ¥5(1ul) (1 + Ip1?)
for (x,u,p) € QXRMXRN, where |u| = {(ul)2 + ...+
(uM)Z}l/Z (Nagumo's condition).
. 0 N,
(Fz) There exists a bounded function G € Cloc(R ,R+)

together with a positive consfant Jo such that

18 (x,u,p)l < G(x), xRV, lul <J., Ipl <J

0’ 0,

% *
and ‘rlp*(r)n*(r)G (r)dr < .

(F3) There exist open sets Qk’ 1 £ k £ M, constants J1 >0
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and ¥y € (0,1) such that each fk satisfies the following
conditions (i) and (ii):

(i) fk(x,u,p) 2 0 for x € RN, 0<ucx Jll, Ipl < Jl,

(ii) lim inf fk(x,u Le.,ut e

t=+0

for some m > 0 uniformly in (x,u,p) with x € Qk, 0 < uJ

<J ,‘J # k, and Ipl < Jl.

1
Our main theorems are as follows.

‘"Theorem 1. Assume that (Hl)—(Hs), (Fl) and (Fz) hold. If

00

[ i, et (mar <, (4)
1 o

then there exists K* > 0 such that, for every A with [A] < k*,

(1) has infinitely many positive entire solutions u satisfying

(2) with ¢ = (¢1,....¢MH > 0.

Theorem 2. Assume that (Hl)-(HS) and (Fl)—(F3) hold. Then

there exists A" > 0 such that for every X € (O, x*) (1) has a

positive entire solution u satisfying limlxlawu(x) = 0.

3. Proofs of Thearems

We first give the barrier method for the system in the

bounded domain.

Lemma 1. Assume that L satisfy (Hl) and (Hz). Let Q be a

bounded domain in RN, + satisfy (F;) and ¢ be of class .

CZ+9(ﬁ;RM). Suppose that there exists a pair of functions V and

W of class C2+9(5;RM) such that V < W in Q,

Lv¥(x) < £¥(x,0,0v%(x))



34

k

for any o € RM satisfxihg Vj(x) < oj < Wj(x) for j #k, O

Vk(x) at each fixed x € Q,

Lwk(x) > £X(x,t,DW¥(x))

for any v € R satisfying vJ(x) < ©J < w(x) for j = k, <& =

Wk(x) at each fixed x € Q, k =1,...,M, and V < ¢ < W on 9Q.

Then the bouﬁdary value problem

[

k k

{ Luk 'fk(x,u,Duk) in Q,
u = @ on 9, k=1,2,...,M

has a solution u € c2*8(q;rY) satisfying V < u < W in Q.

This lemma was proVed by Tsai [21; Theorem 2.2] under more
general conditions concerning ¥ by using Leray-Schauder's fixed
point theorem. So we omit the proof. See also [12; Theorem

3.4.4] and [14; Theorem 1.4.2].

We now extend Lemma 1 to system (1) in RN as follows:

Lemma 2. Let L satisfy (Hl) and (HZ) and assume that

satisfies (F;). If there exists a pair of functions V and W of
class C%SE(RN;RM) such that V < W in RN,

LvE(x) < 2%(x,0,0v%(x)) ()

M J J J Kk _ ok

for any 0 € R satisfying v'(x) < ¢’ < W(x), j # k, 0 = V (X)
at each fixed x € RV, and

LW (x) = a¥(x,©,DW5(x)) | (6)
for any t € RM satisfying Vj(x) < tj < wj(x), j # k, tk = Wk(x)
at each fixed x € RN, k =1,2,...,M, then (1) has an entire

solution u with V< u < W ig_RN.

Proof. It is enough to show the assertion in the case A =1.
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For 2 € N, put BQ = {x € RN: |x] € 2} and consider the boundary
value problem

k

Lu fk(x,u,Duk) in B

Q'!
(7)
k k '

u =W on 9B k=1,2,...,M.

l’
The restrictions of V and W to EQ satisfy the conditions in

Lemma 1 for problem (7). So, for every & € N there exists at

2+0 < w

least one solution u, eC (EQ;RM) of (7) satisfying V < u

[}

in EQ. Take a solution uﬂ of (7), extend it to RN by putting

equally to W outside ﬁQ and denote it by uQ again. Then each uQ
is continuous in RY ahd satisfies

V < u, < W in RY. (8)
Therefore the sequence {uQ} is locally uniformly bounded in RN.

Furthermore, note that for évery 22>2m+ 3, m €N, uy satisfies

the equations

Luﬁ(x) - fk(x,uﬁ(x),Dui(x)) in B K =1, 2,....M.  (9)

m+3’
Applying the interior estimates of [13; p.266, Theorem 3.1] for

the solution of (9) regarded as a single equation for ui, we

have
k . = -
max {IDuQ(x)I. X € Bm+2’ k=1,2,...,M} < Kl’ (10)
where K1 is a constant independent of u, for 4 > m+3.
Furthermore, by interior LP-estimates we obtain
k k k
Nugly oo ome1 < KpUIE(x U, Dug)lly o o+ Mugly oo nials (11)
where |l "j p.m denotes the norm in the Sobolev space Wj’p(Bm).

Since by (10) the right hand side of (11) is bounded for £ =2 m +
3, taking p such that p > N/(1-0) and using Spbolev's imbedding
theorem, we see that the sequence {uQ}Q

1+0 = .pM
space C (Bm+1'R ).

Sm+3 is bounded in the

Furthermore, Schauder's interior estimates
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. k
for the solution ul of (9) regarded as a linear equation for ul

imply the boundedness of {u in the space sze(ﬁﬁ;RM) for

o} gome+3
every m = 1. Therefore by Ascoli-Arzela's theorem we can choose
a subsequence {ul(j)} of {uﬁ} such that it converges to some
function u € CZ(RN;RM) uniformly in any compact set in RN

together with their derivatives up>to the second order. Then by

1 and V<ux<¥W

(8) and (9) we see that u satisfies (1) with A
in RN.

For the simplicity we consider (1) with X\ 1 in the

following corollaries.

ICJ‘

as in Lemma 2. Assume that

Corollary 1. Let and f
wd

each fk is nondecreasing in for j # k. If there exists g'

pair of functions V and W of class Cigg(RN;RM) such that V < W

in RN, and

k

vk < £5(x,V,ov%), w¥ = f¥x.W.ow%) in RY, kK = 1,2,....M,

then system (1) with A = 1 has a solution u satisfying V<ux<V
in RY.

Corollary 2. Let L and ¥ be as in Lemma 2. Assume that

eac £* is nonincreasing in u’ for j # k. If there exists a pair

of functions V and W of class Cigg(RN;RM) such that V < W in RY,

and
v < 8o wt, L W yK wEr L WM pvE)  in RY,
LWk > Rk, vt L VR WK vEr L yM o) in RY,
k =1,2,...,M, then (1) with A = 1 has a solution u satisfying

V<usx<WinRY,
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Remark 1. (i) Corollary 1 is the usual supersolution-
subsolution method and was proved by Kawano [8] and by Kusano

and Swanson [11] in the special case where L = - A and each fk

is independent of Duk.
(ii) Corollary 2 contains the result of Kawano [8; Theorem.SZZj

' as a special case.
We are now ready to prove our theorems.

- Proof of Theorem 1. By (Fz) and (2), Theorem 2.2 in [5]

guarantees the existence of the functions V and W of class

C%SE(RN;R+) with finite C1 norms such that
LV = - G(x), LW =G(x) in RN
0<Vs<W inRY ; (12)
11m|xl%wV(x) = limlxlamW(x) = §.> 0

Put now A" = Jo/max{HVHl, HWHl}, and let 0 < A < \*, where V =

vl, W = wl in RN, and

Wi, = sup{IV(x)| + IDV(x)I: x € RV},

By (12) and (F,), the functions V = gV and W = EW with £ € (n, ")

satisfy (5) and (6), respectively. In fact

LVk(x) = - EG(x) < - A\G(x) < - xfk(x,o.DVk(X))

for any o € RM such that Vj(x) < oj < Wj(x). J # Kk, ak = Vk(x)

at x € RN. (8) is similarly satisfied by W. Therefore, Lemma 2

guarantees the existence of a solution u of (1) satisfying 0 < V

<u<Win RN, and so lim u(x) = lim V(x) = 1im °°W(x)

| x |20 | X | =00 Ix]|-—

= £t > 0. sSince £ € (A, \") is arbitrary, infinitely many

- 10 -
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solutions of (1) exist.

Replacing ¥ by - ¥, we have the conclusion for negative X\.
This completes the proof.

Proof of Theorem 2. Let W e Ci ;R,) be a solution of

~

LW = G(x) in RN

(13)

lim, (X) = 0.

lxlqm

The existence of such W is guaranteed by (Fz) and [5; Theorem
2.2]. Now we put A" = min{Jo; J1/HWH1}, where W = wl. As in
the proof of Theorem 1, we see that the function W = x@
satisfies (6) in which V(x) is replaced by O provided 0 < A < AT

We next construct a function V satisfying (5). By (ii) of
(F3) we can choose a constant § € (0, J1] such that

1 k-1 k+1 M

fk(x,u ,ee.,u T, t,u s...up) =2 mt¥/2 (14)
provided x € Qk’ 0 < uj < Jl’ j#k, 0<t <38, and Ipl < Jl
Take now a nonnegative function Gg € Cg(RN;R) such that ¢ # supp

k
Go cc Qk and

Gg(x) < min{AG(x), m/2} for X € supp Gg. (15)
By [5;Theorem 2.2], there exists a positive function Vk €
i;g(RN R) satisfying
LVk = Gg(x), in RN, and llmlxl* V (x) % 0. (18)

From (13), (15), (16) and the maximum principle, we have V < W

N o “K,on . K
in R7. Put now K = min, . w@in{V'(x): x € supp Gy} and u = min

{1, (XK?)l/(l—Y), 5/“0"1}, and define a function V by V = uV in

RN. Then by (14) and (i) of (F3) we see

- 11 -
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LVE(x) = w63 (x) < n(m/2)uv¥(x)) 7Y (v x)?
= )P x)) Y ms2) (v (x)) Y < af%(x, 0, DvE(x))
. M . j . K _ ok
or any ¢ € R” satisfying 0 < o0’ < J j #k, o =V (x) at each

1’
X € RN. Since 0 <V < W < Jll in RN, V and W satisfy the

conditions in Lemma 2. Therefore, the existence of the desired

solution of (1) follows from Lemma 2.

4. Some Corollaries and Examples

The following Corollary is a direct consequence of Theorems

1 and 2.

Corollary 3. Assume that (Hl)—(H3), (Fl), (Fz) and (4)

hold. If moreover the set & of indices k such that fk satisfy

condition (F3) is not empty, then there exists A" > 0 such that,

for every x € (0, k*), (1) has infinitely many positive entire

solutions u satisfying lim

ux) = ¢ = (g5, ¢" with ¥ >

| x |-

0 for kK ¢ & and gk >0 forvk € K.

The conclusions in Theorems 1 and 2 are not generally valid
provided A\ is large enough. We next give sufficient conditions

for (1) to have positive solutions for any i € R.

Corollary 4. Assume that (Hl)—(HS) and (4) hold. Let F be

nonnegative and satisfy condition (Fl)' Furthermore, suppose

that there exists a function F € CEOC(RNXRMXRN;RT) satisfying

the following conditions (i)-(iii):

(i) F satisfies Nagumo's condition and (Fz).

- 12 -
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(ii) Fk is nondecreasing with respect to u! for j # k, and

satisfies

fk(x,u,p) < Fk(x,u,p) for (x,u,p) € RNXRTXRN.

(iii) For any fixed £ > 0 there corresponds Ty > 0 such that

F(x,tu,tp) =2 t¢F(x,u,p), (x,u,p) € RNxRTxRN

provided t > To (or provided t € (0, to))-

Then, for every A € R there exist infinitely many positive

entire solutions u of (1) tending to some positive constant

vectors as Ix| = o,

Proof. We only prove the assertion in the case where

condition (iii) in (F3) holds for <t > To- It is enough to
consider system (1) with A = % 1.

From Theorem 1 and its proof we see the existence of X >0

2+0

N.pM
1oc(R ,R+) such that

and w € C

ka = XFk(x.w,Dwk) in RN, 1 <k <M,

1im w(x) = §

| x |20
for sbme ¢ > 0. By condition (iii), we can chose To > 0 such
that for any Tt > Ty
F¥(x,tu,tp) 2 (v/X)FF(x,u,p), (x,u,p) € RRRY, 1 < k < M.
So, the function W = t 'w satisfies
¥ (x) = v IRFE (x,w(x) . DwE(x)) = v IRFS(x, W(x) , oowE(x))
> Fk(x,W(x),Dwk(x)), X € RN, 1 <k <M.
Since Fk is nondecreasing in uj, J # k, we have by (ii)
LWk (x) = F¥(x,0,D05(x)) = £¥(x,0,DW¥(x))
k

for any o € RM satisfying 0 < o) < WJ(x), =2k, o = Wk(x) at x

- 138 -
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€ RN.

On the other hand, by the proof of [5; Theorem 2.2] we see.

the existence of a function V € Cigg(RN;R¥) such that
¥ =0 in RY and 1lim V(x) = t'lg.

| X |2
Furthermore, the maximum principle implies V < W in RN, Hence,
by Lemma 2, (1) with A = 1 possesses a positive entire solution

u satisfying V< u < ¥W in RN and so lim u(x) = t—1§ > 0.

| x|=

For A = -1, the proof is simillar. This completes the proof.

Combining the proofs of Theorem 2 and Corollary 4, we also
see the existence of a decaying positive entire solution of (1)

for every X > 0 as follows.

Corollary 5. Assume that (Hl)_(HB)"(Fl) and (F3) hold and

+ is nonnegative in RY, If there exists a function F satisfying

conditions (i)-(iii) in Corollary 2 in which (iii) holds for any

T € (0, to). then for any A > 0 (1) possesses a positive entire

solution u tending to 0 as Ix]| - .

We now give some examples illustrating our theorems. In

the examples below max ih(x)! is denoted by h*(r) for a

IXl=r
continuous function h in RN.

Example 1. Consider the system

- au v c(xu = A (0 + &,V + & (x) 1DuI?)

(17)

- AV + e(X)V = M@y, ()0 + o (x)V + Bya (%) IDVIT)

in RN, N = 3,

where c¢ and ®1J are bounded locally Holder continuous functions

- 14 =
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in RN, «, f#,.. ., and t are nonnegative constants. Let c(x) = 0

in RN, Yy £ 2, t £ 2 and assume

00
Ir{b*(r) + @l ()}r <w, 1=1,2 J=1,2, 3. (18)
1
Then the following statements hold.
(i) By Theorem 1 there exists x* > 0 such that for every X
with Al < x*, (17) has infinitely many positive entire

solutions (u,v) satisffing

lim u(x) = & and 1lim v(x) =1 (19)

| x| =00 | X | =00

with positive £ and n.

(ii) Let all ¢ij be nonnegative and let Qii 0, 1=1, 2,
and 0 £ ¢, 0 < 1. Then, by Corollary 4, there exists x* >0 ‘
such that for every A € (0, x*) (17) has infinity many positive
entire solutions (u,v)»éatisfying (19) with nonnegative £ and 1.

(iii) Corollary 3 impiies that if all of «, B8,..., and t are
smaller than 1, then the same conclusion as in (ii) is valid for
every X > 0. In the case where all of «, 8,..., and t are
greater than 1, the same cbnclusion with positive £ and n

remains valid.

Remark 2. System (17) is considered by Kusano and Swanson

13 = Pp3=

RN, and either 0 £ «, B8, p, 0 < 1 or a,'B.‘D. ¢ > 1. However,

[11] in the case where ¢ = & 0, le > 0 and ¢21 2 0 in

in the general case their results donot cover system (17).

Example 2 Let ® and ¥ be bounded locally Hélder continuous

functions in RN, and consider the system

- 15 -
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- - o B 1% 5
Au = AP(x)u“v (1 + Pi{u’ *+ PioV )
| (20)
- = M,V ' g T N
AV AP (x)uPvi(1L + PyiU + PyoV ), in R°, N > 3,
where o, B,..., and t are nonnegative constants and pij are
constants. If
0 * »*
[rie* ) + ¥ mar <o, (21)
1

then the following statements hold.

(i) By Theorem 1, there exists x* > 0 such that for every
A with Iki < x*, regardless the sign of ¢, ¥ and pij’ (20) has
infinitely many positive entire solutions (u,v) satisfying (19)
with positive £ and 1.

(i1) -Let ®>0and ¥ > 0 in RN, 0o, v<i1, 8 =pu= 0;
and v, 8, 0, Tt be positive. Then Corollary 3 guarantees the
existence of positive entire solutibns (u,v) of (20) satisfying
(19) with ndnnegative £ and n provided X is poSitive and small

enough.

Statement (ii) of Example 2 explains nothing about the
existence of positivekentire solutions decaying to 0 for .(20)
provided one of B and u is positive. 1In the following theorem
we attack this problem. For the purpose we need the following

condition (F4) istead of (F3).

(F There exists J, > 0 such that the following

4) 1
conditions (i) -(iii) hold:

(i) f(x,u,p) =20 for x € RN, 0 £ucx< Jll, Ipl < Jl.

(ii) There exists a domain.QO cC RN and a constant y € (0,1)

- 16 -
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such that

. Y
lim inft4+o¥(x,tl,p)/t > ml

for some m > 0 uniformly in x € QO and p with Ipl] < Jl.

k

(iii) Each f  1is nondecreasing with respect to uJ in (O,Jil

with j # k for any fixed x € RY, uf € (0,3,1 and Ipl < J

1°

Theorem 3. Assume that (Hl)—(HS), (Fl), (Fz) and (F4) hold.

Then there exists A" > 0 such that for every A € (0, »") (1) has

a positive entire solution u tending to 0 as Ix| - o.

Proof. From (ii) of (F4), we can choose a positive

constant JZ such that Jz < Jl and

fk(x,tl,p) > mt¥/2 for x € QO, 0<tx<J ipl < J (22)

2’ 1

Let x* and W be as in the proof of Theorem 2. In the proof of
| k ~k k _ “k
0 and V© as G0 = Go and V

= V, respectively, for all k. Let mu > 0 be as in Theorem 2 and

~

put V = yV. Then, from condition (iii) of (F4), it follows that

Theorem 2, we may take the functions G

LV(x) < kfk(x,a,DV(X))

k

for any o € RM satisfying V(x) < 0'j <J j#k, o = V(x) at x

2’
€ RN, k=1,2,...,M. The assertion follows from Lemma 2 as in

the proof of Theorem 2. This completes the proof.

Example 2(Continued). Consider syétem (20), and assume
that ¢ and ¥ are positive in RY and that 0 < o+ B, n+v<i1,
and pij are nonnegative. ITf condition (21) ﬁblds, then there
exists A" > 0 such that for every A € (0, x*) (20) pas a
positive entire solution (u,v) satisfying (19) with & = n = 0.

In the case where pij =0, 1, j =1, 2, for any A > 0 the
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same conclusion as above is valid.

Remark 3. In the special case where pij =0, i; J=1,2,
system (20) was treated in [4], [8]-[11]. However, in the

general case previous results cannot directly apply system (20).

Remark 4. Although we only consider the examples for the
operator L = - A in RN. N > 3, if for example, the coefficients

of L satisfy the conditions

a.. € L°RY) and 1im inf

1] x lowZi o1bg ()X /1X1 > 0, (23) -

i=1"1

in addition to (Hl) and (Hz), then (Hl)—(Hs) hold for L (see
[4]). Therefore, the assertions in Examples 1 and 2 remain
valid for systems (18) and (20) replaced - A by L satisfyihg
(23). In this case, we replace the 1ntegfal condition for the

coefficients, eg. (18) by

Q0
fo(c*(r) ¢ 97 (r)}dr < =,

*

1j

where c¢' and ¢ as in Example 1.
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