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CONVERGENCE THEOREMS FOR THE
PSEUDO-CONFORMALLY INVARIANT
NONLINEAR SCHRODINGER EQUATION

b %A (Fzkom)

HAavyaTOo NAWA

ABSTRACT. This paper is concerned with the Cauchy problem for the nonlinear

Schrodinger equation;
(@) 2%+ Aut[ufPlu=0,  (42) ERXRV,
u(0, z) = up(x), z €R.

fi<p<i1l+4 -},—, there exists a global solution u, € Cy(R; H!(RN)), for any
uo € HY(RN). If p 2 1+ 4, there is a singular solution exploding its L? norm of
the gradient in a finite time for some uo € H!(R™). Suppose that ug leads to such
a singular solution for p =1+ 7{,—. Let {up} C C(R; H1(RN)) be solutions to (C(p))
for1<p<1+4 1—4\,- We study the behavior of up as p 1 1+ %,—, and we apply the
result to the blow-up problem for solutions of C(1 + ;).

0. INTRODUCTION

This paper is concerned with the Cauchy problem for the nonlinear Schrédinger
equation;

Ju
.Ou N N
(C(P) { 2 o + Au+ |ulf'u =0, (t,z) ERXRY,

u(0,z) = uo(x), z €R.

Here i = v/—1, up € H'(R") and A is the Laplace operator on RV.

The local existence theory for (C(p)) is well known for 1 < p < 2* -1 (2* = %
if N 2 3, = arbitrary number larger than 1 if N = 1,2); for any uo € H}(RY),
there are T, € (0,00] (maximal existence time) and a unique solution u(-) €
C([0, Tr); H*(RY)). Furthermore u(-) satisfies '

(0.1) llu(ll = lluoll,
2
(0.2) Ep1(u(t)) = [Vu(®)||* - mllu(t)llzﬂ = Ep11(uo)-
for t € [0, T,n). For this theorey, see e.g. [6] and [9]. Here || - || and || - |41 denotes

.the L? norm and L?*! norm respectively.
We know (see [6] [8] [9]);
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(i) f 1 < p < 1+ 4, there exists a global solution u, € Cy(R; H(RY)), for any
uo € HY(RY).

(ii) If p 2 1+ %, there is a singular solution exploding its L? norm of the gradient
in a finite time for some ug € H!(RN).

Suppoée that ug leads to such a singular solution for p = 1+ 4. Let {u,} C
C(R; H(RM)) be solutions to (C(p)) for 1 < p < 1+ 4. As we have seen above,
the number p=1+ 747 is the critical number for the existence of blow-up solutions
to C(p). It is a natural question to investigate the behavior ofu, asp 11+ —"ﬁ.

We note that it can occur that

(0.3) lim sup [ju,(t)||s = oo.
p11+ﬁ

Let

(0.4) 1

TNy
sup|lu,(t)l|5/>
teR

where 0 =2 + 4.
We will consider the rescaling function;

(0.5) u:(t, z) = z\,’,vlzu()\f,t, ApZ)
and analyze the behavior of u;}(t,:c) as p T 1+ % in L®(R; L°(RY)). We are

lead in a natural way to the consideration of a function satisfying the following
pseudo-conformally invariant nonlinear Schrodinger equation (see e.g. [19]);

(NS-X) 2%— + Au + Au|Fu =0,
where
(0.6) (0#)A = , Tlirfﬁ Ay NEH1=0)/2(< ),

Now we explain other motivations of our analysis. The nonlinear Schrodinger
equation of the form (NS-)) (with N = 2) arises in a theory of the stationary self-
forcusig of a laser beam propagating along the t-axis in a nonlinear medium (see
e.g. [1] [2] [26)).

(i) In [1] and [2], Akhmanov et al analyzed a laser beam producing two foci on
the t-azis. In their papers, “producing two foci of a laser beam” is explained
as follows; (roughly speaking) a solution to (NS-)) blows up at a time T),, and
it continues beyond T, and blows up again. Their argument, however, seems -
to be “physics” not “mathemtics”. We try to give a mathematical meaning
to the phenomenon of “producing two foci of a laser beam” by our subcritical
approximated approach. (See § 4 Proposition 4.3 and Conclusion.)
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(ii) In previous papers [15], [16] and [17], we have been studying the formation of
singularities in solutions to the nonlinear Schrodinger equation of the form (NS-
A) and the like. Now we know that one can understand the focus of a laser beam
as “mass concentration” phenomena in blow-up solutions to (NS-A). However
the shape of blow-up solutions has not been investigated well. Our subcritical
approximated approach may obtain more information about the shape of blow-
up solution near the blow-up time. (See § 3 Theorem C.)

Our subcriticl approximated approach is inspired by the work of Yamabe [25].

For the simplification of arguments below, in this paper we assume

Assumption.
If u is a semi global solution of (NS-A) such that u € Cy((T,o0); HY(RN)) or
u € Cy((00,T)); HY(RN)) for some T € R, then E}Nu) 2 0.

Remark If N=1 or up € HY(RN) N L?(|z|%dz), this assumption is true (see
Ogawa and Y. Tsutsumi [20] [21]).

Qur main theorem is

Theorem A. Let {p,} be a sequence such that p, T 1+ % and u,, €
C(R; H'(RM)) be a solution to C(p,). Suppose that

Al lim sup ||Vu, (#)|| = lim sup ||u, (¢)||e = oo.

(A1) iz sup [V, O = Jim s, (8]

We put

(A.2) An=Apar  un(t,2) = AN Pu,, (A2, An),
2 o

(A.3) E3(v) = ||Voli? - =Alvlls-

Then there exists a subsequence of {u,} (we still denote it by {u,} ) which satisfies
he following properties: one can find L € N, nontrivial solutions {u’} of (NS-) in
Cu(R; HY(RN)) with E)(w/) = 0 and sequenceces {(sa,y3)} CRXRN for1 S j <L
such that '

(A4)  lim |(sn,98) — (smun)l =00 ( #F),
(A.5) ul = un(- + 84, - +yL) 2 ulin LO(R; HY(RY)),
(A6)  wi= (i — w4 y) 2ol (2 2)in LR; HIRM)),

(A7) lm / (EMwl) — ENui — w) — ENui)}dt = 0, for any I €R,
I .

(A8)  lim [uk(0) — u¥(O)]lo = 0.

Remarks. (1) It is worth while to note that if

L j
(0.7) lim sup||un(t+sn, ) = D wi(t, - = 3 ya)llo >0,

=1

3
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there exists {(s2, y2')} € R x RY such that
08)  (ua—u")(- +sh, - +ur) SuM#0 in IORH'RY)).

One can see that u?! is almost a solution to (NS A) near t = 0.

2 Assumptlon were not true for N 2 2, it could occur L = oo in Theorem A.
(3) If uo is radially symmetric or |Juo|| = "Q", we have L = 1 in Theorem A without
Assumption. Here Q(z) is a nontrivial minimal L? norm solution to

) 4 _ N
Q € HY(RN).
We note that if ||uo]| = ||@Q]], A =1 in (0.6). For (NSF), see e.g. [5] [23].
(4) Theorem A seems to be closely related to a phenomenon which has been ob-
. served in various nonlinear problem by the name of bubble theorem or concentra-
tion-compactness theorem (for example, see [3] [11] [12] [22]).

The rest of paper is arranged as follows;

1. Lemmata ‘
The proof of Theorem A is inspired by the work of Brézis and Coron [3]. One
may see the underlying idea being the method of concentration-compactness
due to Lions [11] [12]. We, however, do not use the general method of it. In
this section we prepare several lemmata to prove Theorem A.

2. Proof of Theorem A
We conclude the proof of Theorem A.

- 3. Application to the blow-up problem for C(1 + N)
Using the idea of section 1, we study the shape of blow-up solution to C(1+ )
near the blow-up time.

4. “Two foci” of a laser beam.
We finish with a suggestion that how understand the “two foci” of a laser
beam as a mathematical theory.

Acknowledgement. The author would like to express his deep gratitude to pro-
fessors D. Fujiwara and A. Inoue for having interest in this study and helpful
discussions. The author is grateful to professor Y. Kametaka who brought papers
(1] [2] to his attention. The author also grateful to professor A. Matsumura who
kindly showed his unpublished numerical results.

1. LEMMATA AND RELATED RESULTS

In this sectioin we prepare several lemmata which is crucial for the proof of
Theorem A. One may find that the argument in their proofs are closely related to
the week compactness result due to Lieb [10] and Brézis and Lieb’s lemma [4].

We will use the following notations;

= Lebesgue measure on RV,
[ f>el={z eRV; f(z) > ¢} (or =the characteristic function of this set),
B(y; R) = {z € RY;|z —y| < R}.



Lemma 1.1. Let 1 < a < f# < v and let g(t,z) be a measurable function on
R x RY such that, for some positive constants Cq, Cg, C.,

(1.1) sup ls®lla £ Ca,
(1.2) sup g5 2 Cs >0,
(1.3) sup [lg(t)I|7 =

tek

Then one has
(1.4) sup p([lg(¢, )l > n]) > C
tek

for some 1, C > 0 depending on a, B, v, Co, Cg, C, but not on g.
Proof. Simple calculation with (1.1) - (1.3) implies that, for sufficiently small n > 0,

/ lg(t,2)|Pde
RN

- / l9(t,2)Pdz + / gt 2)[Pde + / l9(t, z)|Pde
[lg(t,)<n] [n<lg(t,)I<3] _ (g(t,)i>n]

c
<2 sta)lede + [ 9(t,2)|Pd
a J(lg(t,)<n] [n<lo(t,)I<t]
Cs
Yol |g(t,a:)|7dx
4Cy J1e(t, 1>
C c
<L sup ls@®lla + lg(t, z)|Pdz + —2- sup |lg(t)]] 2
4Ca ug( J>a 4Cy ter 7

£ —2ﬂ + #lllg (@)l > Zyp

Thus we have (1.4) with C = —Ciinﬁ.

Lemma 1.2. Letl £ a < oo and let v be a function such that v(-) €
Lo(R; HY(RN)), sup,ep [|[Vo(t,-)||la S C1and supeg p([|v(t, )] > n]) > C; for
some positive constants Ci, n, Ca. Then there exists a shift T, yv(t,z) = v(t +
s,z +y) such that, for some constant § = §(C1, C2,7),

(1.5) ([B(0;1)N [Tuy0(0, )] > 7]) > 6.

Proof. We borrow the idea of Brézis in Lieb [10]. let f be a function such that
f(-) € L=(R; L,oc(RN)), sup,ep || Vf(t,-)lla £ 1. First we claim that there exists a
‘point (s,y) € R x RY such that

(1.6) /C V£(s,2)|%dz < K /C \f(s,2)|°dz,

5
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where
1

K=ld——
supll f(2)]|S”
tchk

. . . 1
C, = cube in RN with center y and the side length —=.

V2

One can easily show (1.6) by simple contradiction arguement. By (1.6) one has
(L7) [ 195+ If(s, 2)%dz < (K +1) [ 1, a)lede.
Cy Sy

On the other hand, by Sobolev’s inequlity we have
a*

a

a8 [ S+ M) 2 S ( / If(s,x)l"'dw) ,
Cy Gy
where ;1;+7{,—=%ifa<Na.nd,ifa§N,a‘isa.rbitra.rywitha<a*<oo. Sis

depends only on a, a*. Combining (1.7), (1.8) and Hdlder’s inequlity we obtain

(1.9) S<(K+1Du(Cyn suppf(s? -))l‘gul.

Now we put f(t,z) = max(v(t,z)—%,0). For simplicity we assume that || Vo(t)||« S
1 so that sup,cp [|Vf(%,-)ll« < 1. From the assumptioin of this lemma we have

(110)  suple(®llz 2 () supu(llo(t, ) > 2] 2 (F)"Ca,
tek  tek

and thus K S 1+ qfﬂ -. From (1.9) we deduce (1.5) for some point (s,y) € R x RY
and some constant é depending only on N, a, 1, C; and C;.

Combining above two lemmata, we have by Ascoli-Arzela lemma

Lemma 1.3. Let 1 < a < # < v and let {v,(¢,z)} be a uniformly equibounded
family in Cy(R; W*(RN)) such that, for some positive constants Cy, Cg, C,

(1.11) ' sup [lva(t)]g £ Cas

tekR
(1.12) sup lva(®)ll5 Z Cp > 0,
(113) sup [on()]17 € Cy.

telR

Suppose that {v,(t,z)} is a uniformly equicontinuous family in Cs(R; L*(RN)).
Then there exist a family of shifts {(sn,yn)} C R x R¥ such that,

(1.14) Ua(: +8n, - +yn) = v#0 in LO(R; H'(RY)),
(1.15) Vn(* + 8ny - +y2) = v#0 strongly in C(I; L)),
for some v € Cy(R; WH*(RN)) (modulo subsequence). Here I x 2 € R x R,

Follwing proposition will play a very important roll in our analysis.

6



Proposition 1.4. Let {fa.(z)} be a bounded sequence of functions in H*(RY)
such that, for some positive constants C,,

(1.16) Ilfn(t)ll" 2Cs >0,

(L.17) tmsup BX(72) = timsup (194l - 214l 0

n—oo

Then there exists a subsequence of { f,,} (we still denote it by { f,,}) szch satisfies
the following properties: one can find L € NU {00} and sequenceces {y.} c RY for
1 £ j < L such that

(L18)  lim |yl —yal=00  (j#FK),

(119)  fi=fa( +yh)— f1#0 weakly in H'R") (j 22),
(120)  fi=(fF =) +y) = £0 weakly in H'(RM),
21 Im{EXNf) - EXNfi- ) - BXf)) =0,

. J
(122)  lim EXNfi-f) £ -3 BN
k=1
(128)  lim |Ify = fillo=0 ifL<oo,

(1.24) im lim ||fi - filo =0 ifL = oo,
j—L n—oo .

(1.25) lim { sup L( " IfE(z) —fl‘(:v)|2da:} =0 if L < oo,
¥ .

n—o00 yEmN

(1.26) lim lim { sup /B( " | fi(x) —fj(z)|2d:c} =0 ifL=o0.
v

j—Ln—oo yERN

Proposition 1.4 is a time independent version of Lemma 1.3 with a = 2*, 8 = 0,
4 = 2 and the extra condition (1.16). For its proof, we also need Brézis-Lieb’s
lemma [4] (see Lemma 1.5 bellow). In fact (1.16) together with Brézis-Lieb’s lemma
imlpies (1.20) and (1.21). One can find a complete proof in Nawa [16].

Remarks. (1) Proposition 1.4 asserts that f, behaves like a superposition of
several parts fl, f2,---, fL (L may be infinite) as n — oo.
(2) Above arguments are somewhat related to those used in Lions [11] [12], Brezm
and Coron [3] and Struwe [22].

Proposition 1.4 is very useful to study “mass concentration” phenomena in so-
lutions to (C(1 + %7))- In [16], we proved following theorem by using Proposition
1.4 (with X\ = 1) and the characterization of minimal L? norm solution to (NSF)
(see Remark below).

Theorem B. Let u(t) be a blow-up solution to (C(1+ %)) which blows up at time

7
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T € (0,00). Let {ta} be any sequence such that t, — Trm as n — oco. Set

. 1
(B.1 An = T

) Tu(eaz™
(B.2) un(z) = AN ?y(tn, Apz).

Then there exists a subsequence of {t,} (we still denote it by {t,}) which satisfies
the following properties: one can find a sequence {y,} in RY such that, for any ¢,
there is a positive constant K > 0;

(B.3) liminf | |u(ta,2)?dz 2 (1 - €)]|QII%,
n—oo B”
where B, = {z € RY; |z — Xn¥nl £ KX,} and Q is a minimal L? norm solution to
(NSF).
For the proof of this theorem, we employ Proposition 1.4 with putting fp = upn.

One can find a complete proof in Nawa [16]. More precise study for “path” y(t)
(not sequence {yn}) is found in Nawa [15] [18].

Remark. The minimal L? norm solution to (NSF) is a solution to the following
variational problem; Find Q € H*(R™) such that

lQI= inf {||vn;E',(v)=||w||2--2-uv||:§o}.
veH g

'(»")
vE0

Using Proposition 1.4, we can solve this variational problem (sée Theorem D in
Appendix of this paper).

We conclude this section with Brézis-Lieb’s lemma [4] and its variant adopted
to our problem for convinience.

Lemma 1.5. Let {vn(t,z)} be an bounded family in L°(I x ) where I x  C
R x RN, Suppose that v, — v a.e. in I x Q. Then

(1.27) [va| ¥ n = [vn — v|¥ (va —v) = [v|Fv = 0 in L7 (I x ),

where 1 + 1, =1, and we have

n—o00

(1.28) lim // [lval® = v — v|7 — Jv|?|dt dz = 0.
IxQ :

2. PROOF OF THEOREM A

The purpose of this section is to prove Theorem A. For simplicity we suppose

N 2 3. First we note that the rescaled function u,(¢,z) = Nt 2up, (A2, Ap)
belongs to Cy(R; H(R")) and satisfies

.Ou,
(2.1) 41 ;t Up + A;N(Pn’f‘l—v)/Zlunlpn—lun =0.
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For one can easily check that

(2.2) llun(l = lluoll,
" (2.3) sup |lun(t)|lo =1,
teR
(2.4) EXun) =ALE,, +1(uo)
F AT NEat1=0) 2 — 1y (¢ )||5,'Iii - A= "u"(t)"a

p+1

H?! boundedness follows from (2.2) - (2.3) with the help of Holder inequality. We
have from H' boundedness,

(2:5) sup [|Za(t)l2» < Co,
‘ teR

for some constant C» > 0. We note that {u,(t,z)} is a uniformly eqmcon—
tinuous family in Cy(R; L2(RYN)), and form a uniformly equibounded family in
Ch(R; H'(RN)).

We are now in a position to apply Lemma. 1.3 to {un(t,z)}.

Lemma 2.1. There exist a family of shifts {(s,,y1)} C R x RY such that,

(26)  wiZun(- +n, - +l) > w0 in LR H(RMN)),
(2.7 ul =un(- +8n, - +yl) = u' £0. strongly in C(I; L*(Q)),

i

for some u! € L°(R; H'(R")) (modulo subsequence). Here I x 2 € R x RV.

Lemma 2.1 is, of course, valid for a subsequence. We shall however often extract
subsequence without explicitly mentioning this fact.

Lemma 2.2. The limit function u' in Proposition 2.1 solves (NS-)) in the sense
of distribution. Thus u' € Cy(R; H(RN)).

Proof. By (2.7), we have

(2.8) ul =un(t+sn,z4+yl) » u'#0 ae RxRM.

Thus, by classical argument (see e.g. [7]), one can see from (2.8)

(2.9) A;N@at1=0)/2)y 1Pn=1y (. 4 5. - +yn) — Aul|Ful(, ) in L7 (R xRV),

so that, by the week form of (NS-)), u! solves (NS-)). The last assertion follows
from the uniqueness theorem of solution to (NS-X) (see Kato [9]).

Furthermore we have by Lemma 1.5 (putting v,(t,2z) = ul(¢,z) and Q = RN)
and the weakly* convergence of Vul to Vu! in L®(R; H'(RV)),

9
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Lemma 2.3. We have
(2.10)  [ul|Ful — [ul — ¥ (ul — ul) = [u!|Ful > 0 in L7 (I x RY),

where 1 + 4, =1, and we have

2.11) lim / / | = [ud — ul|” — Jul|"]dt dz = 0.
R—0 J JIxBN
(212) tim [ {EAu) - EXul - u') — EXu))} dt =0,

for any I € R,
The proof of Theorem A consists of iterating the constructions of Lemma 2.1,

Lemma 2.2 and Lemma 2.3. Now we explain how to carry out this iteration.
It is worth while to note that we have by Lemma 1.2,

(2.13) HBOG)N [ua(04sn, - +ya)l > 1) > 6
for some positive constants 7 and §. From (2.4) and (2.13), one can easily obtain

(2.14) lim sup EN(un(0 + 35, -)) £ 0.
n—o0

One can also see, from (2.6) and (2.7)
(2.15) ul(0, ) = un(0+ 85, - +y1) — u(0,-)#£0 in HY(RN).
Therefore {un(0 + 3, - +yn)} C HY(RY) enjoys the properties of {f,} in Propo-

sition 1.4.
Suppose that

(216) Jim [[41(0) = u!(0)] #0.
So at this stage, we consider ¢l (t,z) = (vl — u!)(¢, z). Here we note that

(2.17) lim sup [lon(t)]ls > 0.
n—oo tEm

Then, by Lemma 1.3 and Proposition 1.4 again, there exists a family of shifts
{y2} Cc RY¥ such that,

(2:18) wd = (-, - +92) S w?#0 in LO(R; H(RV)),
(2.19) ul=pl(-, - +y2) - u?#0 strongly in C(I; L*(Q))
(2.20) unh(0,-) =¢n(0,- +93) = ¥*(0,-)#0 in H'(RY)

for some u? € L°(R; H'(RN)).

10



Lemma 2.4. The limit function u? in (2.18) is in Cy(R; H*(R")), and is a solution
to (NS-)).

Proof. Since ul satisfies the equation of the form (2.1) and u! solves (NS-)), we
have by Lemma 2.1, (2.10) and (2.11),

2
(2.21) 2 a(;‘t" + Au? 4 Aul|Fu?

= Av'[F ol + Mg Ful - A Py
+ A(jvp | F oy, — [vn P v})
+ (A = AFNCr = D) P =10
— 0 strongly in L% (I x RV)
for any I € R as n — oo, where vi(¢,z) = ul(t,z+y2) and v!(¢,z) = ul(t,z +y2).
Here we have used the fact that (2.10) and (2.11) hold true, even if we replace

ul(t,z) and u!(¢,z) by ul(t,z + y2) and ul(t,z + y2) respectively. (2.18), (2.19)
and (2.21) lead us to show that u? solves (NS-)). Thus u? € Cp(R; H'(RM)).

Proof of Theorem A concluded. Repeating this procedure (according to the proof
of Proposition 1.4), we obtain sequences {y}}.’s (j = 1,2,---) in RY such that
lim, o0 |y2 — y%| = 00 (j # k),and corresponding functions

(222) wh= (i =T, +an) S W £0 in LR HI(RY))
(223) wi(0,) = (ui =70, - +yh) = W(0,)£0 in H'RY)

where j 2 2 and uJ, satisfies
(2.24) Tim {E2(w}(0,)) = E5((u}, — u’)(0,)) — E3(w(0,-))} = 0,

so that we have
. . j
(2.25) lim EX((u), —u?)(0,)) £ - ) EXuk0,)).
k=1

Hence we obtaiﬁ the main assertions of Theorem A without the assertions L < oo
and EXw/) = 0 for 1 £ j £ L. Therefore it remains only to prove the following
lemma.

Lemma 2.5. The above procedure requires only a finite number of steps ( under
Assumption), i.e. L < 00, so that we have Ex(uw/) =0for1 <j < L.

Proof. Suppose L = oco. We have by (2.25),
2 j j ! A(, k
im — I —ul AMie > .
(2.26) Jim —All(uy —w?)(0,)]l7 2 kE_I: E5(u™(0,-)-

11
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Letting j — L = oo in (2.26), we have (see (1.24))
: L
(2.27) Y EXNu*0,) So0.
k=1

We remark that E}(u’) 2 0 by Assumption. Thus (2.27) implies that
(2.28) EXuw)=0 for 155 L,

so that we have,

(2.29) I (Ol 2 |@all for 1S5 S L,

where Q) is the nontrivial minimal L? norm solution of

{AQ—Q+AIQH’Q=0, z €RV,

Q € HY(RN).
which is characterized as ,
10l =t { o115 B2) = 9ol - 2appllz <0 |.
¢

(For this, see Remark below Theorem B in § 1.) Since Ek_l lu*(0)]I12 < Jluoll?, we
reach a contradiction. The second assertion also follows from the formula (2.27)
~ and Assumption.

3. APPLICATION TO THE BLOW-UP PROBLEM FOR C(1 + %)

In this section we investigate the shape of blow-up solution to the following
Cauchy problem for the pseudo-conformally invariant nonlinear Schrodinger equa-
tion:

a N
(C(1+ +)) 6t + Au + |u|Fu =0, (t,z) e Rx RY,
u(0, z) = uo(z), z eR.

Suppose that the initial datum uo(z) leads to the solution u(,z) of C(1 + %)
which blows up at time T}, € (0,00), i.e. A

(3.1) Jim [Vu()] = oo

We fix such a initial datum uo € H}(RV).

Let {up(t,z)} be the family of solution to C(p) (see § 0 ) for 1 <p <1+ %
We note that u,(0,z) = ug(z). As we mentloned in § 0, u, € Cy(R; H(RN)) for
1<p<1+N

By using the space-time estimate in Kato [9] and the classical compactness ar-
guement as in Ginibre-Velo [7], one can show

12



Proposition 3.1. Let {u,(t,z)} be the family of solution to C(p) for 1 < p <
1+ %, and let u(t,z) be the blow-up solution of C(1 + 4;) (satisfying (3.1) for
some T, € (0,00)). We note again uy(0,z) = u(0,z) = uo(z). Then, for any
T € (0,Tm), we have

(3.2) up, — u strongly in C([0, T];HI(RN))

aspT1+%.

Therefore we may expect that {u,(¢,z)} brings us some information about the
shape of blow-up solution near the blow-up time T},.

Let {p.} be a sequence such that p, 1 1+ % and wu,, € C(R; H}(RV)) be a
solution to C(p,). We may assume by Proposition 3.1,

(3.3) limsup sup |up,(t)|le =00

n—co t€[0,Tm)

We consider the rescaling function

(3'4) u"(ta z) = ’\glzu}’n(’\it + Tm, Anz ),
where
1 \
(3.5) Ap = -
sup |lup, (£)]57*
€10,Tm

We note that u, € Cy([—I2 2,0] and solves

6u,1

(3.6) i

+ Au, + ,\—N(p..+l-—a)/2|u |Pr~1u, =0.

on [—'{, , 0]. We extend u,’s domain to the whole line as follows;

Un(— T, 2) = M, (0, \az) if te (-oo,—lgn),
3.7 U= up(t,z) if tel-Ip 2,0),
un(0,z) = /\,,N/Zu,,”(Tm ydnz) if te]0, oo).

We note that {ti,(¢,z)} is a uniformly equicontinuous family in Cy(R; Lz(RN )), and
form a uniformly equibounded family in Cy(R; H*(RN)).

In the same way as proving Theorem A, we have

Theorem C. Then there exists a subsequence of {u,} (we still denote it by {un})
which satisfies he following properties: one can find L € N, nontrivial solutions {u’}
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of (NS-)) in Cy(R; H*(R™N)) with EX(u?) = 0 and sequenceces {(s},y3)} C RxRY
for 1 £ j £ L such that

(C.1) sL20 and lim [siX%|=0

(C.2) ,}i_lggol(si,yf.) —(smyn)l=00  (j £F),

(C3)  up=un(: —sh, - +yp) >u! in L=(L; H'(RY)),

(C4) W= -/ Ny +y) v (j22) in L(L; H'(RY)),

(C.5) lim / {EXui) - EMul, - w!) — EXu’)}dt =0, for any I € I,,
I

n-~—+ 00

(C6)  lim [luk(0) ~ u¥(0)]lo =0,

where

R if limg_e0 81 = 00,
(.7 I, = P 1
(=00, Ts] if limpoosh =T, < o0.
Remarks. (1) It is worth while to note that if

2 ;
: _ el Y _ J . k
(3.8) Jim_ sup [[un(t —sn, -) ;u(t, ;yn)lluﬂ,

there exists {(s2, y2!)} € R* x R¥ such that

(3.9) s220 and nllx’rgo |s2A2| =0

(310) (uh—ul)(- —s2,- +32") Sub£0  in LR H'(RM).

One can see that u?! is almost a solution to (NS-)) near t = 0. (See next section.)
Therefore Theorem C suggests that the blow-up solution of C(1 + #) has a self-
similar structure around singularities.

(2) If Assumption were not true for N 2 2, it could occur L = oo in Theorem A.
(3) If u, is radially symmetric or ||uo|| = ||@]|, we have L =1 in Theorem C without
Assumption. Here Q(z) is a nontrivial minimal L? norm solution of (NSF).

(4) If T, < oo in (C.7), we can take s} = 0 and I, = (—o0,0].

4. “TwWO FOCI” OF A LASER BEAM.

For simplicity we assume N 2 2 and ug(z) (the initial datum in C(p)) is radially
symmetric, so that the corresponding solution of C(p) (1 < p < 2*) is also radially -
symmetric. In this case, we do not need Assumption.

Suppose that u¢(z) leads to the blow-up solution to u(t,z) of C(1 + 4) such
that lim_,7;, ||Vu(?)|| = oo for some T, € (0, 00). '

14



Let {pn} be a sequence such that p, 11+ % and u,, € C(R; H}(RV)) be a
solution to C(p,). We may assume

(4.1) im sup [ju,, (t)|lo = oco.
n-—00 tem

We consider the rescaling function

(4.2) un(t,z) = ’\g/zupn( A?;t » AnZ),
where
(4.3) 1

n= .
sup|lup, ()15
telR

(We recall 0 = 2 + 4.)
By Theorem A and the radial symmetricity of u,’s (using well known radial
compactness lemma in Proposition 1.4), we have

Lemma 4.1. There exist a family of shifts {s1} C R such that,

up = tn(- +83,) = wl #£0 in L°(R; H'(R")),
(4.5) ul =un(- +sL,-) = u'#£0 strongly in C(I; L*(Q)),
ul =u,(0+s,-) — ul(0,-)#£0 strongly in L°(RY),

for some u' € Cy(R; HY(RY)). Here I x € R x RN. Furthermore u! solves
(NS-)).

Now suppose that

(4.7) - lim sup |[ul(?) — w!(¥)||s > 0.
n—oo tEm

We put pl(t,z) = (u} — u!)(¢, z). One has from Lemma 1.5,

dpr,
ot

(4.8) 2i— + Dgh + Ak ¥l
= Aju|Ful + Meh|Foh — Mup|Fu,
+ M(lun Fug, — up )
+ (A = A7 N@n+1-0)/2|y 1 pn—1,1
— 0 strongly in L (I x RM)

foranyI@R,where%+;17=1.
From (4.7), (4.8) and Lemma 1.3, we have

15
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Lemma 4.2. There exists a family of shifts {s2} C R such that,

(49) ui=ep(-+sh,-) > v #£0 in L®(R;H'(RY)),
(4.10) wi=¢l(-+s2,-) - u?®#0 stronglyin C(I; L*(Q))
(411) w2(0,-) = (0+s2,-) — u%(0,-)£0 strongly in L°(RY).

It is worth while to note that, in general, we have

62
"ot

regardless of (4.8), since it is not obvious whether
(1|l + bl F ok — [ul|Ful)(- + 52, ) = 0
-or not. So we consider the function i, which satisfies

ah
"o

(4.12)

n]’Nu - 0,

nlﬁr(“ + hn)
= ,\;N(p..+1-w)/2l,,n|ﬁvn

~ Ajvp|# v}

(4.13)

with initial condition h,(0,z) = 0, where vi(t,z) = ul(t + s2,z). We can solve
this Cauchy problem, at least, locally in time (uniformly in n) in H*(RY). Putting
Yn = u2 + hy,, we see P, solves

81/),.

(4.14) + Atp + Apal ¥ = 0

in a neighborhood Iy of t =0 (umformly in n) by (4.8) and (4.13). One can show

(4.15) %o = Y #0 in L=(Io; H'(RY)),

(4.16) | $n — $#0 strongly in C(Io; L3(£))

for some ¥ € Cy(Io; H*(RY)) such that 9 solves
2i%3-f-+A¢+|¢|73‘¢=0, (t,z) ER x RY,
¥(0,z) = u%(0, z), z € R,

on I.
Summing up, we have

Proposition 4.3. Suppose we have (4.7), then there exist a family of shifts {s%} C
R and a local solution 4 of (NS-)) defined on a neighborhood of t = 0 such that

(4.17) Wzpl(-+sd,-) S ul£0 in LR HI(RY)),
(4.18) lim [4*(t) — $(8) s amy = .

We close this section with the following
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Conclusion. If we have

(4.19) lim A2|sk —s2| >0
n—oo
" (4.20) lim \2}sl| < 00, lim A2|s2| < oo,
n—oo n—o0

we may conclude that the laser beam described by the blow-up solution u to C(1+
414;,-) have two focus points on t-azis , around which the beam has an approzimately
self-similar structure.

APPENDIX

As an application of Proposition 1.4 (A = 1), we can show the following theorem.

Theorem D. Let

' 2
D.1 = inf i Eg(v) = ||Voll2 = =|v||2 £ 0
©n  m= st { ol Ee) =190 - 2l S0 §,
vE0
# 2
(D.2) 2 DIV e s,
Cn  veri@™ vl veH! @)
v#E0 UF ]

There is a function Q@ € H(RN) — {0} such that

(D.3) el = m,

(D.4) AQ-Q+1QI*Q =0,
2 . 1

(D.5) ;”QHW =en

Remark  The constant Cy in (D.2) is the best constant for the Gagliardo-
Nirenberg inequality, so that

(G-N) lellg £ CwllvllF [|Vo]?
holds true for any v € H!(RYN).

Proof of Theorem C. First we note that m > 0, more precisely

: 2 1
(1) ;m’?' 2 On

by the Gagliardo-Nirenberg inequality (G-N).
Let {v,} C H(RM) be a minimizing sequence for (D.1), i.e.

@ Jim [Joa| =m,
3) Es(va) £0 forany n€N.
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It is worth while to note that the boundedness of {v,} in H*(R") is not known.
So we rescale v, as follows:

@ Qul@) = vio(v2), o= —or,
llvalle
so that we have
Qnll = llvall = m as n— oo,

(5) 1Qnlle = llvalls,
Eo(Qn) = V?.Ea(vn)-
Thus we get a H'-bounded minimizing sequence {Q,} for (D.1).

We shall apply Proposition 1.4 (with A = 1) to this {Q,}; There exists a subse-
quence of {@,} (we still denote it by {Q@,}) which satisfies

(6) QL=Q.(- +y1) = Q' #0 weakly in H'(RV),
(7) nl}_{%o{Ev(Qzu) - Ed‘(Q}z - Ql) - Ea(Ql)} = 01
(®) Jim (JlQuI* - IQn - QU -lQ'I* =0,

for some {y1} C RN. Noting that Q1 is also a H!-bounded minimizing sequence
of (D.1), we have from (7) and (8) (by simple contradiction argument),

) - E@) S0
It follows from (9) and the definition of m that |Q1|| 2 m, so that we have
(10) IR = m,

since Q1 — Q! weakly in L2(R”"). Thus we get lim, .o [|@% — @*]| = 0. (So we
have L =1 in the terminology of Proposition 1.4.) '

Let {w,} ¢ H'(R") be a minimizing sequence for (D.2). We rescale w, as
follows:

‘”’ ) = G S

Then one has

(12) W) = T,
(13) Eo(Wa) = 3|Vl = 722 unll3) = 0,
so that
1 .2 4
(14 o= lim 2w, E(W.)=o0.

CN n—oo g

18
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Thus by the definition of m, we have %mﬁ < 5’; Hence we obtain, by (1),
1

2 4

Thus Q! is a critical point of J(-). Since |V|Q*|| £ |[VQ!|, we may assume Q* 2 0.
So we have

- d
(16) ZIQ +t9) =0
’ t=0
for any ¢ € C§°(RYN). Hence Q! satisfies
V@' o1 L o118 o
(17) . AQI—(—~——— Q +1Q' V@ =0.
N|IQY|?
in the sense of distribution.
Taking ‘
AN/2Zolin N|Q?
(18) Q(z) = oN?2Q (), 7=/ —",
2|vQ|

one can easily verifies that this Q satisfies (D.4) and ||Q|| = [|Q!]| = m.

Remark  Considering the continuous curve @, : (0,00) 3 s — Q(3) €
H*(RN), we have
(19) 0= liﬁl Ec(Qs) = Ea(Ql) < 0,

since E,(Q,) > 0if s € (0,1). Thus we have lim,_o[QL — Q'|m@~) = 0.
Therefore we obtain an extra property of @ such that

(20) E,(Q)=0.
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