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Linear evolution equations in a reflexive Banach space
WASEDA UNIVERSITY NAOKI TANAKA
B @ R
§1. INTRODUCTION

In this paper we discuss the construction of an evolution system associated
with the well posed problem in the sense of Hadamard for the time-dependent

differential equation in a Banach space X

{ (d/dt)u(t) = A(t)u(t) for t € [s,T]

u(s) =z,

(DE),

where s € [0,T), u(-) stands for an X-valued unknown function on the interval

[s,T] and {A(t): t € [0,T]} is a given family of linear operators in X.

Assume for the moment that there exist a dense subspace Y of X and an
injective bounded linear operator C; on X such that Y C D(A(t)) for ¢ € [0, T}
and the following conditions hold:

1) For s € [0,T] and £ € Cy(Y), there exists a unique solution u(t;s, )
such that u(t;s,z) € Y for t € [s, T}

2) For z € Cy(Y'), u(t; s, ) is continuous for 0 < s <t < T.

© 3) If {u(t;s,z,)} is a sequence of solutions with z,, — 0 in the C; ! —graph
norm as n — oo then u(t;s, z,) converges to zero uniformly with respect to ¢

and s.

Here we note that in the special case where A(t) = A4,s =0,Y = D(A) and
Ci=R(c:A)" (n € NU {0} and ¢ € p(A)), the concept of the above well posed
problem is equal to that of the well posed problem in the sense of Hadamard in
the autonomous case (see [5,8]), which several authors [1,4,9,10,11,12] recently

have studied via the theory of integrated semigroups or C-semigroups.



Now we turn to the above well posed problem. We define a linear subspace

D(s) of X and a linear operator U(t,s) on D(s) by
{ D(s) = {z € X : the (DE), has a unique solution u(t;s,z)}
U(t,s)z = u(t; s, z) for = € D(s).

Then, from the uniqueness of the solutions it follows that U(t,s) : D(s) — D(t)
and U(t,r)U(r,s) = U(t,s) on D(s) for 0 < s <r <t < T. Formally, the two
parameter family {U(t,8):0<s<t< T} may have the properties

(1.1) (8/at)U(t,s) = A(t)U(2, s)
(this property is useful to show the existence of the solutions),
(1.2) (8/0s)U(t,s) = =U(t,s)A(s)

(this property is useful to show the uniqueness of the solutions).

We define {V;(t,3):0<s<t< T} by
Vi(t,8)y =U(t,s)Ciy (= u(t;s,Cry)) for y €Y.

Since Y is dense in X one can see by the condition 3) that Vj(¢,s) is extended
to a bounded linear operator on X, which we denote by the same symbol. Then,

the two parameter family {V;(¢,s) : 0 < s <t < T} has the properties
(i) for z € X, (t,8) — Vi(t, s)z is continuous for 0 < s <t < T,

Gi)) i(t,s)(Y)CY for0<s <t < T,

(1i1) (9/at)Va(t,s)y = A(t)Va(t,s)y for y € Y, and Vi(s,s) = C).

We also consider the following important property to show the uniqueness

of the solutions:
(iv) (8/03)Va(t,s)y = —Va(t,s)A(s)y for y € Y, and V5(s,s) = C,.

Multiplying (1.2) by the injective bounded linear operator C; from the left-hand
side, and then defining V5(¢, s) by C,U(t, s) we obtain the property (iv).
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Moreover, the following relation between V;(t, s) and V(t, s) holds:
(v) CoVi(t,8) = Va(t,s)Cr for 0 <s <t <T.

In §2 we will construct a pair of evolution systems ({Vi(t, 3)}, {Va(¢,s)})
having the properties (i) - (v) in order to investigate the well posed problem
in the sense of Hadamard for the time-dependent differential equation (DE),.
As an application we also consider the second order differential equation in a

reflexive Banach space X

{ u"(t) = Au(t) + B(t)u(t) for t € [s,T]
(DE);
u(s) =z, u'(s) =Y,

where A is the infinitesimal generator of a cosine family and {B(t) : t € [0,T]}

is a given family of linear operators in X.

§2. CONSTRUCTION OF EVOLUTION SYSTEMS

Let X and Y be Banach spaces with norm || - || and || - ||y respectively. We
write B(Y, X) for the set of all bounded linear operators on Y to X and denote
B(X,X) by B(X). For each i = 1,2, let C; be an injective operator in B(X).

Throughout this paper we will assume that
(Hy) Y is reflexive,

(H2) Yis denselyﬁ and continuously imbedded in X, that is, Y is a dense
subspace of X and there is a constant L such that ||y|| < L|jy||y for y € Y,

(H3) Ci(Y)cY and Cy(Y)is || - |ly-dense in Y.

We will make the following assumptions on a family {A(t) : ¢t € [0, T]} of

closed linear operators in X:
(A1) There are constants M; > 0 and w; > 0 such that

(w1,00) C p(A(¢)) for ¢ € [0,T] and

“Am (ﬁ R(): A(t.-))) Gy

1=1

< M; for A > w;
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and every finite sequence {t;}/~, such that 0 <¢; <---<t,, < T and m with
0<m/A<T.

(Az) There are constants Mz > 0 and wy > w; such that

(ﬁ R(A: A(ti))) Ci(Y) CY and

i=1

“A"‘ (ﬁ R(): A(t;))) Cy

i=1

< M; for A > wq
Y .

and every finite sequence {¢;}/, such that 0 < ¢; <--- <t,, < T and m with
0<m/A<T.

(A3) There are constants M3 > 0 and w3 > w; such that

Cy (,\m (ﬁ R(): A(t,i))))

i=1

< M; for A > w;3

and every finite sequenceb {ti}2,such that 0 <¢; < -+ <t;p < T and m with
0<m/ALT.

(A4) For t € [0,T], D(A(t)) D Y and D(C{'A(t)Cy) D Y, and the
function t — A(t) is continuous in the B(Y,X) norm | - |ly—x and M, =

sup{||C;'A(t)Ci|ly—x : t € [0,T]} < oo.

The main result of this paper is given by

THEOREM 2.1. If the family {A(t) : t € [0,T]} of closed linear operators in
X satisfies (A1) — (A4) then there exists a unique pair ({Vi(t,s)}, {Va(t,3)}) of
strongly continuous families of bounded linear operators defined on the triangle
A ={(t,s):0 < s <t < T} with the following properties:

(a) Fori=1,2, Vi(s,s) =Cion [0,T] and C;Vi(t,s) = Va(t,s)C1 on A.

(b) Vilt,s)(Y)CY for0<s<t<T.

(c) Fory €Y and y* € Y*, (t,s) — (y*, Vi(t, s)y) is continuous on A.

(d) (z*, Vi(t, )y — Vi(r,8)y) = / (m*,A(T)Vl(f,s)y)dT
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fory€eY,z* € X* and 0 < s <r <t <T. In particular, (3/0t)Vi(t, s)y exists
for almost every t € (s, T| and equals A(t)Vy(t,3)y.

(e) Va(t,r)y — Va(t, s)y = — / Vao(t, 7)A(T)ydr
foryeY and0<s<r<t<T.

Remarks. 1) In the case where A(t) C C;7'A(t)C, for t € [0,7], the
condition (A3) is automatically satisfied with Cy = C, if the condition (Ay) is
satisfied.

2) In the case where Ci = C; = I (the identity operator on X'), Theorem
2.1 is [6, Theorem 5.1}.

Before proving Theorem 2.1 we prepare three lemmas. Let s € [0,T") and

let A > 0 be such that A\w3 < 1. Set
' k
Prx(s) =[] Ja(s +iX) for 0 <k <[(T - s)/),
i=1

where [ ] denotes the Gaussian bracket and Jy(t) = (1 —AA(t))"1 = A"1R(\7!:
A(t)) for t € [0, T1.

Now we define Ax; and By, by
{ Az = Py x(3)Ciz — Py i(8)Chz for z € X,
Biay = p(A(s + kA) — A(s + Ip)) Pu(s)Cry for y € Y.

Here we note by the conditions (A;) and (A4) that Bj; is well defined because
P, (s)Ci(Y) C Y C D(A(t)) for t € [0,T).

Using the resolvent identity we obtain by a standard argument

LEMMA 2.2. Let s € [0,T) and A\,pu > 0 be such that A\ws, pw3 < 1. Then, for
y €Y we have |

(2.1) Akay = Ju(s + kX)(@Ak-1,1-1y + BAk-1y + Bray)
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for 0 < k < [(T —s)/A) and 0 < I < [(T — s)/p), where a« = £ and § = 25£.

_ Let s € [0,T) and A\, ¢ > 0 be such that Aws,pws < 1. Let k and j be
nonnegative integers. We denote by H(m, k) the set of all operators @ obtained
by multiplying k operators J,(t;) (i =1, ,k) in the family {Ju(s+1iX):4i=
1,--- ,m} such that Q@ = [[5, Ju(t:) for0 < s+A<t; <+ < tp < s+mA < T
H(m,0) = H(0,k) = { the identity operator }. By H(m,k,j) we denote the
set of all sums of j operators Q; (: =1,---,j) in H(m, k), where in j operators

@1, -+ ,Qj, same operators are allowed to appear repeatedly.

Using the relation (2.1) and then taking account of the definition H(-,-,")

we obtain by a routine calculation the following crucial estimate:

LEMMA 2.3. Let s € [0,T) and let A\, > 0 such that Aws, pw3 < 1. Then, for

y € Y we have
(m—-1)An n
Apny € Z o' 'H (m, n, (i))Ar’n—i,Oy
=0 .
- magi—m . i—1
+ Z a ﬂ H m,t, m—1 AO,n—iy
n-1 (m-—l)AJ ... y
+ Z Z o'fITH (m,] +1, (Z,))Bm_;,,,_jy
j=0 =0 )

for 0 < m < [(T—s)/)\ and 0 < n < [(T — s)/p), where a = L g =2z
Ak =min(l,k) and ({) is the binomial coeflicient.

LEMMA 2.4. (I) Let s € [0,T) and let A > p > 0 be such that Awsg < 1. Then,
there exists a positive constant K, depending only on Mi(: = 1,2,3,4), such
that |
(2.2)

IC2Pa,m(3)C1y — CaPun()Cayll < Klylly {2((nps — mA)? + T(A = )"/

+ T(p(lmp = mA) + () + S (T)A — 1))
for 1 <m < [(T-38)/A,1 <n<[(T-3)/p,y €Y and § > 0, where
p(r) = sup{||A(t) — A(s)|]ly=x : t,s € [0,T),|t — 3| < r} forr > 0.
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(II) Let 0 < r < 8 < T and let A > 0 be such that \w3z < 1. Then there
exists a positive constant K, depending only on M(i = 2,3), such that

(23) ||C2Pam(s)Cry — CoPam(r)Cryll < KT||yllyp(s — 1)
for1<m<|[(T-s)/\ andy€Y.

PROOF: By virtue of Lemma 2.3 we can show (2.2) in the same way as in the
proof of [2,Theorem 2.1]. To prove (2.3),let 0 < r < s < T and let A > 0 be
such that Aws < 1. For 1 < k < [(T — s)/A] we define Ax and By by
{ Az = Py x(8)Ciz — Py i(r)Ciz for z € X,
Bry = MA(s + kX) — A(r + kX)) Py k(s)Cry fory € Y.

Then, by a simple computation we have

Ary =(Ia(s + kX) — Ia(r + kX)) Py k—1(s)Chry
+ IA(r + kA)(Prk-1(8)C1y — Py k—1(r)Cry)
=J(r + kA)(Ar—1y + Bry)
for y € Y. By solving this we find
Any = Z (H Ia(r + kA)) By
=1 “k=i

fory € Y and 1 < m < [(T — s)/A]. Therefore, we obtain the desired estimate
(2.3) by the conditions (A7) and (A;). Q.E.D.

PROOF OF THEOREM 2.1: Let s,r € [0,T) and let A > g > 0 be such that
Awj < 1. Let m and n be integers such that 0 < s + mA,r + nu < T and let
y€Y. Ifs<rthen0<s+np<T,sothat P, ,(s)is well defined. Similarly,
Py m(r) is well defined if s > r. Therefore, C3 Px m(s)C1y — C2Py q(r)Ciy can
be written as
{ Ca P ;m(38)C1y — Ca Py n(8)C1y + (C2Ppu n(8)Cry — Co Py n(r)Cry) if s < 1
CaPx,m(3)C1y — CaPr,m(r)C1y + (C2Pam(r)Cry — C2 P, ,n(r)C'ly) ifs>r.
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Applying Lemma 2.4 to this we see that there exists a positive constant I,

depending only on M;(i = 1,2,3,4), such that
"CZPA,m(s)Cly - CgP‘,,n(T)C]y"
< Kllylly {2((n = mA)? + TO = )" + T(p(Irs — m])

+0(8) + ollr — o) + 3 p(T)A — )}

for § > 0 and y € Y. Since Cy(Y) is dense in X and ||C2 P, n(sa)|| < M3 for
n > 1 it follows that
(2.4) Vz(t, s)z = lim C, (H Ixn,(8n + iA,.))a:

i=1
exists for ¢ € X if {s,} is a sequence of nonnegative numbers with lim,_, $n =
s and {A,} is a sequence such that 0 < s, +nA, <T and s, +nA, 2 t—s>0
as n — oo. Here we have used the fact that p(§) — 0 as § — 0+. We note that
the limit is independent of {s,} and {\.}.

Let {s,} be a sequence of nonnegative numbers such that lim, ., s, = s
and let {A,} bea seqﬁence such that 0 < s,,—f—m\,, <Tand sp+ni, =+t—s>0
as n — o0o. We then define Vl(")(t,s) on X by
Ci for t = s,

(ITi=y Ian(8n +1Ap))C1 for s < t.
Then, by the condition (Az) we have

v{M(t,s) = {

Vit s)(¥Y)CY and [|[VI"(t,8)|ly < Mafor 0<s<t<Tand n>1.

We now show that for y € Y and y* € Y™, (y*,Vl(n)(t,s)y) is conver-
gent. Let {nyx} be any subsequence of {n}. Since Y is reflexive there exists a

subsequence {n}} of {ni} and y(t, s) € Y, depending upon {n}}, such that
A O MBI ORTCD)
for y* € Y* as n — oo. In particular, for z* € X* we have

(C3a*, V™, s)y) — (C3z*,y(t,9)) = (2*, Cay(t, 5))
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as n — oo, since C3z*|ly € Y*. On the other hand, by (2.4) we obtain for
z* € X*,

(Cz*, V™ (t,8)y) = (2*, CaV{"™ (1, 8)y) — (=*, Va(t, 5)C1y)

as n — oo. Hence Cay(t, ) = Va(t, s)Chy, so that y(t,s) is independent of {n}}.
Therefore it is proved that -

lim (y*, (¢, 9)y) = (v°, C7 ' Va(t, 9)Ciy)
for y € Y. By this together with the fact that z*|y € Y* we have for z* € X*,
(2*,C7 Va(t,9)Cry) = lim (*, V" (t,5)y) fory €Y.
nn—00

Hence

IC; Va(t, s)Cay|l < Ma|lyll

foryeY and0<s<t<T. Since‘Y is dense in X we see by the closed graph
theorem that C;!V,(t,s)C; € B(X) and ||C; 1 Va(2,3)Ci|| S My for 0 < s <t <
T.

We now define Vj(t,s) on X by
Vi(t,s) = C;'Va(t,8)Cy for 0<s<t<T.

Theﬁ, it follows from the fact which has been proved above that |Vi(¢,s)| <
Ml,Vl(t,s)(Y) cy, "Vl(t,s)lly < Mj and Cng(t,S) = Vz(t,s)cl for 0 <s <

t < T. Moreover, we have
- tim (v, (TL o (on 8000 ) Can )= 4, Vit o)
i=1

for y € Y and y* € Y* if {s,} is a sequence of nonnegative numbers such
that lim, .. 8, = s and {)\,} is a sequence such that 0 < s, + nA, < T and

Sn+nA, 2t—s>0asn— oo.



To prove that for z € X, (¢,3) — Vi(¢, s)z is continuous on A, since Y is

dense in X and ||Vi(¢,s)]| < M; on A it suffices to show that
(2.5) IVatt, a)y = Va(r, a)vll < K (¢t = )llly
foryeY and0<s<7<t<T, |
(2.6) IVa(t,s + h)y = Va(t, s)yll < Khliylly

foryeYand0<s<s+h<t<T.

To prove (2.5),let y€ Y and 0 < s <7 <t < T and let A > 0 be such
that Adwz < 1. If n and m be integers such that m < n < [(T — s)/)] then

(m*’PA,n(s)Cly - P,\,m(s)Cly)

= <a:*, Z—: (P,\,Hl(s)C'ly - PA,k(s)Cly)>

k=m

(2.7)
n-1

= <x*,/\ Z A(s+(k+ 1)/\)P,\,k+1(s)01y> for z* € X",

k=m
from which it follows that
[(z*, Pa,n(s)C1ry — Pr,m(s)C1y)|
< ll=*|A(r — m) - sup{||A(D)lly—x : t € [0,T]} - Maly|ly
for z* € X*. Setting n = [(t — s)/A] and m = [(t — s)/)], and then letting

A — oo we obtain the desired estimate (2.5).

To prove (2.6)let y€ Y and 0 < s < s+ h <t < T, and choose a sequence
{k(n)} of integers such that k(n)h/n <t — (s + h) and k(n)h/n — t — (s + h)
as n — oo. Then, since '

k(n)

| (H Jam(s +h+ ih/n)>y - ("ﬁ") Ih/n(s + ih/n))y

i=1

(2.8) = ,‘;{ ("ﬁ") Inya(s + ih/n))y - ("J’ﬂ(:") Jn/n(s + zh/n)) y}

i=j+1 i=j

7 n ,n+k(n)
== /my Y (TL wnls +ih/m)) Als + b/,

i=1\ i=j

10
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it follows from the conditions (A1) and (Ay4) that

(z*, Phjnk(n)(8 + R)C1Y — Ph /s k(m)(3)C1v)| < AMyiMylylv||=*|

for z* € X*. Passing to the limit as n — co we obtain (2.6).

The strongly continuity of V3(t,s) immediately.follows from the strongly
continuity of V;(t,s) and the relation that C2Vi(t, s) = Va(t,s)C4, since C1(X)
is dense in X and [IVa(t, s)|| < M3 on A.

Since Y is reflexive, l;sing the strongly continuity of Vi(t,s) together with
the facts that Vi(t,s)(Y) C Y and ||Vi(¢, 3)|ly < M3 on A we see by a standard
argument that for y € Y and y* € Y'*, (¢,3) — (y*, Vi(¢,3)y) is continuous for
0<s<t<T.

To prove that {Vi(¢,3) : 0 < s <t < T} has the property (d), let y €
V,z* € X*and 0 < s <r <t < T. Setting n = [(¢t — s)/A] and m = [(r — 5)/)]
in (2.7) we have |

(z*, Py [(t-8)/(8)C1y — P ((r—s)/3(8)C1y)

[(t=2)/A -1 _sp(k+1)A
(et > [T A = N+ NP -ppsa(s)Cay dr)
k=[(r—a)/3] 72 HEA

s+{(t—2)/NA
=/ (A(s + ([(T - 3)/’\] + 1))‘)*37*’ PA,[(r—s)/A]+l(3)Cly)dTy
aH(r~s)/ XA

where A(t)* : X* — Y* denotes the adjoint of the restriction A(t) of A(t)to Y.
The condition (A,) implies that ¢ — A(t)* is continuous in the B(X*,Y*) norm;
thus passing to the limit as A — oo we see by Lebesgue’s convergence theorem

that
t
(@ Valt sy = Vil o)) = [ (A(r)a*, Vi, s
This shows that the property (d) is satisfied.

We next show that {V5(t,s) : 0 < s < t < T} has the property (e). Let
0 <s<s+h<t<T and choose a sequence {k(n)} of integers such that

11



k(n)h/n <t — (s + h) and k(n)h/n — t — (s + h) as n — oco. By (2.8) we have

C2Phynk(n)(s + h)y — CaPryn,ntk(n)(s)y
s+jh/n

= - / CZPh/n,n+k(n)—j+1(3 + (] - l)h/n)A(s +]h/’n)y dr
im1/e+G-1h/n

s+h »
- / CaPhjm s kim)—r(m) (8 + T(n)R/n)A(s + (r(n) + 1)h/n)y dr

for y € Y, where r(n) = [(r — s)/(h/n)]. Letting n — oo in this equality we see
that the property (e) is satisfied. '

Suppose that ({W;(t,s)}, {W2(t,s)}) is a pair of strongly continuous fam-
ilies of bounded linear operators defined on the triangle A with the proper/ties
(a) - (e). Then, by the properties (d) and (e) we see that for y € Y, the function
r — Va(t,r)Wi(r,s)y is Lipschitz continuous and (8/0r)Va(t,r)Wi(r,s)y = 0
for almost every r € [s,T]. Integrating this from s to t we obtain CoWi(t,s)y =
Va(t,8)Chy for y € Y. By the property (a), Wa(t, s) is equal to V,(¢,s) on the
dense subspace C;(Y) of X, so that ({Vi(t,s)},{Va(t,s)}) is the only pair of
strongly continuous families of bounded linear operators defined on the triangle

A with the properties (a) - (e). Q.E.D.

Definition 2.1. A function u(+;s,z) on [s,T] is a strong solution of(DE), if

(i) u(+;s,z) € AV(s, T; X),

(ii) u(-; s, z) satisfies (DE), almost everywhere.

Here we denote by A*?(a,b; X) the space of all absolutely continuous functions
u : [a,b] — X for which d’u/dt/ exist (and are defined almost everywhere) for
j=1,2,--- ,ksuchthat du/dt/, j =1,2--. ,k—1, are all absolutely continuous
and d*u/dt* € L?(a,b; X).

Existence and uniqueness of the strong solutions of the time-dependent

differential equation (DE), is provided by

12
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THEOREM 2.5. If the family {A(t) : t € [0,T]} of closed linear operators in X
satisfies the conditions (A,) - (A4) then, for every initial data z € Cy(Y’) the
(DE), has a unique strong solution satisfying u(t;s,z) € Y for t € [s,T] and
sup{Jlu(t; s, z)|ly : t € [s,T]} < oo.

PROOF: By Theorem 2.1 there exists a unique pair ({Vi(¢, )}, {Va(t,8)}) of
strongly continuous families of bounded linear operators defined on the triangle
A = {(t,8) : 0 < s <t <T} with the properties (a) - (¢). Let ¢ € Cy(Y) and
set u(t;s,z) = Vl(t,s)Cfl:c for 0 < s <t < T. Then, it is easy to see that
u(t; s, a:) is a strong solution of (DE), satisfying u(¢;s,z) € Y for t € [s,T] and
'sup{||u(t;s,:c)"y : E [s,T]} < co. To prove the uniqueness of the solutions, let
v(t; s,z) be a strong solution of (DE), satisfying v(¢;s,z) € Y for t € [s,T] and
sup{||v(t; s, z)|ly : t € [s,T]} < 0. Then, we deduce from the prqpertyv(e) that

r — Va(t,r)(u(r; s,2) — v(r; s, z)) is absolutely continuous on [s,T] and
(0/0r)Va(t, r)(u(r; 8,z) — v(r; s,:v)) =0
for almost every r € [s,T)]. Integrating this equality from s to ¢ we have
Ca(u(t; s, z) — v(t; s,2)) =0,

which shows that u(t;s,z) = v(t;s,z) for t € [s,T], since C; is injective.

Q.E.D.

We next consider the second order differential equation in a reflexive Ba-

nach space X
' u"(t) = Au(t) + B(t)u(t) for te [s,T]
(DE);
u(s) =z, u,(s) =Y,
where A is the infinitesimal generator of a cosine family and {B(t) : t € [0, T}

is a family of linear operators in X satisfying the following conditions:

13
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(B1) D(A) C D(B(t)) for t € [0,T).
(B3) There are constants M > 0 and w > 0 such that {\? : A > w} C p(4),
Afor t € [0,T] B(t)R(\? : A) is stréngly infinitely differentiable in A > w and
satisfies
I/nt)(A = w) ™+ (d/dA)"B(H)R(N* : A)z|| < Mljal|
forre X,A\>wandn=0,1,---.
(By) limi— sup{IB(H)z — B(s)z]l : = € D(A), el + |l el < 1} = .

(B4) There exists Ao > w such that (A2 — A)B(t)R(\2 : A) = B(t) + P(t),
where {P(t) : t € [0,T]} is a strongly continuous family of bounded linear

operators on X.

Definition 2.2. A function u(-;s,z,y) on [s,T] is a strong solution of (DE)? if
(i) u(; 8, 2,y) € A»(s,T; X), |
(i) u(+; s, z,y) satisfies (DE)? almost everywhere.

. Without proof we state the existence and uniqueness theorem of the
strong solutions of the second order differential equation (DE)? which is ob-

0 1) andCl=Cz=

tained by applying Theorem 2.5 with A(t) = A+B() 0

o 1\
A-X 0) -

THEOREM 2.6. Assume that A is the infinitesimal generator of a cosine family
and {B(t) : t € [0,T]} is a family of linear operators in X satisfying the con-
ditions (B,) - (Bs). Then, for every initial data = € D(A) and y € D(A) the
(DE)? has a unique stroﬁg solution u(t; s, z,y) such that u(t; s, z,y) € D(A) for
t € [s,T) and sup{||Au(t; s, z,y)|| : t € [s,T)} < oo.
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