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Linear evolution equations in a reflexive Banach space

WASEDA UNIVERSITY NAOKI TANAKA

田中　直樹
\S 1. INTRODUCTION

In this paper we discuss the construction of an evolution system associated

with the well posed problem in the sense of Hadamard for the time-dependent

differential equation in a Banach space $X$

$(DE)_{s}$ $\{\begin{array}{l}(d/dt)u(t)=A(t)u(t)fort\in[s,T]u(s)=x\end{array}$

where $s\in[0, T$), $u(\cdot)$ stands for an X-valued unknown function on the interval

$[s,T]$ and $\{A(t) : t\in[0, T]\}$ is a given family of linear operators in $X$ .

Assume for the moment that there exist a dense subspace $Y$ of $X$ and an

injective bounded linear operator $C_{1}$ on $X$ such that $Y\subset D(A(t))$ for $t\in[0,T]$

and the following conditions hold:

1) For $s\in[0,T]$ and $x\in C_{1}(Y)$ , there exists a unique solution $u(t;s, x)$

such that $u(t;s, x)\in Y$ for $t\in[s, T]$ .

2) For $x\in C_{1}(Y),$ $u(t;s, x)$ is continuous for $0\leq s\leq t\leq T$ .

3) If $\{u(t;s,x.)\}$ is a sequence of solutions with $x_{n}arrow 0$ in the $C_{1^{-1}}$ -graph

norm as $narrow\infty$ then $u(t;s, x_{n})$ converges to zero uniformly with respect to $t$

and $s$ .

Here we note that in the special case where $A(t)=A,$ $s=0,$ $Y=D(A)$ and

$C_{1}=R(c:A)$“ ($n\in N\cup\{0\}$ and $c\in p(A)$ ), the concept of the above well posed

problem is equal to that of the well posed problem in the sense of Hadamard in

the autonomous case (see [5,8]), which several authors [1,4,9,10,11,12] recently

have studied via the theory of integrated semigroups or C-semigroups.
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Now we turn to the above well posed problem. We define a linear subspace

$D(s)$ of $X$ and a linear operator $U(t, s)$ on $D(s)$ by

$\{_{U(t,)x=u(t;s,x)forx\in^{s}D(s)^{a}}^{D(s)_{s^{=}}\{x\in X.\cdot the(DE)has}$

.

unique solution $u(t;s,x)$ }

Then, from the uniqueness of the solutions it follows that $U(t,s)$ : $D(s)arrow D(t)$

and $U(t, r)U(r,s)=U(t, s)$ on $D(s)$ for $0\leq s\leq f\leq t\leq T$ . Formally, the two

parameter family $\{U(t, s);0\leq s\leq t\leq T\}$ may have the properties

(1.1) $(\partial/\partial t)U(t, s)=A(t)U(t,s)$

(this property is useful to show the existence of the solutions),

(1.2) $(\partial/\partial s)U(t,s)=-tI(t, s)A(s)$

(this property is useful to show the uniqueness of the solutions).

We define $\{V_{1}(t,s) : 0\leq s\leq t\leq T\}$ by

$V_{1}(t,s)y=U(t, s)C_{1}y(=u(t;s, C_{1}y))$ for $y\in Y$.

Since $Y$ is dense in $X$ one can see by the condition 3) that $V_{1}(t, s)$ is extended

to a bounded linear operator on $X$ , which we denote by the same symbol. Then,

the two parameter family $\{V_{1}(t, s):0\leq s\leq t\leq T\}$ has the properties

(i) for $x\in X,$ $(t, s)arrow V_{1}(t,s)x$ is continuous for $0\leq s\leq t\leq T$ ,

(ii) $V_{1}(t, s)(Y)\subset Y$ for $0\leq s\leq t\leq T$ ,

(iii) $(\partial/\partial t)V_{1}(t, s)y=A(t)V_{1}(t,s)y$ for $y\in Y$ , and $V_{1}(s,s)=C_{1}$ .

We also consider the following important property to show the uniqueness

of the solutions:

(iv) $(\partial/\partial s)V_{2}(t, s)y=-V_{2}(t,s)A(s)y$ for $y\in Y$ , and $V_{2}(s, s)=C_{2}$ .

Multiplying (1.2) by the injective bounded linear operator $C_{2}$ from the left-hand

side, and then defining $V_{2}(t,s)$ by $C_{2}U(t, s)$ we obtain the property (iv).
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Moreover, the following relation between $V_{1}(t, s)$ and $V_{2}(t, s)$ holds:

(v) $C_{2}V_{1}(t,s)=V_{2}(t,s)C_{1}$ for $0\leq s\leq t\leq T$.

In \S 2 we will construct a pair of evolution systems $(\{V_{1}(t, s)\}, \{V_{2}(t,s)\})$

having the properties (i) - (v) in order to investigate the well posed problem

in the sense of Hadamard for the time-dependent differential equation $(DE)_{\epsilon}$ .
As an application we also consider the second order differential equation in a

reflexive Banach space $X$

$(DE)_{s}^{2}$ $\{_{u(s)=x,u(s)=y}^{u’’(t)=Au(t)+B(t)u(t)}$

for $t\in[s,T]$

where $A$ is the infinitesimal generator of a cosine family and $\{B(t);t\in[0,T]\}$

is a given family of linear operators in $X$ .

\S 2. CONSTRUCTION OF EVOLUTION SYSTEMS

Let $X$ and $Y$ be Banach spaces with norm $\Vert$ . II and $||\cdot||_{Y}$ respectively. We

write $B(Y, X)$ for the set of all bounded linear operators on $Y$ to $X$ and denote

$B(X,X)$ by $B(X)$ . For each $i=1,2$ , let $C$; be an injective operator in $B(X)$ .

Throughout this paper we will assume that

$(H_{1})$ $Y$ is reflexive,

$(H_{2})$ $Y$ is densely and continuously imbedded in $X$ , that is, $Y$ is a dense

subspace of $X$ and there is a $co$nstant $L$ such that $||y||\leq L||y||_{Y}$ for $y\in Y$ ,

$(H_{3})$ $C_{1}(Y)\subset Y$ and $C_{1}(Y)$ is $||\cdot||_{Y}$-dense in Y.

We will make the following assumptions on a family $\{A(t) : t\in[0, T]\}$ of

closed linear operators in $X$ :

$(A_{1})$ There are constants $M_{1}\geq 0$ and $\omega_{1}\geq 0$ such that

$(\omega_{1},\infty)\subset\rho(A(t))$ for $t\in[0, T]$ and

$\Vert\lambda^{m}$ ($\prod_{i=1}^{m}R(\lambda : A(t_{i}))$) $C_{1}\Vert\leq M_{1}$ for $\lambda>\omega_{1}$
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and every finite sequence $\{t_{i}\}_{i=1}^{m}$ such that $0\leq t_{1}\leq\cdots\leq t_{m}\leq T$ and $m$ with

$0\leq m/\lambda\leq T$ .

$(A_{2})$ There are constants $M_{2}\geq 0$ and $\omega_{2}\geq\omega_{1}$ such that

($\prod_{:=1}^{m}R(\lambda : A(t_{j}))$) $C_{1}(Y)\subset Y$ and

$\Vert\lambda^{m}$ ($\prod_{i=1}^{m}R(\lambda : A(t_{i}))$) $C_{1}\Vert_{Y}\leq M_{2}$ for $\lambda>\omega_{2}$

and every finite sequence $\{t_{i}\}_{i=1}^{m}$ such that $0\leq t_{1}\leq\cdots\leq t_{m}\leq T$ and $m$ with

$0\leq m/\lambda\leq T$ .

$(A_{3})$ There are constants $M_{3}\geq 0$ and $\omega_{3}\geq\omega_{1}$ such that

$\Vert C_{2}$ ($\lambda^{m}$ ($\prod_{i=1}^{m}R(\lambda : A(t_{i}))$)) $\Vert\leq M_{3}$ for $\lambda>\omega_{3}$

and every finite sequence $\{t_{i}\}_{i=1}^{m}$ such that $0\leq t_{1}\leq\cdots\leq t_{m}\leq T$ and $m$ with

$0\leq m/\lambda\leq T$ .
$(A_{4})$ For $t\in[0, T],$ $D(A(t))\supset Y$ and $D(C_{1}^{-1}A(t)C_{1})\supset Y$ , and the

function $tarrow A(t)$ is continuous in the $B(Y,X)$ norm $||\cdot\Vert_{Yarrow X}$ and $M_{4}=$

$\sup\{||C_{1}^{-1}A(t)C_{1}\Vert_{Yarrow X} : t\in[0,T]\}<\infty$ .

The main result of this paper is given by

THEOREM 2.1. If the family $\{A(t) : t\in[0, T]\}$ of closed linear operators in
$X$ satisfies $(A_{1})-(A_{4})$ then there exists a unique pair $(\{V_{1}(t, s)\}, \{V_{2}(t, s)\})$ of
$st$rongly continuous families of boun$ded$ linear operators defined on the triangle
$\triangle=\{(t, s) : 0\leq s\leq t\leq T\}\mathfrak{n}^{\gamma}ith$ the following properties:

(a) For $i=1,2,$ $V_{j}(s, s)=C$; on $[0, T]$ and $C_{2}V_{1}(t, s)=V_{2}(t, s)C_{1}$ on $\triangle$ .
$(b)$ $V_{1}(t, s)(Y)\subset Y$ for $0\leq s\leq t\leq T$ .
$(c)$ For $y\in Y$ and $y^{*}\in Y^{*},$ $(t, s)arrow(y^{*}, V_{1}(t, s)y)$ is continuous on $\triangle$ .

$(d)$ ( $x^{*},$ $V_{1}(t, s)y-V_{1}(r, s)y$ } $= \int^{\ell}(x^{*},A(\tau)V_{1}(\tau, s)y$ } $d\tau$
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for $y\in Y,$ $x^{*}\in X^{*}$ and $0\leq s\leq f\leq t\leq T$ . In particular, $(\partial/\partial t)V_{1}(t, s)y$ exists

for almost every $t\in[s, T]$ and $eq$uals $A(t)V_{1}(t,s)y$ .

$(e)$ $V_{2}(t, r)y-V_{2}(t,s)y=-\int_{s}^{r}V_{2}(t,\tau)A(\tau)yd\tau$

for $y\in Y$ and $0\leq s\leq r\leq t\leq T$ .

Remarks. 1) In the case where $A(t)\subset C_{1}^{-1}A(t)C_{1}$ for $t\in[0, T]$ , the

condition (A3) is automatically satisfied with $C_{2}=C_{1}$ if the condition $(A_{1})$ is

satisfied.

2) In the case where $C_{1}=C_{2}=t$ (the identity operator on $X$ ), Theorem

2.1 is [6, Theorem 5.1].

Before proving Theorem 2.1 we prepare three lemmas. Let $s\in[0, T$) and

let $\lambda>0$ be such that $\lambda\omega_{3}<1$ . Set

$P_{\lambda,k}(s)= \prod_{:=1}^{k}J_{\lambda}(s+i\lambda)$ for $0\leq k\leq[(T-s)/\lambda]$ ,

where $[]$ denotes the Gaussian bracket and $J_{\lambda}(t)=(1-\lambda A(t))^{-1}=\lambda^{-1}R(\lambda^{-1}$ :

$A(t))$ for $t\in[0, T]$ .

Now we define $A_{k,l}$ and $B_{k,l}$ by

$\{_{B_{k},\iota y}^{A_{k,l^{X}}}=\mu(A^{k}(s+k\lambda)-A(s+\mu))P_{\mu,l}(s)Cy=P_{\lambda,}(s)C_{1}x-P_{\mu,l}(s)C_{i^{1}}xforx\in X_{1}$

,

for $y\in Y$.

Here we note by the conditions $(A_{2})$ and $(A_{4})$ that $B_{k,l}$ is well defined because

$P_{\mu,l}(s)C_{1}(Y)\subset Y\subset D(A(t))$ for $t\in[0,T]$ .

Using the resolvent identity we obtain by a standard argument

LEMMA 2.2. Let $s\in[0, T$) and $\lambda,$ $\mu>0$ be such that $\lambda\omega_{3},$ $\mu\omega_{3}<1$ . Then, for

$y\in Y$ we have

(2.1) $A_{k,l}y=J_{\mu}(s+k\lambda)(\alpha A_{k-1,1-1}y+\beta A_{k,l-1}y+B_{k,l}y)$
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for $0\leq k\leq[(T-s)/\lambda]$ an$d0\leq i\leq[(T-s)/\mu]$ , where $\alpha=A\lambda$ an$d \beta=\frac{\lambda-\mu}{\lambda}$ .

Let $s\in[0,T$) and $\lambda,$ $\mu>0$ be such that $\lambda\omega_{3},\mu\omega_{3}<1$ . Let $k$ and $j$ be

nonnegative integers. We denote by $H(m, k)$ the set of all operators $Q$ obtained

by multiplying $k$ operators $J_{\mu}(t_{i})(i=1, \cdots k)$ in the family { $J_{\mu}(s+i\lambda)$ : $i=$

$1,$ $\cdots m$ } such that $Q= \prod_{i=1}^{k}J_{\mu}(t_{j})$ for $0\leq s+\lambda\leq t_{1}\leq\cdots\leq t_{k}\leq s+m\lambda\leq T$ ;

$H(m, 0)=H(O, k)=$ {the identity operator}. By $H(m, k,j)$ we denote the

set of all sums of $j$ operators $Q$ ; $(i=1, \cdots , j)$ in $H(m, k)$ , where in $j$ operators

$Q_{1}$ , $\cdots$ $Q_{j}$ , same operators are allowed to appear repeatedly.

Using the relation (2.1) and then taking account of the definition $H(\cdot, \cdot, \cdot)$

we obtain by a routine calculation the following crucial estimate:

LEMMA 2.3. Let $s\in[0, T$) and let $\lambda,$ $\mu>0$ such that $\lambda\omega_{3},$ $\mu\omega_{3}<1$ . Then, for

$y\in Y$ we have

$A_{m,n}y \in\sum_{1=0}^{(m-1)\wedge n}\alpha^{i}\beta^{n-i}H(m,$ $n,$ $(\begin{array}{l}ni\end{array}))A_{m-i,0}y$

$+ \sum_{i=m}^{n}\alpha^{m}\beta^{i-m}H(m,i,$ $(\begin{array}{l}i-1-m1\end{array}))A_{0,n-};y$

$+ \sum_{j=0}^{n-1}\sum_{i=0}^{(m-1)Aj}\alpha^{i}\beta^{j-i}H(m,j+1,$ $(\begin{array}{l}ji\end{array}))B_{m-i,n-j}y$

for $0\leq m\leq[(T-s)/\lambda]$ and $0\leq n\leq[(T-s)/\mu]$ , where $\alpha=A\lambda’\beta=\frac{\lambda-\mu}{\lambda}$

$i \wedge k=\min(i, k)$ and $(^{j_{i}})$ is the binomial coeflicient.

LEMMA 2.4. (I) Let $s\in[0,T$) and let $\lambda>\mu>0$ be such that $\lambda\omega_{3}<1$ . Then,

there exists a positive constant $K$ , depending only on $M:(i=1,2,3,4)$, such

that

(2.2)
$\Vert C_{2}P_{\lambda,m}(s)C_{1}y-C_{2}P_{\mu,\mathfrak{n}}(s)C_{1}y||\leq K||y\Vert_{Y}\{2((n\mu-m\lambda)^{2}+T(\lambda-\mu))^{1/2}$

$+T( \rho(|n\mu-m\lambda|)+\rho(\delta))+\frac{T^{2}}{\delta^{2}}\rho(T)(\lambda-\mu)\}$

for $1\leq m\leq[(T-s)/\lambda],$ $1\leq n\leq[(T-s)/\mu],$ $y\in Y$ and $\delta>0$ , where

$\rho(r)=\sup\{||A(t)-A(s)||_{Yarrow X} : t, s\in[0, T], |t-s|\leq r\}$ for $r\geq 0$ .
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(II) Let $0\leq f\leq s\leq T_{\partial J1}d$ let $\lambda>0$ be such that $\lambda\omega_{3}<1$ . Then there

exists a positive constant $K$ , depending only on $M_{i}(i=2,3)$ , such that

(2.3) $||C_{2}P_{\lambda,m}(s)C_{1}y-C_{2}P_{\lambda,m}(r)C_{1}y||\leq KT||y||_{Y}\rho(s-r)$

for $1\leq m\leq[(T-s)/\lambda]$ and $y\in Y$ .

PROOF: By virtue of Lemma 2.3 we can show (2.2) in the same way as in the

proof of [2,Theorem 2.1]. To prove (2.3), let $0\leq r\leq s\leq T$ and let $\lambda>0$ be

such that $\lambda\omega_{3}<1$ . For $1\leq k\leq[(T-s)/\lambda]$ we define $A_{k}$ and $B_{k}$ by

$\{_{B_{k}y}^{A_{k^{X}}}=\lambda(A^{k}(s+k\lambda)-A(r+k\lambda))P_{\lambda},(s)C_{1}y=P_{\lambda},(s)C_{1}x-P_{\lambda,k}(r)C_{1}xfor_{k}x\in X$

,

for $y\in Y$

Then, by a simple computation we have

$A_{k}y=(J_{\lambda}(s+k\lambda)-J_{\lambda}(r+k\lambda))P_{\lambda,k-1}(s)C_{1}y$

$+J_{\lambda}(r+k\lambda)(P_{\lambda,k-1}(s)C_{1}y-P_{\lambda,k-1}(r)C_{1}y)$

$=J_{\lambda}(r+k\lambda)(A_{k-1}y+B_{k}y)$

for $y\in Y$ . By solving this we find

$A_{m}y= \sum_{1=1}^{m}(\prod_{k=1}^{m}.J_{\lambda}(r+k\lambda))B;y$

for $y\in Y$ and $1\leq m\leq[(T-s)/\lambda]$ . Therefore, we obtain the desired estimate

(2.3) by the conditions $(A_{2})$ and (A3). Q.E.D.

PROOF OF THEOREM 2.1: Let $s,$ $r\in[0, T$) and let $\lambda>\mu>0$ be such that
$\lambda\omega_{3}<1$ . Let $m$ and $n$ be integers such that $0\leq s+m\lambda,$ $r+n\mu\leq T$ and let

$y\in Y$ . If $s\leq f$ then $0\leq s+n\mu\leq T$ , so that $P_{\mu,n}(s)$ is well defined. Similarly,
$P_{\lambda,m}(r)$ is well defined if $s\geq f$ . Therefore, $C_{2}P_{\lambda,m}(s)C_{1}y-C_{2}P_{\mu,n}(r)C_{1}y$ can

be written as

$\{\begin{array}{l}C_{2}P_{\lambda,m}(s)C_{l}y-C_{2}P_{\mu,n}(s)C_{l}y+(C_{2}P_{\mu,n}(s)C_{1}y-C_{2}P_{\mu,n}(r)C_{1}y)ifs\leq rC_{2}P_{\lambda,m}(s)C_{1}y-C_{2}P_{\lambda,m}(r)C_{1}y+(C_{2}P_{\lambda,m}(r)C_{1}y-C_{2}P_{\mu,n}(r)C_{l}y)ifs\geq r\end{array}$
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Applying Lemma 2.4 to this we see that there exists a positive constant $K$ ,

depending only on $M_{i}(i=1,2,3,4)$ , such that

$||C_{2}P_{\lambda,m}(s)-C_{2}P_{\mu n}(r)C_{1}y||$

$\leq K\Vert y||_{Y}\{2((n\mu-m\lambda)^{2}+T(\lambda-\mu))^{1/2}+T(p(|n\mu-m\lambda|)$

$+ \rho(\delta)+\rho(|r-s|))+\frac{T^{2}}{\delta^{2}}\rho(T)(\lambda-\mu)\}$

for $\delta>0$ and $y\in$ Y. Since $C_{1}(Y)$ is dense in $X$ and $\Vert C_{2}P_{\lambda_{n},n}(s_{n})||\leq M_{3}$ for

$n\geq 1$ it follows that

(2.4) $V_{2}(t,s)x= \lim_{narrow\infty}C_{2}(\prod_{i=1}^{n}J_{\lambda_{n}}(s_{n}+i\lambda_{n}))x$

exists for $x\in X$ if $\{s_{n}\}$ is a sequence of nonnegative numbers with $\lim_{narrow\infty}s_{n}=$

$s$ and $\{\lambda_{n}\}$ is a sequence such that $0\leq s_{n}+n\lambda_{n}\leq T$ and $s_{n}+n\lambda_{n}arrow t-s>0$

as $narrow\infty$ . Here we have used the fact that $\rho(\delta)arrow 0$ as $\deltaarrow 0+$ . We note that

the limit is independent of $\{s_{n}\}$ and $\{\lambda_{n}\}$ .

Let $\{s_{n}\}$ be a sequence of nonnegative numbers such that $\lim_{narrow\infty}s_{n}=s$

and let $\{\lambda_{n}\}$ be a sequence such that $0\leq s_{n}+n\lambda_{n}\leq T$ and $s_{n}+n\lambda_{n}arrow t-s>0$

as $narrow\infty$ . We then define $V_{1}^{\langle n)}(t, s)$ on $X$ by

$V_{1}^{(n)}(t,s)=\{C_{l}(\prod_{|}^{n_{=1}}J_{\lambda_{n}}(s_{n}+i\lambda_{n}))C_{1}$ $fort=sfors<t$

.
Then, by the condition $(A_{2})$ we have

$V_{1}^{\langle n)}(t,s)(Y)\subset Y$ and $||V_{1}^{\langle n)}(t, s)||_{Y}\leq M_{2}$ for $0\leq s\leq t\leq T$ and $n\geq 1$ .

We now show that for $y\in Y$ and $y^{*}\in Y^{*},$ ( $y^{*},$ $V_{1}^{\langle n)}(t, s)y$ } is conver-

gent. Let $\{n_{k}\}$ be any subsequence of $\{n\}$ . Since $Y$ is reflexive there exists a

subsequence $\{n_{k}’\}$ of $\{n_{k}\}$ and $y(t, s)\in Y$ , depending upon $\{n_{k}’\}$ , such that

$(y^{*}, V_{1}^{\langle n_{k}’)}(t, s)y)arrow(y^{*},$ $y(t, s)$ }

for $y^{*}\in Y$
“ as $narrow\infty$ . In particular, for $x^{*}\in X^{*}$ we have

$\{C_{2}^{*}x^{*}, V_{1}^{(n_{k}’)}(t, s)y\}arrow\langle C_{2}^{*}x^{*},$ $y(t,s)$ } $=(x^{*},$ $C_{2}y(t, s)$ }
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as $narrow\infty$ , since $C_{2^{*}}x^{*}|_{Y}\in Y^{*}$ . On the other hand, by (2.4) we obtain for
$x^{*}\in X^{*}$ ,

$\{C_{2}^{*}x^{*}, V_{1}^{\langle n_{k}’)}(t,s)y\}=(x^{*}, C_{2}V_{1}^{(n_{k}’)}(t,s)y)arrow\{x^{*},$ $V_{2}(t, s)C_{1}y)$

as $narrow\infty$ . Hence $C_{2}y(t,s)=V_{2}(t,s)C_{1}y$ , so that $y(t,s)$ is independent of $\{n_{k}’\}$ .
Therefore it is proved that

$\lim_{narrow\infty}\{y^{*},$
$V_{1}^{(n)}(t,s)y)=\{y^{*},$ $C_{2}^{-1}V_{2}(t, s)C_{1}y)$

for $y\in Y$ . By this together with the fact that $x^{*}|_{Y}\in Y^{*}$ we have for $x^{*}\in X^{*}$ ,

$(x^{*}, C_{2}^{-1}V_{2}(t, s)C_{1}y)= \lim_{narrow\infty}(x^{*},$
$V_{1}^{(n)}(t, s)y$ } for $y\in Y$.

Hence

$||C_{2}^{-1}V_{2}(t, s)C_{1}y\Vert\leq M_{1}||y||$

for $y\in Y$ and $0\leq s\leq t\leq T$. Since $Y$ is dense in $X$ we see by the closed graph

theorem that $C_{2^{-1}}V_{2}(t,s)C_{1}\in B(X)$ and $\Vert C_{2}^{-1}V_{2}(t,s)C_{1}||\leq M_{1}$ for $0\leq s\leq t\leq$

$T$ .

We now define $V_{1}(t,s)$ on $X$ by

$V_{1}(t,s)=C_{2}^{-1}V_{2}(t,s)C_{1}$ for $0\leq s\leq t\leq T$.

Then, it follows from the fact which has been proved above that $||V_{1}(t,s)||\leq$

$M_{1},$ $V_{1}(t,s)(Y)\subset Y,$ $||V_{1}(t,s)\Vert_{Y}\leq M_{2}$ and $C_{2}V_{1}(t, s)=V_{2}(t,s)C_{1}$ for $0\leq s\leq$

$t\leq T$ . Moreover, we have

$\lim_{\mathfrak{n}arrow\infty}\{y^{*},$ $( \prod_{:=1}^{n}J_{\lambda_{n}}(s_{n}+i\lambda_{n}))C_{1}y\}=\{y^{*},$ $V_{1}(t,s)y)$

for $y\in Y$ and $y^{*}\in Y^{*}$ if $\{s_{n}\}$ is a sequence of nonnegative numbers such

that $\lim_{narrow\infty}s_{\mathfrak{n}}=s$ and $\{\lambda_{n}\}$ is a sequence such that $0\leq s_{n}+n\lambda_{n}\leq T$ and
$s_{n}+n\lambda_{n}arrow t-s>0$ as $narrow\infty$ .
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To prove that for $x\in X,$ $(t,s)arrow V_{1}(t,s)x$ is continuous on $\triangle$ , since $Y$ is

dense in $X$ and $||V_{1}(t,s)||\leq M_{1}$ on $\triangle$ it suffices to show that

(2.5) $||V_{1}(t,s)y-V_{1}(\tau,s)y||\leq K(t-\tau)||y||_{Y}$

for $y\in Y$ and $0\leq s\leq\tau\leq t\leq T$,

(2.6) $||V_{1}(t,s+h)y-V_{1}(t,s)y||\leq Kh||y\Vert_{Y}$

for $y\in Y$ and $0\leq s\leq s+h\leq t\leq T$ .

To prove (2.5), let $y\in Y$ and $0\leq s\leq\tau\leq t\leq T$ and let $\lambda>0$ be such
$arrow$

that $\lambda\omega_{3}<1$ . If $n$ and $m$ be integers such that $m<n\leq[(T-s)/\lambda]$ then

$(x^{*}, P_{\lambda,n}(s)C_{1}y-P_{\lambda,m}(s)C_{1}y)$

(2.7)
$= \{x^{*},\sum_{k=m}^{n-1}(P_{\lambda,k+1}(s)C_{1}y-P_{\lambda,k}(s)C_{1}y)\}$

$=\{x^{*},$ $\lambda\sum_{k=m}^{n-1}A(s+(k+1)\lambda)P_{\lambda,k+1}(s)C_{1}y\}$

,

for $x^{*}\in X^{*}$ ,

from which it follows that
$|(x^{*}, P_{\lambda,n}(s)C_{1}y-P_{\lambda,m}(s)C_{1}y\}|$

$\leq||x^{*}||\lambda(n-m)\cdot\sup\{||A(t)||_{Yarrow X} : t\in[0,T]\}\cdot M_{2}||y||_{Y}$

for $x^{*}\in X$ “. Setting $n=[(t-s)/\lambda]$ and $m=[(\tau-s)/\lambda]$ , and then letting
$\lambdaarrow\infty$ we obtain the desired estimate (2.5).

To prove (2.6) let $y\in Y$ and $0\leq s<s+h<t\leq T$ , and choose a sequence

$\{k(n)\}$ of integers such that $k(n)h/n\leq t-(s+h)$ and $k(n)h/narrow t-(s+h)$

as $narrow\infty$ . Then, since

$( \prod_{1=1}^{k\langle n)}J_{h/n}(s+h+ih/n))y-(\prod_{i=1}^{n+k(n)}J_{h/n}(s+ih/n))y$

(2.8) $= \sum_{j=1}^{n}\{(\prod_{i=j+1}^{\mathfrak{n}+k(n)}J_{h/n}(s+ih/n))y-(\prod_{i=j}^{n+k(n)}J_{h/n}(s+ih/n))y.\}$

$=-(h/n) \sum_{j=1}^{n}(\prod_{1=j}^{n+k\langle \mathfrak{n})}J_{h/n}(s+ih/n))A(s+jh/n)y$,

10
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it follows from the conditions $(A_{1})$ and $(A_{4})$ that

$|(x^{*},P_{h/n,k(n)}(s+h)C_{1}y-P_{h/n,n+k(n)}(s)C_{1}y)|\leq hM_{1}M_{4}||y||Y||x^{*}||$

for $x^{*}\in X^{*}$ . Passing to the limit as $narrow\infty$ we obtain (2.6).

The strongly continuity of $V_{2}(t,s)$ immediately follows from the strongly

continuity of $V_{1}(t,s)$ and the relation that $C_{2}V_{1}(t, s)=V_{2}(t,s)C_{1}$ , since $C_{1}(X)$

is dense in $X$ and $||V_{2}(t, s)||\leq M_{3}$ on $\triangle$ .

Since $Y$ is reflexive, using the strongly continuity of $V_{1}(t, s)$ together with

the facts that $V_{1}(t, s)(Y)\subset Y$ and $||V_{1}(t, s)||_{Y}\leq M_{2}$ on $\triangle$ we see by a standard

argument that for $y\in Y$ and $y^{*}\in Y^{*},$ $(t,s)arrow\{y^{*}, V_{1}(t,s)y\}$ is continuous for

$0\leq s\leq t\leq T$ .

To prove that $\{V_{1}(t,s) : 0\leq s\leq t\leq T\}$ has the property (d), let $y\in$

$Y,x^{*}\in X^{*}$ and $0\leq s\leq f<t\leq T$ . Setting $n=[(t-s)/\lambda]$ and $m=[(r-s)/\lambda]$

in (2.7) we have

$(x^{*},P_{\lambda,[\langle\ell-\epsilon)/\lambda]}(s)C_{1}y-P_{\lambda,[\langle’\cdot-s)/\lambda]}(s)C_{1}y)$

$= \{x^{*},\sum_{k=[(r-\cdot)/\lambda]}^{[(t-s)/\lambda]-1}\int_{+k\lambda}^{\epsilon+(k+1)\lambda}A(s+([(\tau-s)/\lambda]+1)\lambda)P_{\lambda,[(\tau-\epsilon)/\lambda]+1}(s)C_{1}yd\tau\}$

$= \int_{+[\langle r-\epsilon)/\lambda]\lambda}^{s+[(\ell-\iota)/\lambda|x_{(\tilde{A}(s+([(\tau-s)/\lambda]+1)\lambda)^{*}x^{*},P_{\lambda,[(\tau-\epsilon)/\lambda]+1}(s)C_{1}y\rangle d\tau}}$,

where $\tilde{A}(t)$ : $X^{*}arrow Y^{*}$ denotes the adjoint of the restriction $\tilde{A}(t)$ of $A(t)$ to Y.

The condition $(A_{4})$ implies that $tarrow\tilde{A}(t)^{*}$ is continuous in the $B(X^{*}, Y^{*})$ norm;

thus passing to the limit as $\lambdaarrow\infty$ we see by Lebesgue’s convergence theorem

that

$\{x^{*},$ $V_{1}(t, s)y-V_{1}(r,s)y)= \int^{t}\{\tilde{A}(\tau)^{*}x^{*},$ $V_{1}(\tau,s)y)d\tau$.

This shows that the property (d) is satisfied.

We next show that $\{V_{2}(t, s) : 0\leq s\leq t\leq T\}$ has the property (e). Let

$0\leq s<s+h<t\leq T$ and choose a sequence $\{k(n)\}$ of integers such that

11
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$k(n)h/n\leq t-(s+h)$ and $k(n)h/narrow t-(s+h)$ as $narrow\infty$ . By (2.8) we have

$C_{2}P_{h/n,k(n)}(s+h)y-C_{2}P_{h/n,n+k(n)}(s)y$

$=- \sum_{j=1}^{n}\int_{+(j-1)h/n}^{s+jh/n}C_{2}P_{h/n,n+k(n)-j+1}(s+(j-1)h/n)A(s+jh/n)ydr$

$=- \int^{\epsilon+h}C_{2}P_{h/n,n+k(n)-r(n)}(s+r(n)h/n)A(s+(r(n)+1)h/n)ydr$

for $y\in Y$ , where $r(n)=[(r-s)/(h/n)]$ . Letting $narrow\infty$ in this equality we see

that the property (e) is satisfied.

Suppose that $(\{W_{1}(t, s)\}, \{W_{2}(t, s)\})$ is a pair of strongly continuous $fam-\vee$

ilies of bounded linear operators defined on the triangle $\triangle$ with the properties

$(a)-(e)$ . Then, by the properties (d) and (e) we see that for $y\in Y$ , the function

$rarrow V_{2}(t, r)W_{1}(r, s)y$ is Lipschitz continuous and $(\partial/\partial r)V_{2}(t, r)W_{1}(r,s)y=0$

for almost every $f\in[s, T]$ . Integrating this from $s$ to $t$ we obtain $C_{2}W_{1}(t, s)y=$

$V_{2}(t, s)C_{1}y$ for $y\in$ Y. By the property (a), $W_{2}(t, s)$ is equal to $V_{2}(t,s)$ on the

dense subspace $C_{1}(Y)$ of $X$ , so that $(\{V_{1}(t, s)\}, \{V_{2}(t, s)\})$ is the only pair of

strongly continuous families of bounded linear operators defined on the triangle
$\triangle$ with the properties $(a)-(e)$ . Q.E.D.

Definition 2.1. A function $u(\cdot;s, x)$ on $[s, T]$ is a strong solution of (DE), if

(i) $u(\cdot;s, x)\in A^{1,1}(s, T;X)$ ,

(ii) $u(\cdot;s, x)$ satisfies $(DE)_{\epsilon}$ almost everywhere.

Here we denote by $A^{k,p}(a, b;X)$ the space of all absolutely continuous functions
$u$ : $[a, b]arrow X$ for which $d^{j}u/dt^{j}$ exist (and are defined almost everywhere) for

$j=1,2,$ $\cdots k$ such that $d^{j}u/dt^{j},$ $j=1,2\cdots k-1$ , are all absolutely continuous

and $d^{k}u/dt^{k}\in L^{p}(a, b;X)$ .

Existence and uniqueness of the strong solutions of the time-dependent

differential equation (DE), is provided by

12
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THEOREM 2.5. If the falnily $\{A(t) : t\in[0, T]\}$ of closed line$ar$ operators in $X$

satisfies the conditions $(A_{1})-(A_{4})$ then, for every initial $da$ta $x\in C_{1}(Y)$ the

(DE). has a unique strong solution satisfying $u(t;s, x)\in Y$ for $t\in[s,T]$ and

$\sup\{||u(t;s, x)||_{Y} : t\in[s, T]\}<\infty$ .

PROOF: By Theorem 2.1 there exists a unique pair $(\{V_{1}(t, s)\}, \{V_{2}(t,s)\})$ of

strongly continuous families of bounded linear operators defined on the triangle

$\triangle=\{(t,s);0\leq s\leq t\leq T\}$ with the properties $(a)-(e)$ . Let $x\in C_{1}(Y)$ and

set $u(t;s, x)=V_{1}(t,s)C_{1}^{-1}x$ for $0\leq s\leq t\leq T$ . Then, it is easy to see that

$u(t;s, x)$ is a strong solution of $(DE)_{\epsilon}$ satisfying $u(t;s, x)\in Y$ for $t\in[s,T]$ and

$\sup\{||u(t;s, x)||_{Y} : t\in[s, T]\}<\infty$. To prove the uniqueness of the solutions, let

$v(t;s,x)$ be a strong solution of (DE), satisfying $v(t;s, x)\in Y$ for $t\in[s,T]$ and

$\sup\{||v(t;s,x)||_{Y} : t\in[s,T]\}<\infty$ . Then, we deduce from the property (e) that

$farrow V_{2}(t,r)(u(r;s,x)-v(r;s,x))$ is absolutely continuous on $[s,T]$ and

$(\partial/\partial r)V_{2}(t, r)(u(r;s,x)-v(r;s,x))=0$

for almost every $f\in[s, T]$ . Integrating this equality from $s$ to $t$ we have

$C_{2}(u(t;s, x)-v(t;s,x))=0$ ,

which shows that $u(t;s,x)=v(t;s,x)$ for $t\in[s, T]$ , since $C_{2}$ is injective.

Q.E.D.

We next consider the second order differential equation in a reflexive Ba-

nach space $X$

$(DE)_{\epsilon}^{2}$ $\{_{u(s)=x,u(s)=y}^{u’’(t)=Au(t)+B(t)u(t)}$

for $t\in[s,T]$

where $A$ is the infinitesimal generator of a cosine family and $\{B(t) : t\in[0,T]\}$

is a family of linear operators in $X$ satisfying the following conditions:
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(B) $D(A)\subset D(B(t))$ for $t\in[0,T]$ .

(B) There are constants $M\geq 0$ and $\omega\geq 0$ such that $\{\lambda^{2} : \lambda>\omega\}\subset\rho(A)$ ,

for $t\in[0, T]B(t)R(\lambda^{2} : A)$ is strongly infinitely differentiable in $\lambda>\omega$ and

satisfies
$||(1/n!)(\lambda-\omega)^{n+1}(d/d\lambda)^{n}B(t)R(\lambda^{2} : A)x||\leq M||x||$

for $x\in X,$ $\lambda>\omega$ and $n=0,1,$ $\cdots$ .

(B3) $\lim_{\ellarrow\epsilon}\sup\{||B(t)x-B(s)x|| : x\in D(A), ||x||+||Ax||\leq 1\}=0$ .

(B) There exists $\lambda_{0}>\omega$ such that $(\lambda_{0}^{2}-A)B(t)R(\lambda_{0}^{2} : A)=B(t)+P(t)$,

where $\{P(t) : t\in[0, T]\}$ is a strongly continuous family of bounded linear
$X$

operators on $X$ .

Definition 2.2. A function $u(\cdot;s,x, y)$ on $[s,T]$ is a strong solution of $(DE)_{s}^{2}$ if

(i) $u(\cdot;s, x, y)\in A^{2,1}(s,T;X)$ ,

(ii) $u(\cdot;s,x,y)$ satisfies $(DE)_{s}^{2}$ almost everywhere.

Without proof we state the existence and uniqueness theorem of the

strong solutions of the second order differential equation $(DE)_{s}^{2}$ which is ob-

tained by applying Theorem 2.5 with A(t) $=(\begin{array}{ll}0 1A+B(t) 0\end{array})$ and $C_{1}=C_{2}=$

$(\begin{array}{ll}0 1A-\lambda_{0}^{2} 0\end{array})$

THEOREM 2.6. $Assume$ that $A$ is the infinitesim$al$ generator of a cosin$e$ family

and $\{B(t) : t\in[0,T]\}$ is a $family$ of linear operators in $X$ satisfying the con-

ditions $(B_{1})-(B_{4})$ . Then, for every $initial$ data $x\in D(A)$ and $y\in D(A)$ the
$(DE)_{\epsilon}^{2}$ has a $unique$ strong solution $u(t;s,x,y)sud_{1}$ that $u(t;s,x,y)\in D(A)$ for

$t\in[s, T]$ and $\sup\{||Au(t;s,x,y)|| : t\in[s,T]\}<\infty$ .
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