goooboooogn ,
0 7550 1991 0 185-200 185

Shape Optimization in Multi-Phase Stefan Problem
Atsushi KADOYA (& ¥)

Department of Mathematics
Graduate School of Science and Technology
Chiba University ‘

1.Formulation of the optimization problem

Let us consider the enthalpy formulation of Stefan problem described as follows:

{ u—ABu)=f inQ(Q):=(0,T) x Q,
SP(Q)< u(0,:) =y in Q,
Bu)=g on £(Q2) :=(0,T) x 99,

where € is a fixed smooth bounded domain in R¥ (N > 2), and Q is a smooth subdomain of
0, 0<T <00,Q:=(0,T)xQand & :=(0,T) x3%; f: R — Ris a nondecreasing function
on R such that

11 B(0) = 0,|8(r)| 2 Colr| = C, forall € R,
(L) B(r) - B()| < Lolr—+|  forall rr'e R,

where Cp > 0, C5 > 0 and L, > 0 are constants. Here we suppose that f € L2(Q),
g € W22(0,T; L*(Q)) N L*(0, T; H*(Q)) and up € L*(Q). In this paper, u represents the
enthalpy and S(u) the temperature.

Now we give the weak formulation of SP(Q).

DEFINITION 1.1. A function u: [0,T) — L*(0) is a weak solution of SP(R), if the
following three conditions (w1) — (w3) are satisfied:
(w1) u € Cu([0, T]; L*(R2)), u(0) = uo;
(w2) B(w) € L0, T; HY(®)) and A(u) — g € I(0,T; HA());
(w3) — /Q oimdadt+ /Q o, V() Vndzdt = A o1t
for all n € L?(0,T; H5()) with n, € L*(Q(12)) and n(0,) = n(T,-) =0 .

REMARK 1.1. (1) In (w3) of Definition 1.1, it is enough to take as test function 5
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any smooth function of the form pz, with p € D(0,T)(= {p € C*°(R);supp p C (0,T) }) and
z € H}(Q).

(2) We denote by C,([0,T]; L*(2)) the‘space of all weakly continuous functions from
[0,7] to L%(R) and by (-,-)q the duality pairing between H~1(Q2) and H}(R).

Now we introduce the notion of convergence of closed convex sets in a Banach épace X,
which is due to Mosco [13]. Let {K,} be a sequence of closed convex sets in X and K be a
closed convex set in X. Then we say ”K,, — K in X as n — oo (in the sense of Mosco)” if
the following two conditions (M1) and (M2) are satisfied:

(M1) If {n;} is a subsequence of {n}, z; € K,,, and z; — z weakly in X as k — oo,

then z € K. |

(M2) For any z € K there is a sequence {z,} C X such that

2, € K,,n=1,2,...,and z, —» zin X as n — oo.

We denote by yq the characteristic function of Q in ) for any subset © of . We put
0:={Q C ; Qis a smooth subdomain of 0}
and for each 2 € O denote by V() the set
{z€ H:();z=0 ae. onQ-0Q}.

Clearly V() is a closed linear subspace of HE(£).

We consider the shape optimization problem for any non-empty subset O, of O Wllich is

compact in the following sense:

For any sequence {£2,} C O, there is a subsequence {Q,,} of {Q,} with Q € O,
(C){ such that xq, — xqin L*(R2) as k — oo and V(,,) — V() in Hy()
as k — oo (in the sense of Mosco).

We give below typical examples of O,, which are very important in the application of our

main results

EXAMPLE 1.1. (1) Let  and O be the same as stated before. Let © be the clas;v. of

2



187

all C*-diffeomorphisms from 0 onto itself. Here we give © the topology induced from 0’1(6).

Let £ be a smooth subdomain of ¢ with & c Q. For a given a non-empty compact subset

©. of O, we put
(1.2) 0. = {6(2'); 6 € ©.}.

Then this subset O, of O satisfies condition (C).

Let {Q, = 0,(?")} be any sequence in O.. Then, by the compactness of O, there is a
subsequence {0y, } of {6,,} such that 6,, — 6 in 01(6) as k — oo for some § € ©,. We see
easily that xq,, — xq, with @ = 6(), in L}(Q) as k — 00. Moreover, V(Q,,) — V(9) in
H(R) as k — oo (in the sense of Mosco). In fact, if zu — z weakly in H3() as k' — oo
for a subsequence {ny} and 2z € V(y,,), then zi(z) = 2zu(fn, o 9"1(;{:)) € V() and
i — 2(0 061) = z weakly in HI(Q). So we see that z € V(). Also, let 2 € V() and
put zx(z) := 2(6 0 6;}(z)) € V(Q,). Then, clearly, we have zx — z in H&(ﬁ)

EXAMPLE 1.2. Let 0 := {z;|z| < 2} C R®, Q, := {z;a < || < 1} forany 0 < a < :
and Q := {z;|z| < 1}. Here we put O, := {Q,;0 < a < 1} U{Q}. Then, we see that this
subset O, of O satisfies condition (C).

In fact, by [13; Lemma 1.8], the 2-capacity of any singleton is zero. Then, by [13], we
see that V(Q,) — V() in H2(L) in the sense of Mosco as a — 0. In the other hand, by the
same argument as in Example 1.1, we obtain that V(Q,:) — V(2,) in H}(f) in the sense of

Mosco as @’ — a. Hence O, satisfies condition (C). ¢

In the case of Example 1.1, problems SP(f2) can be reformulated as degenerate parabolic
equations on the fixed domain Q' by using the variable transformation y = §-!(z). How-
ever, in the case of Example 1.2, the situation is .quité different, because there is no C-
diffeomorphism between domains €2, and Q.

Based on an abstract result of [1] about the soivability of SP(f2), we consider a shape

-optimization problem. For a given non-empty subset O, of O, our optimization problem,
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denoted by P(O,), is formulated as follows:
P(O.) Find Q. €0, suchthat J(.)= Qlélg J(9),

where

1

g @)=/

— B 1 2
| B(ug) — Ba |* dzdt + 5 /E}—Q(n) | g |? dzdt for Q € O,

uq is the weak solution of SP(), and S, is a given function in L*(Q).

In real problem, the driving variables are f,g and . But, in this paper, we are interested
in the effect of the domain € for the shape optimization. So, we fix the functions f and g,
and take § as the driving variable.

The main results are stated in the following theorems. To prove the existence of solutions
to P(O.), an important part is to show the continuous dependence of weak solution u = ug
to SP(Q) upon Q € O. |

' THEOREM 1.1. Let {Q,} C O and Q € O such that V(Q,) — V() in H}(Q) as
n — oo (in the sense of Mosco) and xq, — xqo in I} () asn — oo. Also, denote by u, and

u the weak solutions of SP(Q,) and SP(R), respectively. Then, as n — oo,

(1.4) (un(2), 2)q, — (u(t),2)a for any z € L3(Q)
and
(1.5) B(un) — B(u) in I3(Q).

Here we denote by (-,-)q: the inner product in L?(Q) and put

o[ Blua) in QE),
ﬁ(““')‘{g in Q - Q(),

for any Q' € O.

The next theorem is concerned with the existence of a solution to P(O,).
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THEOREM 1.2. Problem P(0O,) has at least one optimal solution Q..
. We shall prove Theorems 1.1 and 1.2 in section 3.

2.Uniform estimates for the weak solutions to SP(Q)

In this section, we obtain some results from [1] on the existence, uniqueness and uniform
estimates for weak solutions to SP(£2). We use the following notations.

For simplicity, we denote by H the space L?({) and by X the Sobolev space H({).
Moreover, |- |z stands for the norm in H and (-, -) the inner product in H. For each Q € O,

we define a bilinear form aq(-,-) on H*(Q2) by
ag(u,v) := /n VuVudz for all u,v € HI(Q),
and denote by Fy the duality mapping from HJ(Q) to H~*(Q) which is givejn by the formula
(Fav,z) = ag(v,2) for all v, z € H}(Q),

where (-, -)q stands for the duality pairing between () and H!(Q). In paticular, we put
() = ag(-,).

According to the abstract result of [1; Theorem 2.1], problem SP(f) has a unique weak
solution u such that u € W*2(0, T; H~(Q))NL>(0, T; L*()) and B(u)—g € L*(0, T; HL(R))
for any @ € O. In fact, the weak solution u is obtained as a unique solution of the following

evolution problem in H71(Q):

{ () + Fa(A(u(t) = 9(t)) = () + Aglt) for ae. t €[0,7],

(21) u(0) = .

We give some uniform estimates for weak solutions of SP() with respect to Q € O.

LEMMA 2.1 There exists a positive constant My independent of Q such t\hat

. UQ |L=(0,T;L2(Q))S M), uqQ) [L2(0,m;m (@) S M3
(2.2) | ua | < My, | B(ua) | <M

d - .
(2.3) e/ 2?‘zt-;é’(ttn)Ir,z(o,'.r;m(n)) < My, | t2B(uq) | ooz ap < My
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for all 2 € O, where ug is the weak solution of SP(2).
Proof. As was seen in [1], problem SP(f2) is able to be approximated by non-

degenerated problem SP()¢, ¢ € (0, 1]:

{ u—Af(u)=f inQ(Q),
SP(0)* < u(0,-) = u in Q,
B(u)=yg on %((2),

where §°(r) = B(r) + er,r € R.

In fact, this problem has one and only one weak solution u* € C([0,T; L?(f2)) such that
t1/2ditﬁ‘(u‘) € L*(Q(Q)) and B*(u*) € L*(0,T; H*(Q)). Moreover, we see that u* — ug in
C. ([0,T); L*(Q)) and B°(u®) — PB(ug) weakly in L2(0,T; H'(Q)) as ¢ — 0. After some

calculations, we obtain that there is a positive constant C’ independent of € and  such that
2 Ve 2 1
(24) sup | w'(t) By + [ | VB (' (1) By dt < C
0<LtLT 0

Moreover, multiply both sides of u; — AB*(u®) = f by tg—t-k(ﬂ‘(u‘) — ¢) and integrate over
Q(Q). Then, by (2:4), we have: | '
| d
(2.5) | #1728 (") lwoman < €y [E2 2B (u)| 20 1 < €
for any € € (0,1] and Q2 € O,
where C” is a constant independent of € € (0,1] and @ € O. Therefore, letting ¢ — 0, we

see that (2.2) and (2.3) hold. o

3.Proofs of Theorems 1.1 and 1.2

First we prove Theorem 1.1 .

Proof of THEOREM 1.1. Let consider the function u, € L*(0,T; H) such that
9(t,z) = B(uy(t,z)) in Q. Here, we put '

~ __ ) Un in @, := Q(Q))
Un = uy in Q— Q.
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Then, we see that @, € L*(0,T; H). Moreover, we put v, := f(@i;) in Q. By using Lemma
2.1, there exist a subsequence {n;} of {n}, v € L2(0,T; H'(®)) and % € L*(0,T; H) such

that
(3.1) Uy, — % weakly* in L>(0,T; H)
and
(32) { Up, =V weakly ?n L*(0, T; HY(()),
Un, (t) = v(t) weakly in H1(Q) for all ¢ € (0, TY.

By using Ascoli-Arzela’s theorem and Lemma 2.1, we easily verify that
vy, — v in L2(0,T; H) as k — co.

Since v,, = (i, ) in @, from (3.1) and (3.2) we show that v = 8(%) and that S(@(t)) —g(t) €
V() for any ¢ € (0, T

Next, let z be any function in V' (2) and p be any function in D(0,T). By the assumptions
of Theorem 1.1, there exists a sequence {z,} such that z, € V() and 2, — zin X. Then

by the definition of solution to SP(Q2) we have

T T T
= [ (e 8), 2 ), PO+ [ G, (s (0 200Dt = [ (F(E), 2 ), plE)e

Letting k — 0o, by z,, = 0 a.e. on  — Q,, we obtain

T T T
- [ @, 200 + [ a(ule), ot = [ (70), 2)olt)et.
This shows that u = @ |g(q) is the solution of SP(2). o

Proof of THEOREM 1.2. Since J(Q) > 0, there exists a minimizing sequence {{2,}
in O, such that _
J(Q,) = J.:=inf{J(Q); 2 € 0.}
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Then, by the compactness of O,, there are a subsequence {Q,,} of {Qn} and Q, € O, such
that V(Qa,) — V(.) in X (in the sense of Mosco) for some Q. € O, and xq,, — Xa, in
L'()) as k — co. Now, denote by w; the weak solution of SP(Q),,) and by u, the weak

solution of SP(R2,). Then put

o = { Blw) in Qx = Q(Qy),
S in @ — Qx,

and
om [ B Q=)
N in @—Q.

From Theorem 1.1, it follows that v; — v in L%(0,T; H) as k — co. Then we see that
J(Q,,) — J().

Therefore J(Q2,) = J,. Hence (, is a solution of P(O;). o

4.Approximations for SP(2) and P(O,.)

‘In this section, from some numerical points of view, we discuss approximations of SP(f)
and P(O_.) by smooth problems. At first, we introduce the approximation £ and x% for 8

and xq, respectively.

Let {8°} = {B*; 0 < € < 1} be a family of (smooth) functions 5 : R — R such that

| B*(r) = B(r) [<e(|r | +1) forallr € R;
(B) Be(0) =0, | B(r) - p(r') IS Lo|r—7r"| forallrr'€R,

d {3

a—r'ﬁ(r)?.s for ae. r€ R,

where Lo > 01is a constant independent of ¢ . ‘
Next, let {x5} = {x4;0 < » < 1,2 € O.} be a family of smooth functions on Q and
suppose that the following two conditions (x1) and (x2) hold :
(x1) 0 < xa < x4 < 1in & and supp (x%) C {z € O; dist(z,Q) < v}
for any v € (0,1] and Q € O, . |
(x2) For each v € (0,1), {x%;Q € 0.} is compact in L!({).
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We give below typical examples of approximations §* and xg for # and xq, respectively,
which satisfy the conditions mentioned above.

" EXAMPLE 4.1. (1) We define §° : R — R by f*(r) = f(r) + er for any r € R.
Then, the family of {#*} satisfies the condition (8) for Ly = Lo + 1 where L is the constant
of (1.1). |

(2) Let Q, Q' and O, be the same as in Example 1.1. Now, for each v € (0,1] and
Q2 € O., we denote by Q(%) the set {z € Q; dist(z, Q) < }. Let x% be the regularization of
Xa(z) by means of usual mollifiers on (1. Clearly, we see that (x1) holds. Also, we obtain

that (x2) holds. Because we can prove that
(41) 0, =0,(),6, — 8 in C(8) and © = (), then xa, — xa in L'(@).

Now, we define the approximate problem SP(Q)®*, e, v, u € (0, 1], by using the penalty
method for SP(Q) : '

up— Ar(u) = f — - ‘M"*”(ﬁ%u) —g) @,
SPO™ {40, = wd,
ﬁe(“) =g on Y.

Here we give the weak formulation of SP(§2)*~.

DEFINITION 4.1. A function u:[0,T] — H is a solution of SP(Q)®*, if the foilow—
ing three conditions (awl) — (aw3) are satisfied:

(awl) u € C([0,TT; H) N WE((0, T]; H) 0 I3(0, 5 HA(f)), u(0) = uo in O

(aw2) Be(u(t)) — g(t) € X for ae. ¢ € [0, T]; |

(0ud) (1), 2)g + ol (), 2) = (1) = ~2B(6ult) - (0,2

for any z € X, a.e. t €[0,T].

According to the abstract result in [9; Chapter 2] (or [10]), problem SP(Q)"’" has a

unique solution u.

Our approximate optimization problem P(O.)**, associated with SP(2)**, is formu-

9



194

lated as follows:
P(Oc)""’“b Find Q2 € O, such that J™#(Q"*) = Qié% JE (),

where
T = 2 [ (i) - pu P dade+ X [ (1= x8) | g P dach
2/ 2 /"7 @ ’
ug” is the solution of SP(Q)~.

Next, we give the convergence results in the following theorem.

THEOREM 4.1. We have the following statements (1) and (2):

(1) For each e,v,u € (0,1], P(O.)*** has at least one solution.

(2) Let {e,},{vn}, {ttn} be null sequences and let {Q,} C O, and Q@ € O, such that
V(Q,) = V(Q) in X as n — oo (in the sense of Mosco), Xg" — xa in L}) as n > oo.
Denote by u, the solution of SP(Q,)"*#n. Then as n — oo,

XQnUn — Xou weakly* in L=(0,T; H),
Ber(u,) = v in L(0,T; H) and weakly in L%(0,T; H'(Q2)),

Moreover u 1s the weak solution of SP(2) and

Uz{ﬁ(u) inQ=(0,T)xQ,
g nQ-Q.

In particular, if Q, is a solution of P(O.)*™* withe = e, v = v, and = py, forn=1,2,...,
then Q is a solution of P(O,) .

In this theorem, {¢,}, {v..}, and {u,} are chosen independently. This is very convenient
for numerical computation. Moreover, we show that P(O.)®** converges to P(.) in some

sense.

5.Energy estimates for SP(2)**

For the proof of Theorem 4.1, we prepare some lemmas on energy estimates for solutions

of SP(Q)** with respect to e,v,5p € (0,1} and R €O, .
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LEMMA 5.1. There is a positive constant M, such that

(5.1) l ug’p IL“(O;T;H)S MZ:I ﬂe(ug’ﬂ) IL’(O,T;Hl(ﬁ))S M,
and

1 v & eV
(5.2) ‘ 'l; /5(1 —xa) | B°(ug*) — g I2 dzdt < M,

for alle, v, u € (0,1] and Q € O, where uy* is the solution of SP(Q)™*.
Proof. ForO0<wv,u<1,2€ 0,0 <t <T, weintroduce a proper lower semi-continuous
convex function ¢ on H as follows:

1 2 1 | v 2
63 oren=d 3 Ve lhte fU-xR s -g)F de forz—glt) € X,
+00 otherwise.
We easily see that the subdifferential dpg(¢,-) in H is singlevalued in H and
z—g(t)€X, z*€H,

(5.4) Z" = 8905”@"3) = { 2 =-Az+ 1—“Xlé (z - g(t)) €H.

By using (5.4), we can show that SP(Q)®* can be reformulated by the following evolution

problem in H:

(5:5) _ u(0) = uo.

{ u'(t) + o, Be(u(t))) = f(t) in H for ae. t €[0,T],

For simplicity, we write u for ug™x for x§ and ¢(t,-) for pg(¢,-). Multiplying «'(t) +

Op(t, B*(u(t))) = £(¢) by B°(u(t)) — g(t), by using (5.4), we obtain
(u'l(f),ﬂ°(‘u(t)) = 9(8)) + a(B*(u(t), B*(u(?)) - 9(¢))
2[00 15 0) - 90) [ de
= (F(2), B°(u(t)) — 9(2))-

After some calculations, we obtain the following inequality:

S Futt)ds - (50 2

R V(E((t) = 90) [+ [0 | 8°(ult) - 9(2) P e}

< Raf [ B (u(t))dt — (9(2), u(®)}

R | 90) Py + 1 90) By + 1 700 B)

(5.6)

11



where R;, 1 = 1,2, 3, are positive constants independent of ¢, v, u and Q. By using Gronwall’s
inequality and (5.6), we show (5.1) and (5.2) for a positive constant M, independent of
&V, p€(0,1] and R € O,. ¢

LEMMA 5.2. There is a posttive constant My such that

(1% d & ey
(5.7) | /26 (ug®) | o @) S Mss |t1/2% (ua®)L2o,r;m) £ Ms,
and
' t v 1] (-39
(5.38) sup = [(1-xh) | B (uir*(8)) — g(t) I da < M,
, te(0,T] 4 /O

for alle,v,u € (0,1] and Q € O,, where ug* is the solution of SP(Q)A.

Proof. Simply write u for u§* and 5 for f*(u2*). Let us consider the convex function
¥ := " on H given by

1 1
EIVzﬁ,-i-z—lj/ﬁ(l—x}’l)lzlzdw for z € X,

400 otherwise.

¥a'(2) = {
In fact, it is easy to see that i is proper lower semicontinuous and convex on H, and the

subdifferential 0+ is singlevalued in H. Besides,

z€X, 2*€H,

z =a’¢(Z)<=>{z*=_Az+l_MXﬂzeH.

Moreover, by the standard argument of convex analysis, we have
(5.9) a‘-’t- (2(2)) = (9((2)), (1)) for = € WI2(0, T; H).

Then, by using (5.4) and (5.5), we see that

v

(0, F) - #(0) + (AR - o) + —
= (f(t) + Ag(t), B () - ')

(B(t) - 9(2)), B (t) - ¢'(t))

12
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Then, by (5.9), we show that

t)

(7 2 , | t I ;
(5.10) +315 | V(BE) - o) —t(u(t). /) + 5 /5(_1—x9)|ﬁ(t)—g(t> ? dz}

ST fE)+Ag() |z {l 9'C) |n +!:2—° | f() + Ag() |a}+ T w(®) |a - | 9"(t) |a
+5 1 VB0 - 90) B ~(w0,0) + - [0 -x0) 1 BO) - 5[ .
Here, integrating (5.10) over [0,¢] and using Lemma 5.1, we derive the estimates (5.7) and

(5.8) for some positive constant M independent of €, v, 4 € (0,1] and Q € O,. ¢

6.Proof of Theorem 4.1.
Now we prove Theorem 4.1.
Proof of (1) of THEOREM 4.1. Fix e, v, u € (0,1] and put I, = inf{J*#(Q); Q2 €

0.}> 0. Then, there exists a minimizing sequence {Q,} in O, such that
JE () — I, (as n — 00).

By (x2), there is a subsequence {2, } of {Q,} such that V(£,,) — V() in X (in the sense
of Mosco) and xj := X, = X0 = X in L!(Q) for some Q € O,. In a similar way to that of

the proof of Theorem 1.1, we can prove that the solution uy := ug® converges to the weak

RE

solution u := ug™ of SP(2)** in the sense that

U U in L2(0,T; H)
Bt (ux) = B*(u) in L*(0,T; H)

Therefore
’I,.. = klim JR(Qy) = JH(Q),

and we see that  is a solution of P(O.)**. o
Proof of (2) of Theorem 4.1. By Lemma 5.1 and Lemma 5.2, we may assume that
(6.1) u, — & weakly* in L*([0,T]; H),

13
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and

(62) { Bo = f*(un) = B(@) =: B in Cioe((0,T]; H) and weakly in 12(0,T; H'({2)),
' B.(t) — B(t) weakly in HI(Q) for any t € (0,7 .

In fact, (6.1) and (6.2) are obtained in a similar way to the proof of Theorem 1.2. Moreover,

by usAing (5.8) of Lemma 5.2 and (6.2), we have

Xantn = Xou weakly* in L*(0,T'; H),
,5 — ,3 in L2(0, T; H),

J-x) 1B6) = 9(t) P da — 0= [(1-xa) | BO) - 9(0) " do
for any t € (0,7,

so that
(6.3) B(t) —g(t) eV(Q) foranyt e (0,T].

Next, let p be any function in D(0,T"). By assumption, for any z € V(Q), there is a
sequence {z,} such that z, € V(Q,) and z, — zin X. From (5.5) it follows that

= [ 020t + [ aBule) ol + o [ (1= i) B = 90 m)ol0)e
= /0 (f(2), z)p(t)et.
Since (1 — x4 )2, = 0 a.e. on {2, as n — oo, we get that
[ @), zoNade+ [ alB) ottt = [ (1), 2)ole)e

Therefore @ is the weak solution of SP(2).

In particular, let Q, be a solution of P(O.)"*m#» for each n. Just as above
Jenl’nl-‘n(ﬂn) — J(Q)

and

Jervnbn(Q) — J(Q')  for any Q' € O..
Therefore, for any § € O,
J(QI) = ,_‘]-_'];H.lo Jenlm#n(ﬂ/) 2 '}LIEO Jenl'n#n(nn) — J(Q).

14
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This shows that Q is a solution of P(O,). ¢
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For the detailed proofs of all results stated in this note, see the forthcoming paper [17).
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