
23

Invariants of 3-manifolds based on conformal field theory
and Heegaard splitting
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1. Introduction

The purpose of this note is to give abrief description on the construction of topological
invariants of 3-manifolds by means of projectively linear representations of the mapping
class group of aclosed orientable surface appearing in conformal field theory. First, we
give acombinatorial description of the holonomy of $SU(2)$-Wess-ZuminrWitten model.
More precisely, we derive the fusing matrices, conformd dimensions and switching oper-
ators by $an4yzing$ the monodromy representation of the Knizhnik-Zamolodchikov equa-
tion, and using the fact that these data give solutions to Moore and Seiberg’s polynomial
equations ([12])) we construct projectively linear representations of the mapping class
group on avector space caUed the space of conformal blocks. Based on these representa-
tions, we define topological invariants of 3-manifolds using aHeegaard splitting. Amore
detailed description of this part is given in [10]. Shortly after the discovery of new 3-
manifold invariants due to Witten [19], Reshetik.hin and Turaev [16] gave aDehn surgery
formula using representations of the quantized universal enveloping algebra $U_{q}(sl(2, C))$

with $q$ aroot of unity. Our approach described in this note is different from theirs.
Our principle to define 3-manifold invariants can be applied to other class of solutions

to the Moore and Seiberg’s polynomial equations. It should be noted that asimilar
program was also proposed by Crane [2](see also [3]). In this note we focus in particular
on the invariants derived $hom$ cyclic group fusion rules. It turns out that these invariants
are closely related to Gocho’s geometric construction based on $U(1)$ gauge theory ([4]).
We also give aDehn surgery formula for these invariants. We are planning to give amore
detailed account on this subject elsewhere.
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2. $SU(2)- Wess- Z_{U1}nino$-Witten model

Let $\Sigma_{g}$ be aclosed orientable surface of genus $g$ . We denote by $\mathcal{M}_{g}$ the mapping class
group $\pi_{0}Diff^{+}(\Sigma_{g})$ . We are going to associate to $\Sigma_{g}$ afinite dimensional complex vector
space $Z_{K}(\Sigma_{g})$ , which is caUed the space of conformal blocks in $SU(2)$ Wess-Zumino-
Witten model at level $K$ , and then we define the action of {he mapping class group on
this vector space.

Amarking $\mu$ of the closed orientable surface $\Sigma_{g}$ is by definition amaximal coUection
of disjoint, non-contractible, pairwise non-isotopic smooth circles on $\Sigma_{g}$ . We associate to
$\mu$ adual trivalent graph $\gamma(\mu)$ as shown in Figure 1. We fix apositive integer $K$ caUed
alevel. Now the vector space $Z_{K}(\gamma(\mu))$ is by definition acomplex vector space with
basis $\{e_{f}\}$ , which is in one to one correspondence with afunction $f$ : edge$(\gamma(\mu))arrow$

$\{0,1/2,1, \cdots K/2\}$ satisfying

$|f(c_{1})-f(c_{-})|\leq f(c_{3})\leq f(c_{1})+f(c_{2})$

$(2arrow 1)$ $f(c_{1})+f(c_{2})+f(c_{3})\in Z$

$f(c_{1})+f(c_{2})+f(c_{3})\leq K$

for the edges $c_{1},$ $c_{2}$ and $c_{3}$ meeting at each vertex. Let us note that the first two conditions
are so-called the Clebsch-Gordan condition for $sl(2, C)$ .

Figure 1

The basic ingredients to define the action of the mapping class group $\lambda 4_{g}$ on this vector
space are the fusing matrices, conformal dimensions and switching operators. These
data are obtained in a natural way by analyzing the monodromy representations of the
following Knizhnik-Zamolodchikov differential equation ([9]). For a half integer $j$ , we
denote by $V_{j}$ the spin $j$ representation of $sl(2, C)$ , which is an irreducible representation
of dimension $2j+1$ . Let $j_{p},$ $1\leq p\leq K/2$ be half integers. We put

$\Omega=\sum_{\mu}I_{\mu}\otimes I_{\mu}$

where $\{I_{\mu}\}$ is an orthonormal basis of $sl(2, C)$ with respect to the Cartan-KiUing form.
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We define the matrices $\Omega_{ij},$ $1\leq i,j\leq n$ by

$\Omega_{ij}=\sum_{\mu}\pi;(I_{\mu})\pi_{j}(I_{\mu})\in End(V_{j_{1}}\otimes\cdots\otimes V_{j_{n}})$

where $\pi_{i}$ and $\pi$; stand for the operation on the i-th and $j$-th components respectively.
The Knizhnik-Zamolodchikov equation is by definition

(2-2). $\frac{\partial\Phi}{\partial z_{i}}=\frac{1}{K+2}\sum_{j\neq:}\frac{\Omega_{ij}}{z_{i}-z_{j}}\Phi,$
$1\leq i\leq\dot{n}$

Now we define the fusing matrix, which will be used to identify the space of conformal
blocks associated with the two different “pants” decompositions as shown in Figure 2.

Figure 2

Let us consider the Knizhnik-Zamolodchikov equation of four variables with values in

$Hom_{sl(2,C)}(V_{j_{1}}\otimes V_{j_{2}}\otimes V_{j_{3}}, V_{j_{4}})$

Let us denote by
$C_{j}^{j_{1}j_{2}}$ : $V_{j_{1}}\otimes V_{j_{2}}arrow V_{i}$

the $sl(2, C)$ homomorphism given by the Wigner)$s3j$-symbols (see [8]). To each weighted
graph depicted in Figure 2 we associate a solution of the Knizhnik-Zamolodchikov equa-
tion defined in the region $|z_{1}|\leq|z_{2}|\leq|z_{3}|\leq|z_{4}|=\infty$ in the following way. Let us
suppose that the weights in the graphs in Figure 2 satisfy the admissibility condition 2-1
at each vertex. For the weighted graph $\gamma_{1}$ , we consider the solution normalized around
$z_{1}=z_{2}$ as

$\Phi_{\gamma_{1}j}=(z_{2}-z_{1})^{\Delta_{j}-\Delta_{j_{1}}-\Delta_{j_{2}}}$ ( $C_{j_{4}}^{jj_{3}}\cdot C_{j}^{j_{1}j_{2}}+higher$ order holomorphic terms).

Here $\Delta_{j}=\frac{j(j,+1)}{I\backslash +\sim}$ which is called the conformal dimension. In a similar way, we have

$\Phi_{\gamma i}2,=(z_{3}-z_{2})^{\Delta;-\triangle_{j_{2}}-\triangle_{j_{3}}}$ ( $C_{j_{4}}^{j_{1}i}\cdot C_{i}^{j_{2}j_{3}}+higher$ order holomorphic terms)
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normalized around $z_{2}=z_{3}$ associated with the weighted graph $\gamma_{2}$ . Using an analytic
continuation, it follows &om a work of Tsuchiya and Kanie [17] that we have a constant
matrix connecting these two solutions. We write it as

(2-3) . $\Phi_{\gamma_{1\prime}j}=\sum_{i}F_{ij}\{\begin{array}{ll}j_{2} j_{3}j_{l} j_{4}\end{array}\} \Phi_{\gamma_{2},i}$

The above matrix is called a fusing matrix. In a similar way, we introduce the following
braiding matrix which represents the action of the half monodromy on the solution $\Phi_{\gamma_{1},i}$

interchanging $z_{2}$ and $z_{3}$ .

$B\{\begin{array}{ll}j_{2} j_{3}j_{l} j_{4}\end{array}\}=F\{\begin{array}{ll}j_{3} j_{2}j_{l} j_{4}\end{array}\}\cdot di$ a$g_{i}((-1.)^{j_{2}+j_{3}-i}\exp\pi^{\sqrt{-1}}(\Delta_{i}-\Delta_{j_{2}}-\Delta_{Js}))\cdot F\{\begin{array}{ll}j_{2} j_{3}j_{l} j_{4}\end{array}\}$

Using a composition of fusing matrices we have an isomorphism

(2-4) $Z_{K}(\gamma_{1})\cong Z_{K}(\gamma_{2})$

for any two dual trivalent graphs of the closed orientable surface. This isomorphism does
not depend on the choice of fusing matrices involving in the above process.

Our last ingredient is the operator $S(j)$ which will be used to represent the switching
operation shown in Figure 3. ,

$arrow$

Figure 3

The operator $S(O)$ is a $k\cross k$ matrix given by

(2-5) $S( O)_{ij}=(\frac{2}{K+2})^{\frac{1}{2}}\sin\frac{(2i+1)(2j+1)\pi}{K+2},$ $0\leq i,$ $j\leq K/2$

which appeared in the work of Kac-Peterson [6] to describe the modular property of the
characters of the integrable highest modules of level $K$ of the affine Lie algebra of type
$A_{1}^{(1)}$ . The formula for $S(j)$ was obtained by Li and Yu [11]:

(2-6) $S(j)_{pq}= \sum_{k}\exp 2\pi^{\sqrt{-1}}(\Delta_{k}-\Delta_{p}-\Delta_{q})\cdotS(0)_{0k}B_{qp}\{\begin{array}{ll}j k\cdot p q\end{array}\}j/2 \leq p,$$q\leq(K-j)/2$

4



$\varpi^{-}$

27

We put

(2-7) $T(j)=diag_{j/2\leq i\leq(K-j)/2}( \exp 2\pi\sqrt{-1}(\Delta;-\frac{c}{24}))$

with $c= \frac{3K}{K+2}$ . Then we have the following modular relations:

$S(j)^{2}=(-1)^{j}\exp(-\pi\sqrt{-1}\Delta_{j})\cdot id$

(2-8)
$(S(j)T(j))^{3}=S(j)^{2}$

Thus we have defined the fusing matrices $F$ , conformal dimensions $\Delta_{j}$ and the switching
operators $S(j)$ based on the structure of the holonomy of the Knizhnik-Zamolodchikov
equation. These provide solutions to the Moore and Seiberg’s polynomial equations. Let
us now define the action of the mapping class groups. We start with atrivalent graph
$\gamma$ associated with amarking of the closed orientable surface $\Sigma_{g}$ . Let $V$ be aregular
neighbouhood of the graph $\gamma$ in $R^{3}$ considered as ahandlebody of genus $g$ , and we
realize $\Sigma_{g}$ as its boundary. For an edge $a$ of the graph $\gamma$ , we take adisk $\Delta$ in $V$ meeting
transversely with $a$ lvith one point and satisfying $\partial\Delta\subset\partial V$ . Let $\alpha$ denote the Dehn twist
about the circle $\partial\Delta$ . We define the action of $\alpha$ on the vector space $Z(\gamma)$ by

(2-9) $\alpha\cdot e_{f}=\exp(-2\pi\sqrt{-1}\Delta_{f(a)})e_{f}$

Let us recall that according to Humphries [5] the mapping class group $\Lambda 4_{g}$ is generated
by the Dehn twists $\alpha_{1},$

$\cdots$ , $\alpha_{g},\beta_{1},$ $\cdots\beta_{g},$ $\delta$ shown in Figure 4.

Figure 4

Considering various trivalent graphs and by identifying the associated vector spaces by
fusing matrices, we can define the action of the Dehn twists $\alpha_{1},$

$\cdots$ , $\alpha_{g},$

$\delta$ . The action of
the Dehn twists $\beta$; is defined in the following way. Let us go back to Figure 3 and we
consider the Dehn twist $\beta$ . We define the action of $\beta$ by $T(j)S(j)T(j)$ . CoInbining with
fusing matrices we can define the action of the Humphries generators. More precisely, we
have
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Proposition 2.10. Let $\Omega_{K}$ denote the cyclic gmup generated by $\exp\frac{\pi\sqrt{-1}}{4}c\cdot id$. Then,

the above construction defines a well-defined homomorphism

$\rho K^{;\mathcal{M}_{g}}arrow GL(Z_{K}(\gamma))/\Omega_{K}$

Remark. After asuitable normalization of solutions of the Knizhnik-Zamolodchikov
equation, it is known that the fusing matrices $\dot{a}$re expressed as the $q-6j$-symbols at
$q= \exp\frac{2r,\sqrt{-1}}{K+2}$ (see [1], [8] and [22]). Hence we can also start&om these $q-6j$ -symbol
in apurely algebraic way and we might avoid the above analytic construction related to
the holonomy of the Knizhnik-Zamolodchikov equation. In [18], Turaev and Viro gave a
different construction of invariants using $q-6j$-symbols and atriangulation.

Now we are in position to define our 3-manifold invariants. Let $M$ be aclosed oriented
3-manifold. It is known that $M$ admits aHeegaard splitting. Namely, there exi$sts$ a
handlebody $V_{1}$ and it $s$ second copy $V_{2}$ such that $M$ is obtained from $V_{1}$ and $V_{2}$ by
attaching their boundaries by some $h\in \mathcal{M}_{g}$ . Let us denote by $e_{0}$ amember of the basis
of $Z_{K}(\gamma)$ corresponding to the weight $f$ such that $f(a)=0$ for any edge $a$ . We define
the $(0,0)$-entry $\rho_{K}(h)_{00}$ by

(2-11)
$\rho_{K}(h)e_{0}=\rho_{K}(h)_{00}e_{0}+\sum_{f\neq 0}\rho_{K}(h)_{f,0^{e_{j}}}$

We put

(2-12) $\phi_{K}(M)=((\frac{2}{K+2})^{1/2}\sin\frac{\pi}{K+2})^{-g}\rho_{K}(h)_{00}$

We have the following theorem.

Theorem 2.13 [10]. Let $M_{1}$ and $M_{2}$ be closed oriented 3-manifolds. If there exists an
orientation preserving homeomorphism $M_{1}\cong M_{F},$ , then we have

$\phi_{K}(M_{1})=\phi_{K}(M_{2})$

in $C^{*}/\Omega_{K}\cup\{0\}$ .
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3. $Z/kZ$ fusion rules

In this section, we discuss amodel associated with the group algebra of afinite cyclic
group. Let $k$ be apositive integer. For aclosed orientable surface $\Sigma$ we construct a
$ve$ctor space $Z_{k}(\Sigma)$ in the foUowing way. Let $\gamma$ be adirected graph associated with a
pants decomposition of $\Sigma$ depicted as in Figure 1. The vector space $Z_{k}(\Sigma)$ has abasis
which is in one to one correspondence with weights $f$ : edge$(\gamma)arrow Z/kZ$ such that for each
vertex the sum of weights corresponding to the “ingoing” edges is congruent to the sum
of weights corresponding to the “outgoing” edges modulo $k.\dot{H}$ere we use the convention
that an edge with weight $x$ is identffied with the edge having the opposite direction with
the weight $-x$ . We see that the vector space $Z_{k}(\Sigma)$ is naturaUy isomorphic to the tensor
product $V^{g}$ with a $k$ dimensional complex vector space, where $g$ denotes the genus of $\Sigma$ .

Now we describe the action of the mapping class group $\mathcal{M}_{g}$ on $Z_{k}(\Sigma)$ using asolution
of the polynomial equations due to Moore and Seiberg ([12]Appendix E) associated with
$Z/kZ$ fusion rules. Let $m$ be apositive integer such that $m$ and $k$ are relatively prime
and we suppose that $m$ is even if $k$ is odd. We put

$mx^{2}$

(3-1) $\Delta_{x}=\overline{2k}$ $x\in Z/kZ$

(3-2) $S_{xy}= \frac{1}{\sqrt{k}}\exp 2\acute{\pi}\sqrt{-1}(-\Delta_{x+y}+\Delta_{x}+\Delta_{y}\cdot)$ , $x,$ $y\in Z/kZ$

Let $T$ be a diagonal matrix defined by

(3-3) $T=diag_{0\leq x\leq k-1}(\exp 2\pi\sqrt{-1}\Delta_{x})$

One can check that the above matrices $S$ and $T$ satisfy the modular relations

$S^{2}=C$
(3-3)

$(ST)^{3}=\xi(m)k)S^{2}$

where $C$ is the duality matrix defined by $C_{xy}=\delta_{x,-y}$ and $\xi(m, k)$ is the Gauss sum

(3-4) $\xi(m, k)=\frac{1}{\sqrt{k}}\sum_{0\leq x\leq k-1}\exp\frac{\pi\sqrt{-1}mx’}{k}$

which is known to be an eighth root of unity. We introduce the fusing matrices as

$F_{g_{-}’+g_{3},g_{1}+9’\underline{)}}\{\begin{array}{ll}g_{2} g_{3}g_{l} g_{l}+g_{2}+g_{3}\end{array}\}=1$
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for any $g_{1},g_{2}$ and $g_{3}$ in $Z/kZ$ .
By means of the above data, one can construct an action of the mapping class group

$\lambda 4_{g}$ on $Z_{k}(\Sigma)$ as in the previous section. More precisely, we obtain a projectively linear
representatidn

$\varphi_{mk}$ : $\mathcal{M}_{g}arrow GL(V^{\otimes g})/<\xi(m, k)>$

where the image of Dehn twists is described in the following way. We put $U=STS,$ $W=$

$T^{-1}\otimes T^{-1}$ and we adapt the notation for Dehn twists in the previous section. We set

$\varphi_{mk}(\alpha_{1})=T_{1}^{-1}=T^{-1}\otimes\cdots\otimes 1$

$\varphi_{mk}(\alpha_{2})=W_{12},$ $\cdots\varphi_{mk}(\alpha_{9})=W_{g-1,g}$

$\varphi_{mk}(\delta_{2})=T_{2}^{-1}=1\otimes T^{-1}\otimes\cdots\otimes 1$

$\varphi_{mk}(\beta_{1})=U_{1},$ $\cdots\varphi_{nk}(\beta_{g})=U_{g}$

Here the symbol $W_{k,k+1},1\leq k\leq g-1$ , stands for the operation of $W$ on the k-th
and $(k+1)- st$ components of the tensor product $V^{\emptyset g}$ . One can sh$ow$ that the above
representation factors through $Sp(2g, Z)$ .

Let $M$ be a closed oriented 3-manifold obtained as a Heegaard decomposition $V_{1} \bigcup_{h}V_{2}$ ,
where $V_{1}$ and $V_{2}$ are handlebodies of genus $g$ . As in the previous section we consider the
$(0,0)$-component $\varphi_{mk}(h)_{00}$ . We have the following theorem

Theorem 3.5. We put
. $I_{mk}(M)=\sqrt{k^{-g}}\varphi_{mk}(h)_{00}$

Then, $I_{mk}(M)$ is a topological invariant of $M$ .

In the case $m=1$ and $k$ is even, the above invariant was discovered by Gocho [4] from
a geometric viewpoint. In fact he constructed a vector bundle over the Siegel upper half
plane with a projectively flat connection whose holonomy gives the above representation
of $Sp(2g, Z)$ .

Now we describe the Dehn surgery formula of the invariant $I_{mk}$ . Let us suppose that
the closed oriented 3-manifold $M$ is obtained from the Dehn surgery on a framed link $L$

with $n$ components in $S^{3}.$ . Let $A$ be the linking matrix whose diagonal entries are given
by the firaming. We denote by $\sigma$ the signature of the linking matrix $A$ . Using {$.1\iota e_{e\iota\dagger\supset O1’ G}$’

notations, we have the following theorem.

Theorem 3.6. We put

$J_{mk}(M)= \sqrt{k^{-n}}\xi(m, k)^{-\sigma}\sum_{h\epsilon(Z/kZ)^{\mathfrak{n}}}.\exp(\frac{\pi\sqrt{-1}m}{k}{}^{t}hAh)$
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Then, $J_{mk}$ is a topological invariant of M. $Mo$reover, the invartant $I_{mk}$ computes this
invariant up to some power of the Gauss sum $\xi(m, k)$ .

Remark. The invariant $J_{mk}$ can be written as the state sum

$\xi(m, k)^{-\sigma}\sum_{\lambda}S_{0,\lambda(1)}\cdots S_{0,\lambda(n)}F(L, \lambda)$

for any $\lambda$ : $\{1, \cdots n\}arrow Z/kZ$ , where $F(L, f)$ denotes the product for all crossing points
in the link diagram given by

$\prod\exp\pi^{\sqrt{-1}}(\Delta_{\lambda(i)+\lambda(j)}-\Delta_{\lambda(i)}-\Delta_{\lambda(j)})$

$i$
$j$

Figure 5

Here to each crossing point of i-th and j-th components we associate the weight as
shown in Figure 5 and we take the product for all crossing points. The Dehn surgery
formula corresponding to the case of Gocho’s invariant was discussed by Ohtsuki [15].
We observe that the case $k=2$ coincides with the Reshetikhin-Turaev invariant for
$r=3$ . Generalizing the investigation due to Kirby and Melvin [7], Ohtsuki showed
that the absolute value of $J_{1k}$ is equal to the square root of the number of elements in
$H^{1}(M;Z/kZ)$ if we do not have $\alpha\in H^{1}(M;Z/kZ)$ such that $\alpha\cup\alpha\cup\alpha\neq 0$ and is equal to
$0$ otherwise. In the case $k$ is even, we have a slightly different representation of $Sp(2g, Z)$

by putting
$\Delta_{x}=\frac{mx^{2}}{2k}+\frac{x}{2}$

and by replacing the above Gauss sum by

$\delta(m, k)=\frac{1}{\sqrt{k}}\sum_{0\leq x\leq k-1}(-1)^{x}\exp\frac{\tau\sqrt{-1}m}{k}x^{2}$

We have a similar construction and the resulting Dehn surgery formula

$\sqrt{k^{-n}}\delta(m, k)^{-\sigma}\sum_{\iota\in(Z/kZ)^{n}}(-1)<diogA,h>\exp(\frac{\pi\sqrt{-1}m}{k}{}^{t}hAh)$
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was introduced by Murakami and Okada [14] related to the cyclotomic invariants for
links discovered in [13] based on the IRF model due to Kashiwara and Miwa. Here
$<diagA,$ $h>stands$ for $\Sigma_{i}A_{ii}h;$ .
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