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Invariants of 3-manifolds based on conformal field theory
and Heegaard splitting
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1. Introduction

The purpose of this note is to give a brief description on the construction of topological
invariants of 3-manifolds by means of projectively linear representations of the mapping
class group of a closed orientable surface appearing in conformal field theory. First, we
give a combinatorial description of the holonomy of SU(2)-Wess-Zumino-Witten model.
More precisely, we derive the fusing matrices, conformal dimensions and switching oper-
ators by analyzing the monodromy representation of the Knizhnik-Zamolodchikov equa-
tion, and using the fact that these data give solutions to Moore and Seiberg’s polynomial
equations ([12]), we construct projectively linear representations of the mapping class
group on a vector space called the space of conformal blocks. Based on these representa-
tions, we define topological invariants of 3-manifolds using a Heegaard splitting. A more
detailed description of this part is given in [10]. Shortly after the discovery of new 3-
manifold invariants due to Witten [19], Reshetikhin and Turaev [16] gave a Dehn surgery
formula using representations of the quantized universal enveloping algebra U,(si(2, C))
with g a root of unity. Our approach described in this note is different from theirs.

Our principle to define 3-manifold invariants can be applied to other class of solutions
to the Moore and Seiberg’s polynomial equations. It should be noted that a similar
program was also proposed by Crane [2](see also [3]). In this note we focus in particular
on the invariants derived from cyclic group fusion rules. It turns out that these invariants
are closely related to Gocho’s geometric construction based on U(1) gauge theory ([4]).
We also give a Dehn surgery formula for these invariants. We are planning to give a more
detailed account on this subject elsewhere.

Acknowledgement; I would like to thank the members of the Euler International Math-
ematical Institute for their hospitality and stimulating discussions.
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2. SU(2)-Wess-Zumino-Witten model

Let £, be a closed orientable surface of genus g. We denote by M, the mapping class
group moDif f+(2,). We are going to associate to I, a finite dimensional complex vector
space Zx(X,), which is called the space of conformal blocks in SU(2) Wess-Zumino-
Witten model at level K, and then we define the action of the mapping class group on
this vector space.

A marking p of the closed orientable surface 3, is by definition a maximal collection
of disjoint, non-contractible, pairwise non-isotopic smooth circles on X,. We associate to
p a dual trivalent graph y(g) as shown in Figure 1. We fix a positive integer K called
a level. Now the vector space Zx(y(p)) is by definition a complex vector space with
basis {es}, which is in one to one correspondence with a function f : edge(y(y)) —
{0,1/2,1,---, K/2} satisfying ’

| (1) — Fe2)l < fles) < fler) + f(e2)
(2-1) fley) + flea) + f(es) € Z
fle1) + flea) + f(e3) £ K

for the edges c1, ¢z and c3 meeting at each vertex. Let us note ’-cﬂhat the first two conditions
are so-called the Clebsch-Gordan condition for sl(2, C).
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Figure 1

The basic ingredients to define the action of the mapping class group M, on this vector
space are the fusing matrices, conformal dimensions and switching operators. These
data are obtained in a natural way by analyzing the monodromy representations of the
following Knizhnik-Zamolodchikov differential equation ([9]). For a half integer j, we
denote by V; the spin j representation of sl(2, C), which is an irreducible representation
of dimension 2j + 1. Let j,,1 < p < K/2 be half integers. We put

Q=3 L eI,
’

where {I,} is an orthonormal basis of s/(2, C) with respect to the Cartan-Killing form.
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We define the matrices 4,1 < 4,5 <= by

Qi; =5 mi(I)7j(1,) € End(V;, ® -~ ® V;,)
~ p

where 7; and =; stand for the operation on the i-th and j-th components respectively.
The Knizhnik-Zamolodchikov equation is by definition

o® 1 Q;;
— = $.1<1<n
Oz; K+2J.§iz,-—-zj- ==

(2-2) .

Now we define the fusing matrix, which will be used to identify the space of conformal
blocks associated with the two different ”pants” decompositions as shown in Figure 2.

Let us consider the Knizhnik-Zamolodchikov equation of four variables with values in
Homsl(z,C)(le ®Vj, ® VJ'a»VL)
Let us denote by o
C}UQ Vi @ Vi, = V;

the si(2, C) homomorphism given by the Wigner’s 3j-symbols (see [8]). To each weighted
graph depicted in Figure 2 we associate a solution of the Knizhnik-Zamolodchikov equa-
tion defined in the region |z;]| < |z2| < |z3] < |z4] = oo in the following way. Let us
suppose that the weights in the graphs in Figure 2 satisfy the admissibility condition 2-1

at each vertex. For the weighted graph 7;, we consider the solution normalized around

74 7

Here A; = '1%1,_':—,_1,), which is called the conformal dimension. In a similar way, we have

@y, =(z3 - zz)A‘—Ajﬂ_Af3(C§;i . Cfgjs + higher order holomorphic terms)
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normalized around z; = z3 associated with the weighted graph ;. Using an analytic
continuation, it follows from a work of Tsuchiya and Kanie [17] that we have a constant
matrix connecting these two solutions. We write it as '

| j2 73
2-3) - ®,i=) Fij | ] @,
R wi=3Fs |5 7)e,

The above matrix is called a fusing matrix. In a similar way, we introduce the following
braiding matrix which represents the action of the half monodromy on the solution &., ;
interchanging z; and z3.

. . .q-1 .
B {12 '73} =F [‘73 12] -diag; ((—1.)j2+j3'i expmV —1(A; — Aj, — Aja)) -F [.72 33]
J1 4 N J4 J1 4
Using a composition of fusing matrices we have an isomorphism

(2-4) Zx(n) = Zx(r2)

for any two dual trivalent graphs of the closed orientable surface. This isomorphism does
not depend on the choice of fusing matrices involving in the above process.

Our last ingredient is the operator S(j) which will be used to represent the switching
operation shown in Figure 3. .

3

Figure 3

The operator S(0) is a k x k matrix given by

1 |
2 N7, (204 1)(25+ D) .

2- 0)i; = [ =—— | j<

(2-5) SO = () st 0 <G S K2

which appeared in the work of Kac-Peterson [6] to describe the modular property of the
characters of the integrable highest modules of level K of the affine Lie algebra of type
Agl). The formula for S(j) was obtained by Li and Yu [11]:

(2-6) S(j)pq = ;exP27"\/———1(Ak"Ap_Aq)'S(O)Okqu [; ’;} J/2 < pg < (K—j)/2
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We put

o

(2-7) T(5) = diagjjaci<(k-5)/2 (eXP 2xV-1(Ai = 57 )

wit.h c= % Then we have the following modular relations:

(2-8) S(3)? = (-1 exp(-V/-14;) -id
(SGTH))? = 5G)

Thus we have defined the fusing matrices F, conformal dimensions A; and the switching
operators S(j) based on the structure of the holonomy of the Knizhnik-Zamolodchikov
equation. These provide solutions to the Moore and Seiberg’s polynomial equations. Let
us now define the action of the mapping class groups. We start with a trivalent graph
v associated with a marking of the closed orientable surface X;. Let V be a regular
neighbouhood of the graph v in R? considered as a handlebody of genus g, and we
realize 5, as its boundary. For an edge a of the graph v, we take a disk A in ¥V meeting
transversely with a with one point and satisfying §A C V. Let « denote the Dehn twist
about the circle A. We define the action of « on the vector space Z(v) by

(2—9) x-ef = exp(—27r V —lAf(a))e_f‘

Let us recall that according to Humphries [5] the mapping class group M, is generated
by the Dehn twists o, - -- ,dg,ﬂl, *++,B4,6 shown in Figure 4.

Figure 4

Considering various trivalent graphs and by identifying the associated vector spaces by
fusing matrices, we can define the action of the Dehn twists o, -+ ,g,6. The action of
the Dehn twists §; is defined in the following way. Let us go back to Figure 3 and we
consider the Dehn twist 8. We define the action of 8 by T'(5)S(5)T(j)- Combining with
fusing matrices we can define the action of the Humphries generators. More precisely, we
have
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Proposition 2.10. Let Qi denote the cyclic group generated by exp Egc -id. Then,
the above consiruction defines a well-defined homomorphism ‘

px : Mg — GL(Zx(7))/9k -

Remark. After a suitable normalization of solutions of the Knizhnik-Zamolodchikov
equation, it is known that the fusing matrices are expressed as the ¢ — 65—symbols at
. g=exp 2%_,_52—?— (see [1], [8] and [22]). Hence we can also start from these ¢ — 6j—symbol
in a purely algebraic way and we might avoid the above analytic construction related to
the holonomy of the Knizhnik-Zamolodchikov equation. In [18], Turaev and Viro gave a
different construction of invariants using ¢ — 6j—symbols and a triangulation.

Now we are in position to define our 3-manifold invariants. Let M be a closed oriented
3-manifold. It is known that M admits a Heegaard splitting. Namely, there exists a
handlebody Vi and its second copy V3 such that M is obtained from V; and V, by
attaching their boundaries by some A € M,. Let us denote by ep a member of the basis
of Z(7y) corresponding to the weight f such that f(a) = 0 for any edge a. We define
the (0,0)-entry pg(h)oo by

(2-11) | pr(R)eo = prc(R)ooeo + ) px(h)s0es
770
We put
) 1/2 ) x -9
(2-12) ¢r(M) = ((m) sin K+2> pr(R)oo

We have the following theorem.

Theorem 2.13 [10]. Let My and M, be closed oriented 3-manifolds. If there exists an
orientation preserving homeomorphism M) = M,, then we have

dx (M) = ¢ (M>)

in C*[Qp U{O} ,
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3. Z/kZ fusion rules

In this section, we discuss a model associated with the group algebra of a finite cyclic
group. Let k be a positive integer. For a closed orientable surface ¥ we construct a
vector space Zi(Z) in the following way. Let v be a directed graph associated with a
pants decomposition of ¥ depicted as in Figure 1. The vector space Z;(X) has a basis
which is in one to one correspondence with weights f : edge(y) — Z/kZ such that for each
vertex the sum of weights corresponding to the ”ingoing” edges is congruent to the sum
of weights corresponding to the "outgoing” edges modulo k. Here we use the convention
that an edge with weight z is identified with the edge having the opposite direction with
the weight —z. We see that the vector space Z(X) is naturally isomorphic to the tensor
product V9 with a k dimensional complex vector space, where g denotes the genus of .

Now we describe the action of the mapping class group M, on Z;(X) using a solution
of the polynomial equations due to Moore and Seiberg ([12] Appendix E) associated with
Z/kZ fusion rules. Let m be a positive integer such that m and k are relatively prime
and we suppose that m is even if k is odd. We put

92

m
(3-1) Dg=—r, z€EZL/KZ

. 1 ’
(3-2) Sxy = \_/—E exp 27V —1(—Aztpy + Az + Ay), z,y €Z/KZ
Let T be a diagonal matrix defined by
(3-3) T = diago<o<k-1(exp2rV —1A;)

One can check that the above matrices S and T satisfy the modular relations

| s?=¢C
(3"3) i\ 3 N\ o2
(ST)" = {(m, k)S°
where C is the duality matrix defined by Cyy = 6,y and £(m, k) is the Gauss sum

(3'4) é(ma k)

exp ———

_ 1 Z 7/ —1mz>
vk 0<z<k-1 k

which is known to be an eighth root of unity. We introduce the fusing matrices as

F92+y3 91+92

g2 g3 ]
91 1 +9g2+g3
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for any g1,g; and g3 in Z/kZ.

By means of the above data, one can construct an action of the mapping class group
Mg on Zy(X) asin the previous section. More precisely, we obtain a projectively linear
representation .
| Pt : My — GL(VE9)] < E(m, k) >
where the image of Dehn twists is described in the following way. We put U = STS, W =
T-1 @ T~1 and we adapt the notation for Dehn twists in the previous section. We set

pmt() =T '=T7'®---®1
ﬁpmk(O‘Z) =Wy, - a?mk(aé) =Wy1y4
emk(62)=T; ' =1@T'®---®1
emk(B1) = U1, -+, omi(By) = Uy

Here the symbol Wy 11,1 < k < g — 1, stands for the operation of W on the k-th
and (k + 1)-st components of the tensor product V®9. One can show that the above
representation factors through Sp(2g,Z). .

Let M be a closed oriented 3-manifold obtained as a Heegaard decomposition V; U, V3,
where ¥, and V; are handlebodies of genus g. As in the previous section we consider the
(0,0)-component ¢,,:(h)oo. We have the following theorem

Theorem 3.5. We put
o Ink(M) = VE=9pmi(R)oo

Then, I, (M) is a topological invariant of M.

In the case m = 1 and k is even, the above invariant was discovered by Gocho [4] from
a geometric viewpoint. In fact he constructed a vector bundle over the Siegel upper half
plane with a projectively flat connection whose holonomy gives the above representation
of Sp(2g,Z). v

Now we describe the Dehn surgery formula of the invariant I,,;. Let us suppose that
the closed oriented 3-manifold M is obtained from the Dehn surgery on a framed link L
with n components in S3. Let A be the linking matrix whose diagonal entries are given
by the framing. We denote by o the signature of the linking matrix 4. Using the above
notations, we have the following theorem.

Theorem 3.6. We pul

Toi(M) = Veng(m, ) S exp (f,;‘if‘uh)
. )11

he(Z/kZ

8



31

Then, Jni is a topological invariant of M. Moreover, the invariant I, computes this

invariant up to some power of the Gauss sum £(m, k).

" Remark. The invariant J,,,; can be written as the state sum
£(m, k)77 D Sop)y - SopmyF(L,A)
A

forany A: {1,--- ,n} — Z/kZ, where F(L, f) denotes the product for all crossing points
in the link diagram given by

1T exp 7V =1(Axg4agy — Do) — Bag))

1 J

Figure 5

Here to each crossing point of i¢-th and j-th components we associate the weight as
shown in Figure 5 and we take the product for all crossing points. The Dehn surgery
formula corresponding to the case of Gocho’s invariant was discussed by Ohtsuki [15].
We observe that the case k& = 2 coincides with the Reshetikhin-Turaev invariant for
7 = 3. Generalizing the investigation due to Kirby and Melvin [7], Ohtsuki showed
that the absolute value of Jyj 1s equal to the square root of the number of elements in
HY(M;Z/kZ)if we do not have o € H'(M;Z/kZ) such that cUaU« # 0 and is equal to
0 otherwise. In the case k is even; we have a slightly different representation of Sp(2g,7Z)
by putting
Ay = — 4=

and by replacing the above Gauss sum by

1 ’ ‘ T.'\/—lm 9
6(m,k) = —= -1 exp ——=z~
(m, k) \/Eoggk_l( ) exp ——

We have a similar construction and the resulting Dehn surgery formula
\/k._na(m, k)—a Z . (_1)<diag¢l,h> exp (L__V—lrnlhAh>
. he(Z/kZ) | k

9



32

was introduced by Murakami and Okada [14] related to the cyclotomic invariants for
links discovered in [13] based on the IRF model due to Kashiwara and Miwa. Here
< diagA,h > stands for 3°; Aj;h;.
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