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INVARIANTS OF 3-MANIFOLDS ASSOCIATED WITH
QUANTUM GROUPS AND VERLINDE’S FORMULA

TOSHIE TAKATA

NKRIE - @ E:
Introduction

In [14], Witten obtained new topological invariants of closed 3-manifolds and links in
3-manifolds from the quantum field theory. Shortly afterwards, in [11], Reshetikhin and Tu-
raev defined related invariants of closed oriented 3-manifolds and links in such 3-manifolds,
by means of representations of quantum groups. Moré precisely, they use quantized uni-
versal enveloping algebra U, (sl(2,C)), which is a q-deformé,tion of the universal enveloping
algebra sly(C) discovered independently by Drinfeld [1] and Jimbo ([2],[3]). The algebra
U,(sl(2,C)) has a structure of a Hopf algebra. Reshetikhin and Turaev introduced the
additional structure in the case ¢ = exp Z—"ir‘—/——:i called a ‘modular’ Hopf algebra to define
invariants of 3-manifolds. They obtain invariants of 3-manifolds as a combinational for-
mula using invariants of framed link associated with the algebra U,(sl(2,C)). This is based
on the fact that any closed connected oriented 3-manifold is obtained by Dehn surgery [10]
of $* along a framed link [7].

As an application of the invariants, we construct a projectively linear representation of
SL(2,Z). Let Z(T?) be an (r — 1)-dimensional vector spase over C and {e;}/=2 a basis
of the vector space Z(7?) and v've associate to a bésis e; a solid torus U; which has a link
in the interior. Gluing such two solid tori U; and U; by an element X of the mai)ping

class group of the torus T?, we obtain a closed 3-manifold Mx with a link. We denote the
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invariant of the resulting manifold by X;;, which is denoted by Mx. We define an action
p of SL(2,Z) on the vector space Z(T?) by the formula

—
p(X)e; = ZX,'je,' (7=0,---,7 —2).
=0
For generators S and T of SL(2,Z), we obtain the equations

O
5 = \/2 o ™G DG + DT

r

i(i42

Tij=q * &
This matrix (S;;) is the unitary matrix and the representation of SL(2,Z) by means of the
matrices above was discovered by Kac and Peterson [4] to discribe the modular property of
the character of the affine Lie algeba and was also used by Kohno [5] to defined invariants

of 3-manifolds. The above representation
p:SL(2,Z) — GL(Z(T?*))/(C)
is a projectively linear representation, where (C) is the cyclic group generated by a root of
unity C = expv/—1(—¢p + %";’!‘- — 7). Here ¢ is determined from the following Gauss sum;
2r—1

VB exp(/=Tp) = 3 expl/Tnk"m/2)

As an application, we prove ‘Verlinde’s Formula’ for SU (2) [13]. This is given by the

following formula:

S, Sz r—2
J i ESzINle7

where

Nt = 1 fji—7|<k<i+j,i+7j+k€2Z,i+7j+k<2(r—-2)
ik = 0 otherwise.

We verify it by computing the invariant of S? x S! with a link in two ways. The proof is
similar to that by Witten [14], but our approach is based on representations of U,(sl(2,C))
with ¢ = exp === 2"”"/_ ‘
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The paper is organized as follows. In §1, we review some of the results in [11]. We
explain a representation of a modular Hopf algebra and define invariants of links and 3-
manifolds derived by Reshetikhin and Turaev. In §2, using the invariants derived in §1,
we establish a representation of SL(2,Z). The action of generators S and T on the vector
space Z(T?) is represented by matrices and it is shown that they satisfy their relations. In
83, a proof of ‘Verlinde’s formula’ for SU(2) is presented. To compute the invariants, we

make use of the idea in §2.
1. Review
1.1 Modular Hopf algebra U,

In [11], Reshetikhin and Turaev give U; as an example of ‘modular’ Hopf algebra. In this
paper, we consider the definition of topological invariants of 3-manifolds for this modular
Hopf algebra U;. We explain this modular Hopf valgebra, Us. Fo'r a non zero q € C, Uy(sly)
is the Hopf algebra which is a g-deformation of the universal enveloping algebra of Lie
algebra sl3(C). Let us recall the definition of Uy due to Reshetikhin and Turaev. Let g be
a root of unity and ¢ = exp(ny/—1m/2r) where m and r are mutually prime integers with
oddm,2r—-1>m>1, 'rVZ 2 and g = t*. We fix an integer r satisfying » > 2. We define
U, to be the associative algebra with unit over the cyclotomic field Q (¢) with 4 generators
K,K~1,X,Y satisfying the following relations: |

| K?-K™?

XK =t2KX,YK = t*KY (1.1.2)
K =1,X"=Y"=0 (1.1.3)

The relations (1.1.1), (1.1.2) define the algebra U,(sl;). The structure of Hopf algebra

in Uy(sl;) induces a structure of a Hopf algebra in U;. The action of comultiplication A,
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counit €, antipode « are given on the generators by the following formulas.

AX)=X®K+K'9X - (1.1.4)
AX)=YQK+Kl@Y (1.1.5)
AK)=KQK (1.1.6)
X)=¢e(Y)=0,e(K)=1 (1.1.7)
7X) = —2X, (Y) = —t‘éY, v(K)=K! (1.1.8)

The structure of the ribbon Hopf algebra in U,(sl,) induces a structure of the ribbon
Hopf algebra in U;. Thus U, has the universal R-matrix R € U; ® U; due to Drinfel’d
[1] which satisfies Yang Baxter equation, u € U, defined from R, and v € U, which
is a central element of Ui. BR =3 ,0;®pi then u = 3, 7(Bi)ai and v = uK 2.
Moreover, U, satisfies six axioms (see [11, §3]) and has a structure of modular Hopf algebra.
We describe the representation of modular Hopf algebra U;. Let I be a finite set of
integers {0,1,... ,r — 2}. For an integer ¢ € I, V; denotes (i + 1)-dimensional irreducible
representation of U,. It is an (i + 1)-dimen$iona.l U;-module. The action p of the generator
K of U; on V; has the following matrix representation:

Y. 0
p(K) — . (1.1.9)
0 g
For any U;-module V; we provide the dual linear space V;¥ = Homc(V,C) with the

action of Uy:
pvy(a) = (pv:(1(a)))* € End V"

The matrix representation of this action is given by the following matrix:

e O
pvy(K) - . (1.1.10)
0 g
Let V;,V; be Us-modules and py; (resp. pv;) the action of Us on V; (resp. Vj). Their
tensor product is the U;-module V; ® V; equipped with the action of U; defined by the
formula for a € U,:
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pviev;(a) = (pv; ® pv; )(L(a))

Here A is the comultiplication of U;. One may consider the category Rep U, of finite
dimensional linear representations of U;. The objects of Rep U, are left U;-modules

Vi ®-- oV

where i; € I,e; € {1}, Vi = V4, V¥ = V7,1 < I < k. The morphisms of RepU; are

?:,

U;-linear homomorphisms.

Definition 1.1. Let V be an object of RepU,. For any linear operator f : V — V, we

define its quantum trace tryf to be the ordinary trace over C of linear operator

£15V =V, £(2) = @ 0)f(2).

In particular, if f is the identity map idy, then we denote tr idy by dim,V and call it
the quantum dimension of V. Note that if V = Vj, for j € I, then using v = v™*K? and
(1.1.9), we get

dim, V; = trq(zdv ) = Tr (pv; (K?)idy;)

t2,+2 4-2i-2

= ZtH" = — = =li+1] (1.1.11)
n=0 ‘
where [n] = =" = Sp{Ema/n)

In [11], Reshetikhin and Turaev proved the followmg theorem.

Theorem 1.2 (Reshetikhin-Turaev). Let V; (i € I) be an irreducible representation of

U;. There exists a decomposition
Vi@V =(&:Va)® Z;; (1.1.12)
as a U;-module, where k satisfies the following conditions

li—j|<k<i+ji+j+ke2Z, (1.1.13)
itji+k<2(r—2). (1.1.14)

5
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Moreover Z;; is certain Us-module and has the next property. For any integers i,j € I

and any Uy-linear homomorphism f : Z;; — Z;j, the quantum trace of f is equal to zero.

tr,f =0 (1.1.15)

1.2 Ribbon graph

An oriented, directed, homogeneous ribbon tangle is a collection of ribbons and annuli

as illustrated in Fig.1 ([11],[12]). |
Fig.1

A ribbon (annulus) is oriented if it has an orientation as a surface in R®. By the shaded
regions, we express that the tangle is oriented (Fig.1). A tangle is homogeneous if each
twist of all ribbons and annuli in the tangle is a full twist. A ribbon tangle is directed if
the cores of its ribbons and annuli are provided with directions. For each ribbon tangle we
assign a finite dimensional irreducible representation V; of U, to each component, where
t is called its colour. The procedure is called colouring and we denote it by A. In Fig.2,
elementary coloured ribbon tangles is sketched. We consider ribbons which are called
coupons. A small neighborhood of each coupon Q is depicted in Fig.3, where the rectangle
illustrates the coupon. A colour of each coupon is a C-linear homomorphism defined from
the colours and directions of the ribbons gluing to it. We add coupons to the tangle.

Fig.2 Fig.3
Let us introduce the category H of ribbon graphs. The objects of H are sequences

n= ((i1761)"°' ’(ilﬂek)) (ily"' ,ik € I,el,"'° '€k c {1’_1}),

where 4y, ,i; € I and €1,+++ ,6x € {1,—1}. We denote the set of such sequences by N.
If n,7' € N, then a morphism 7 — 7' is a coloured ribbon graph (considered up to isotopy)
such that the sequence of colours and directions of the bottom (resp. top) ribbons is equal
to n (resp. n'). The composition I' o T' of such two morphisms T': p — 7/, I : 7 — 7"
is the ribbon graph obtained by gluing the bottom ends of I with the corresponding

6
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top ends of I'. The tensor product of objects 5,7’ is their juxtaposition 7,7’ (see Fig.4).
‘ Fig.4 '

1.3 Invariants of closed 3-manifolds

For two categories RepU,; and H, Reshetikhin and Turaev show that there exists a
unique covariant functor with five properties (see §2.5 in [11]). They define U;—linear
homomorphisms corresponding to elementary coloured ribbon graphs pictured in Fig.2
and graphspictured in Fig.5. |

Fig.b

Since the graphs J;f,J7, X ;’J' »Xi;» @i, bi, ¢i, d; generate the category H, the compositions
and tensor products of the corresponding homomorphisms determine F(T') for a coloured
ribbon tangle I'. In particular, a coloured (0,0)-ribbon tangle I' defines C-linear homomor-
phism C — C, i.e. a multiplication by a certain element of C. The element is a regular
isotopy invariant of T'. It is also denoted by F(T).

Example 1.3 Let I be a coloured (0,0)-ribbon tangle in Fig.6.
Then F(T') = F(b;) o F(c;) and an easy computation shows F(I') = dim, V;.
| Fig.6
Let us recall that dim, V; is equal to the quantum trace of identity homomorphism. The

following lemma generalizes this computation.

Lemma 1.4. Let I' be a coloured (k,k)-ribbon graph which corresponds to an endomor-
phism of a certain sequence n € N. Let L be the coloured (0,0)-ribbon tangle obtained by
closing ' (see Fig.7). Then F(L) = tr F(T).

 Fig.7
We introduce the presentation of cl:osed 3-manifolds via framed links. A framed link in
the 3-sphere is a finite collection L of disjoint smoothly embedded circles Ly,--- ,L; in S3,
each component Ly of L is provided with a framing which is an integer ni. Let w be an
orientation of L. We may regard each component L; of the annulus with n; full twists.

This identification gives us a (0,0)-ribbon tangle I'(L,w). The notation w may be thought

7
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of as the directions of the annuli. Let A be a colouring of I'(L,w). Then F(T'(L,w,]))
is a regular isotopy invariant of coloured (0,0)-ribbon tangle I'(L,w, ). By means of the
above results, we define invariants of closed 3-manifolds. The idea of their construction is

reduced to the following theorem which relates framed links to closed 3-manifolds.

Theorem 1.5 (Lickorish [7]). Each closed connected oriented 3-manifold can be ob-
tained by Dehn surgery on S* along a certain framed link.

Let M be a closed connected oriented 3-manifold and L a framed link in S° with
components Ly,--- ,L; and framing n,y,--- ,n; which can be related to M by the above
theorem. Dehn surgery is the following process. We remove an open tubular neighborhood
of each L on the resulting toral boundary and glue ! solid tori such that their meridians
are identified with the curves on the boundaries. We consider such a pair (M, L). Let w
be an orientation of the framed link L. By col(L) we denote the set of colourings of the
(0,0)—i'ibbon tangle I'(L,w). Put |

l
F(M,L)=c"® 3" [ daz.) F(T(E,w,))) € C. (1.3.1)
: "A€col(L) k=1

Here C,di (k = 0,--- ,r — 2) are constants contained in the data of the modular Hopf

algebra U; and given by the following formulas:

C = exp(—v—14d), (1.3.2)
dy = \/gsin M, (1.3.3)

r

where
3rm «x
d=¢p — —— + — 1.3.4

the number ¢ being determined from the following Gauss sum

V2r exp(vV—1¢p) = {2 exp(v/—1wk*m/2r). (1.3.5)
k=0

The notation (L) stands for the signature of the linking matrix of the framed link L. We

remark that the normalization coincides with that in [6].

8
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Theorem 1.8 (Reshetikhin-Turaev). For a closed connected oriented 3-manifold M,
F(M,L) is a topological invariant of M.

We may denote F(M,L) by F(M). The invariant is multiplicative with respect to a
connected sum: ‘

F(MyjMy) = F(M;)F(My).  (1.3.6)

We have the following relations between invariants with opposite orientations
F(M) = F(-M),

where the bar is the complex conjugation.
Example 1.7 The formula (1.3.6) implies that F(S%) = 1.
‘Since S% x S is obtained by Dehn surgery on S® along an unknotted circle with framing

0, we have

r—2
F(S* x §') =) didim,V;

_ \/; (5 2m) ™ (13.7)

Here we used the equation dimg V; = sin _m(;"*:!ﬁ/ sin 2%, In the case m =1, F(S? x S)
is equal to Kohno’s invariant ¢ (S? x S') with K =r + 2.

Let M bé a closed connected oriented 3-manifold and T be a coloured (0,0)-ribbon
tangle in M. As above, let us present M as the result of surgery on S® along a framed
link L with componenfs Ly,---,L;. The ribbon tangle T'UI'(L,w, ) may be thought of
as a coloured (0,0)-ribbon tangle in S*. We put

: |
F(M,T;L,w)=C"® Y ] daz.) F(TUT(L,w, ). (1.3.8)
A€col(L) k=1

Then F(M,T;L,w) is a topological invariant of the pair (M,T). We put F(M,T) = .
F(M,T; L,w). In particular, we have F(S3,T) = F(T).
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2. A representation of SL(2,Z)

Using the invariants defined in §1, we establish a projectively linear representation
of SL(2,Z). Let M; be the mapping class group of torus T2. We fix a basis a,b in
H,(T?) > Z & Z as depicted in Fig.8.

Fig.8

The group M; may be canonically identified with SL(2,Z). A presentation of SL(2,Z)

is given by
SL(2,Z) = (S,T : S* = I,(ST)® = §?), (2.1)

where S = ((1) _01) T = ((1) }) Let Z(T?) be an (r — 1)-dimensional vec-

tor space over C and {eg,e1,:+- ,er—2} a basis of the vector space. We associate

to each e; a solid torus U; with an annulus T; in the interior, depicted in Fig.9.
Fig.9

We suppose that the colour of annulus T;is ¢ € {0,--- ,7 —2} and the direction as in Fig.9.

We construct a projectively linear representation
p: SL(2,Z) — GL(Z(T*)/(C),

where C' is given by (1.3.2) and (C) means the cyclic group generated by C - I, when I
denotes the identity matrix.

For any element X of SL(2,Z), put

p(X)e; = Zx,,e, _ | (2.2)

i=0
Let [h] be an isotopy class in M; corresponding to X. The map h is a degree 1 homeo-
morphism T? — T2. We identify 8U; and 0U; using h. The resulting closed connected
3-manifold with the (0 0)-nbbon tangle consisting of two annuli T}, T; is denoted by Mx.
Then X;; in (2.2) is defined by the following formula:

X,'j =F(.Mx,T,'UTj)/F(Sz XSI') (2.3)

Clearly, it follows from the definition that X;; does not depend on the choice of the

representative element of the isotopy class.

10
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Theorem 2.1. The following homomorphism constructed above is a projectively linear

representation.

p: SL(2,Z) — GL(Z(T?))/(C),

where (C) means the cyclic group generated by C-I in GL(Z(T?)) with C given by (1.3.2).
The values of S;j, I;; and T;; are given by the following formulas:

Sij = \/g sin m(i+1)(j + 1)’”,
r

r

Lij = &ij,

Tij = ti(i+2) 6,']' .

proof. Firstly, let us compute Sj;, I;;, and T;;.
(1) the case X = S
M is the 3-sphere S°. Two annuli T}, T; are linked in Mg and make up the Hopf link
(see Fig.10).

Fig.10
Therefore we get F(Ms,T; U T;) = F(T; U T;). One computes
F(T,UT;) = sin PEH DG+ D7 / sin 2% (2.4)
T T

Applying (2.3) with (1.3.7) and (2.4), we get

Sij = \/g sin m(i +1)(j + )= . , (2.5)

r

(2) the case X =1
My is S* x S*. In My, T; and T; are unlinked unknotted annuli with no twists (see
Fig.11). Let us consider S with the above annuli and the unknotted circle L that links a
pair of the annuli and that has the zero framing as illustrated in Fig.12a.
Fig.11
The Dehn surgery on S® along L produces S? x S* with T; and T} depicted in Fig.11.
To calculate F(T; UT; UT(L,w,\)), we can use the formula (1.1.2)

VieV; = (GBkV(e) ® Zij.

11



Let us replace T; and T; with a unknotted annulus T} which runs parallel to T; and T}
(Fig.12b). We assume that T} has a colour k and the same direction as two annuli. Then
T U I'(L,w, A) is a (0,0)-ribbon tangle in S3.
 Fig.12a Fig.12b
The préperty (1.1.15) of the U;-module Z;; ensures the equation

F(T: UTj UT(L,w,\) = 3 F(Tx UT(L,w, ), (2.6)
k

where the summation runs over k satisfying (1.1.13) and (1.1.14). As Ty U T'(L,w, ) is
the Hopf link, we casn apply (2.4) to the computation of F(Ti U I'(L,w, ). K A(L) =1,

then we obtain

F(T UT(L,w, \)) = F(S? x sl)\/g sin BT 12(' + D 2.7)
Thus, we get
1 <~ y o \/5 . m(k+ 1)+ Dx
Izj—m-i—)-;dI(;F(S XS) ;Sln r ’

where k satisfies the conditions (1.1.13) and (1.1.14). We have the following formula:

r—2 . . . .

Z sin m(i+ 1)+ sin m(l+ 1) + = = %5:']'- (2.8)

T T

=0

Using (2.8), we show the formula:
2 Z r
I,'j = ; - 56%.

The condition (1.1.13) of k asserts that k is equal to zero if and only if ¢ = j. Therefore
we get

I,'j = 5,‘j. (2'9)

(3) thecase X =T
My is also S? x S'. But the unknotted annulus T; with no twists links the unknotted
annulus T; with one full twist (Fig.13). To obtain (Mr,T; U T;), we start from S? with

12
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the two above annuli T; and T; and with an unknotted circle L which has the zero framing
and which links them (Fig.14a). Carrying out the Dehn surgery on S? along the circle L
turns S2 into My =2 §% x S*.
Fig.13

One claims that we can make use of the idea of the case X = Ito calculate F(T; U
T; UT(L,w, A)). We deform the annulus T; adding the same twist as the annulus Tj. One
denotes the resulting annulus by T;'. The computa.ioh in [il, the proof of Lemma 7.1]
implies ,

F(T! UT; UT(L,w, ) = (v;) " F(T; UT; UT(L,w, \)),

‘where v; = t{+2), A full twist can be expressed by a curl (Fig.14b). It follows from it
that we can turn T}’ U T; into two parallel annuli with no twists (Fig.14c).

Let T} be an annulus of colour & provided with the same twist and direction as two
annuli. We replace two annuli by T} (Fig.14d).

Fig.14a Fig.14b Fig.14c Fig.l4d
Then, applying theorem 1.2, one may get the following equation

F(I/UT,UT(Lw, )= Y F(TuUT(L,w,\),

k
li—j|<k<i+j
i+jtke2z
i+j+k<2(r—2)

Thus

1 r—2
Tij = -F—(ml—) ;dl (N ;F(Tk U P(L,w, A))

here A(L) = l. Substituting v; = t(i+?) we obtain
T;; = 10+, (2.10)

We put I;q = (I;;), S = (Si;) and T = (T;;). They are (r — 1) x (r — 1) matrices.
Let us prove that p is a projectively linear representation. To do this, it is sufficient to

show the following;:

St=1I mod C-I (2.11)
(ST)® = §2 mod C-I (2.12)

13



o4

One easily computes

S% = I,;. | (2.13)

Note that the equation (ST)? = 52 is equivalent to the equation STS = T~1ST1. It is
easy to compute that an (z,7)-entry of T71ST ™! is

\/? pi+D+i(+2) g, ME T DG+ D)7 : (2.14)
,

T

Using ¢t = exp(rv/—1m/2r) and Gauss sum (1.3.5), an (3, j)-entry of ST'S is

C\/—-f- $ED+iG+2) g T DG+ D7 (2.15)

r

It follows from (2.14) and (2.15) that
STS =T~ ST .CIy. (2.16)

(2.13) implies (2.11) and (2.16) implies (2.12). O

3.Proof of Verlinde’s formuia

As another application of the invariants given in §1, we prove ‘Verlinde’s formula’ (see

[13]). It is given by the following formula.
SzJ Szk Z S . NIJk | (31)

where m and r are mutually prime integers with odd m, 1 <m <2r —1,r <2, and

Sy = \/;si m(i +1)(j + 1)7r . | 62

r
N _{1 ifli—j|<k<i+ji+j+ke2Zi+i+k<2r—2)
ik = 0 otherwise.

Proof of Verlinde’s formula. Let us consider S? x S with three parallel non-twisted annuli
Ti, T;, T in the interior (see Fig.15). The directions of them is as in Fig.15 and the colour
of T; (resp. Tj,Tk) is I (resp. j,k).

14
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Fig.15

We call this configuration of three annuli E;; The idea of the proof is to evaluate
F(S? x 8%, Lij;) in two ways.

Let us begin with the surgery representation of (52 x S?! E;;) Let L be an unknotted
circle with the zero framing which links LIJ r in S (Fig.16a). The Dehn surgery on S*
along the circle L produces (S? x S, Lij1)-

In the first evaluation, we use an analogue of the computation of I;; and T;; in §2. We
replace T; and T} by an unknotted non-twisted annulus 7, with colour p and the same
direction as them (Fig.16b). Then applying Theorem 1.2 with ¢ replaced by I, we obtain

the following equation:
F(Lijx UT(L,w,N)) = ¥ F(TiU T, UT(L,w, ).
P

Here p satisfies the conditions (1.1.13) and (1.1.14) replaced ¢ by p.
Fig.16a Fig.16b ‘
Then we can apply the formula (2.9) to the computation. Thus we get

F(S? x 5%, Lije) = i dy (Z F(TiUT,U r(L,w,,\)))

=0 ?
=F(S*x8") Y. b,
p
li—jl<p<j+k
pt+jt+ke2z

p+j+kL2(r-2)

| It follows from the condition of p that
F(S? x S, Lijx) = F(S? x S*) Nijx (3.3)

To evaluate F(S2 x S, L;;z) in the second way, we rotate the (0,0)-ribbon tangle L;jz UT'(L)
in 5'3 (Fig.17a). The result may be thought of as the closure of the (1,1)-ribbon tangle
B,] i illustrated in Fig.17b. F(B,J ¢) is the homomorphism V; — V;. Moreover, it may be
thought of as the composition of three homomorphisms determined by (1,1)-ribbon tangles
i ,T;,T; illustrated in Fig.17c.

vFig.17a. Fig.17b Fig.17c

15
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The map F(7}) is a C-linear homomorphism C — C, i.e. a multiplication by an element
of C. We denote this element by bj. Similarly, F(7}) (resp. F(7%)) is a multiplication by
an element b} (resp. b}) of C. The closure of the (1,1)-ribbon tangle 7{ makes up the Hopf
link. We denote this invariant by s;. Analogously, the invariant which corresponds to TJ-
(resp. 7}) is denoted by s;; (resp. s ). Using (2,4), we derive

sin m{t+(p+1)= /sin ﬂ:ﬁ 3

Sty =
k r

where p € {1, 7, k} Note that s;p = dim, V;. Then Lemma 1.5 shows that
8¢ = b, dimy V; = b}, s40. (3.4)
The above discussion and (3.6) imply that

F(Byjy) = try(F(1}) o F(1}) o F(}))

= b} b} b}, dim, V4 (3.5)
Using (3.4) and (3.5),
o r—2
F(S* x 8, Lijx) = Y dy F(Bfy) dim, V,
t=0

stlstjstk ’
= z 3.6
(3t0)2 ( )

Multiplying (3.3) and (3.6) by s;; and summing up over l =0,--- ,7 — 2, we get

r-2 -2 g
Z:F(.S’2 x S*) Nijx = d; (sm 7—7:1) L 2ij%ik 3.7)

2 (30
NP S
r T

2
= \/—:8,0 sin m (3'8) »
r T

Substituting (3.8) in (3.7), we obtain

We remark that

r—2

Y su F(S? x §*) Niji = F(S? x §*) 2%k (3.9)

L]
1—0 i0

16
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The value S;; is related to s;; by the formula

-1
8ij = g (Sill m) Sij.

Thus (3.9) implies (3.1). O

1.

2.

3.

4.

12.

13.

14.

15.
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