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§1. INTRODUCTION
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In [Z1], Zariski considered the family of projective curves of degree 6 with 6 cusps on a conic.
This family is defined by : f(X,Y,2) = fo(X,Y,2)* + f3(X,Y, Z)? = 0 where f; is a homogeneous
polynomial of degree i, i = 2,3. He showed that the fundamental group 71 (P? —C) is isomorphic to
the free product Z; * Z3 for a generic member of this family. He also proved that the fundamental
group of the complement of a curve of degree 6 with 6 cusps which are not on a conic is not
isomorphic to Z, * Z3. In fact, we will show in §5 that this fundamental group is abelian. Zariski
also studied a curve of degree 4 with 3 cusps as a degeneration of the first family in [Z1] and he
claims that the complement of such a curve has a non-commutative finite fundamental group of
order 12. We give an elementary proof of this assertion using a concrete equation of the curve (§3

Theorem (3.12)).

The purpose of this note is to construct systematically plane curves ‘with nodes and cusps which
are defined by symmetric polynomials f(z,y). A symmetric polynomial f(z,y) can be written as
a polynomial h(u,v) where u = z + y and v = zy. In this expression, the degree of h in v is half
of the original degree and the calculation of the fundamental group becomes comparatively easy.
Let p : C* — C? be the two-fold branched covering defined by p(z,y) = (u,v). The branching
locus is the discriminant variety D = {u® — 4v = 0}. Let C = {h(u,v) = 0} and C = p~}(C).
Under a certain condition, the homomorphism pg : 71(C? — C) — 71(C? = C) is an isomorphism

(Theorem (2.3), §2). Symmetric polynomials give enough models for the cuspidal curves with small
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degree. As an application, we will give an example of symmetric plane curve of degree 4 with 3
éusps (Theorem (3.12), §3) and we will show that the fundamental group of the complements is a

finite non-abelian group of order 12 as is proved by [Z1].
§2. SYMMETRIC COVERING

Let p : C? — C? be the two-fold covering mapping defined by p(z,y) = (u,v) where u =
@ +y, v = zy. This is branched along the discriminant variety : D = {(u,v); g(u,v) = 0} where
g(u,v) = u? —4v. As u and v are elementary symmetric polynomials, we refer p : C* — C?
as the symmetric covering. Hereafter we consider the symmetric weight: degu = 1, degv = 2
unless otfxerwise stated. Thus g(u,v) is a weighted homogeneous polynomial of degree 2 under the
symmetric weight. Let k(u, v) be a reduced polynomial of degree n (under the symmetric weight)
and let C = {(u,v) € C?h(u,v) = 0}. We denote the inverse image p~1(C) of C by C. The
defining equation of € is p*h(z,y) = h(z+y, zy) = 0. Note that p*h(z,y) is a polynomial of degree

n in z and y. We say that C is symmetrically regular at infinity if .
(Roo) {(u,) € C*; hn(u,v) = g(u,v) = 0} = 0

where h,, is the weighted homogeneous part of degree n of h. The geometric meaning of (Ro) is the
following. First, under the condition (R), the compactification of C and theline D = {X-Y = 0}

in P2 do not intersect at infinity i.e., on the infinite line Z = 0. Secondly,

LEMMA (2.1). Assume that C is symmetrically regular at infinity. Let gc : C — C be the
restriction of the function g(u,v) = u? — 4v to C. Then the number of the fiber gal (¢), counting

the multiplicity, is constant for ¢ € C.

PROOF: Assume the contrary. Then there is a sequence P, v = 1,2,... of C such that g(P,) is
bounded and ||P,|| — co. We apply the Curve Selection Lemma ([M],[H]) to find a real analytic
curve (u(t),v(t)),0 < t < 1 so that u(t),v(t) can be expanded in a Laurent series at ¢ = 0 and (1)
h(u(t),v(t)) =0, (2) lim,—o g(u(t), v(t)) = c for some ¢ € C and (3) lim¢_g ||(u(t), v(2))|| = oo.

Let u(t) = atP+ (higher terms) and v(t) = bt?+ (highef terms) be the respective Laurent series.

Here a (respectively b) is non-zero unless u(t) = 0 (resp. v(¢) = 0). We consider the leading terms
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of h(u(t), v(t)) and g(u(t),v(t)). Let P = *(p,q) and X = (a,b). For a given polynomial f, fp(u,v)
denotes the leading part of f with respect to the weight P and fp(u,v) is a weighted homogeneous

polynomial of degree d(P; f). This is a usual notation. See for instance [O4). Note that

a?t?? 4 (higher terms) . if2p<yq
g(u(t),v(t)) = { (a® — 4b)t?? + (higher terms) if2p=g¢g
' —4bt? 4 (higher terms) if2p > q.

Therefore the assumption (2) and (3) can not be satisfied simultaneously unless gp = g and
g(a,b) = 0. Namely X € C*?, P = *(¢,2c) for some negative number ¢ and a® — 45 = 0. On the
other hand, the assumption (1) implies that hp(a,b) = 0. As hp = h,, we get a contradiction to
the assumption (Ro). Q.E.D.

(A) CORRESPONDENCE OF FUNDAMENTAL GROUPS.
We consider the fundamental groups 71(C? — C) and 7;(C? — C) and their relation. Hereafter

we always fix a suitable base point and we omit it.

LEMMA (2.2). Assume that C is symmetrically regular at infinity.

1 meets transversely wit the canonic omomorphism
() IfC ly with D, th ical h phi
é = (¢1,42) : 11 (C? = C U D) = m(C? = C) x m;(C? - D)

is an isomorphism where ¢1 and ¢z are induced by the respective inclusion mappings.
(ii) The homomorphism g4 : x1(C? — D) — m1(C*) & Z is an isomorphism and the composition

homomorphism 9 : 71 (C* = C U D)—"’—’m’l(C2 — D)4 is the rotation number:

-1 [ 2
¢(w)_21ri e wem(C*-CuD).

(iii) The image of pg : m(C? —CU D) — m1(C? — CU D) consists of the loops ¢ with even rotation
number P(£). '

PROOF: Note that (u,g) is a global system of coordinates. Let £ = {c1,...,ci} be the set of the
critical value of gc : C — C. Then g : C? — gg*(Z) = C — I is a locally trivial fibration by
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virtue of Lemma (2.1) and 0 ¢ ¥ by the transversality assumption. By van Kampen Theorem
([K]), the homomorphism ¢ : 71(g~(c) — g~*(c) N C) — m(C? — C) is surjective for any c ¢ I.
Note that m1(g2(c) — g71(c) N C) is a free group of rank n. We fix a system of generators
Ply---sPn. As g:(C%LC) = C has no critical point at infinity by Lemma (2.1), the generating
relations of py,...,p, as the generators of 7;(C? — C) are given by the monodromy relations
around ¢ = ¢y, ...,cx. The generators of 7;(C? — C U D) are given by py,...,pn and p where p is
represented by a small loop which goes around D outside of the intersection D N C. In particular,
we have ¢(p) = (e,1). The generating relations are given by the same monodromy relations at

| ¢ =c1,...,ck and the commutation relation of p with other generators: [p,p;] = e,i = 1,...,n. The
last commutation relations follows from the topological triviality of the projection g : (C%,C) —» C
near ¢ = 0. Now the first assertion (i) follows immediately. The assertion (ii) follows also from
the observation that g : kCZ — D — C* is a homotopy equivalence. The assertion (iii) is also clear
as the image of pg : 1 (C? = C U D) - m(C? — C U D) is a normal subgroup of index 2 and
*9(z,¥) = (z - y)*. QED.

We remark here that the. tra.nsvérsality of C and D does not imply the generic intersection
as projective curves. In fact, the number of the intersection points C N D in C? is not 2deg C but
deg C. Thus the assertion (i) does not follow from [0-S]. We fix an element p € m;(C? — C U D)
where p is represented by a small loop which goes around D outside of the intersection C' N D.
By the above isomorphism, ¢(p) = (e,1) where e is the unit element of 73(C? — C). Let D be
the inverse image of the discriminant variety D. Note that 5 = {z — y = 0} and the defining
polynomial p*g(z,y) = (z — y)? is not reduced. The following theorem says that we can compute

the fundamental group 71(C? — C) from 71(C? — C) in a certain case.

THEOREM (2.3). Let C be a curve which is symmetrically regular at infinity.

(i) The canonical homomorphism pg : 11 (C? = C) = 11(C? - C) is surjective.

(i) If the homomorphism ¢ = (¢1,¢2) : 71 (C? —CU D) — 71(C? — C) x 71(C? — D) is isomorphic,
in particular if-C meets transversely ‘with D in the base space C’, the above homomorphism

pg : 71 (C? = C) — m(C? = C) is bijective.
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PROOF: We consider the commutative diagram:

n(C*-CuD) X m(C*-CuD)
T L

n(ct-06) &  mn(Cc?-0)

The horizontal maps are induced by the projection p and the vertical maps are induced by the
respective inclusion maps. It is obvious that the vertical maps are surjective. Take any loop
w € m(C?~C). Choose w' € 11(C?—~C U D) so that ¢(w') = w. The loop w' can be lifted to a loop
by p if and only if the rotation number (w’) is even. (Of course, w' is always liftable as a path.)
Thus either w’ or w'p can be lifted to a loop w”. Therefore p,(7{w")) = w. Thus py is surjective.
Now we prove the injectivity of pg assuming that ¢ is an isomorphism. Let o € m;(C? — 6) be an
arbitrary element and take an element o’ € m;(C?— CU D) which is mapped to ¢ by 7. Assume that
p4(0) = e. Then by Lemma (2.1), pg'(0") = p** for some even integer 2k. Thus o’ is represented
by the lift of p** as p;‘e is injective. This corresponds obviously to the uilit element e by 7. Thus o

is trivial in 7,(C? - C). Q.E.D.

If C N D has at least one transversal intersection, the canonical homomorphism ¢ = (¢1,¢2) :

71(C?* ~ C U D) — m1(C? —.C) x m1(C? — D) is often isomorphic.

(B) CORRESPONDENCE OF SINGULARITIES.

Now we consider the correspondence of the singularities of C' and C. For the caiculation’s
sake we use the coordinates (u,g) in the base space of p : C? — C? and the coordinate (u,£) in
the source space where g = u? — 4v, u = z +y and £ = z — y. In §3, we simply write’ /9 instead of
£. In these coordinates, the projection p is simply defined by p(u,£) = (u,£?) and the discriminant
variety D is the horizontal 1iné {9 = 0}. Let h(u,g) be the defining polynomial of C. Then C is
defined by h(u,£) = 0 where h(u,£) = h(u,£?). Let w € C. Assume first that w ¢ C N D. Then
p~1(w) consists of two points, say W; and Wy. As p is locally isomorphic, the germs (5 yWi)i=1,2

are isomorphic to the germ (C,w).
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Now we assume that w € C N D and let p~!(w) = W. In the above coordinates, we can write

w = (a,0) = W for some a € C. We calculate the differentials:

- dh _Oh, L, Ok, Bk,
(2.4) ‘ 5;(‘".,() = a—u(u,l ), 52‘(1&,[) = ZZag (u.t ).
Thus W is a singular point of C if and only if

Oh
(2.5) | 7(@,0) = 0.

This implies the following.

PROPOSITION (2.6). W is a singular point of C if and only if
(i) w is a singular point of C, or

(ii) w is a regular point of C and C is tangent to D at w.

Recall that w is called a cusp singularity if C is locally isomoi'phic. to the curve 2 + (3 = 0
for a system of coordinates ({,() centered at w. This is a generic property in the class of the
singularity with the condition H(h)(w) = 0 where H(h)(w) is the Hessian of k at (u,g) = w. We
give a criterion for a given singularity to be a cusp singularity. Let (£,({) be a local coordinate

system centered at w and let A(¢,¢) = h(u(¢,¢), 9(¢,¢)). Let M be the maximal ideal of Ocaw-

PROPOSITION (2.7). Assume that w is a singular point of C and A(,() = a€?, a # 0 modulo M3.
Then w € C is a cusp singularity if and only if h(€,() contains the monomial ¢* with a non-zero

coefficient.

PROOF: The necessity follows from the fact that the local Milnor number is 2. The proof for the

sufficiency is easily obtained by the standard argument of the generalized Morsé lemma. Q.E.D.

Now we consider the Hessian of % at % = (a,0) assuming W is a singular point of C. From

(2.4), we have
_ 2
(2.8) H() ) = 2%3(.1,0)%";(01,0).

Let u(C,D;w) be the intersection multiplicity of C and D at w. We claim that
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LEMMA (2.9). Assume that w € C N D and let W as above. Then
(i) % € C is an ordinary double point if and only if w is a regular point of C with w(C,D;w) =2.
(ii) W € C is a cusp singularity if and only if w is a regular point of C with u(C, D;w) = 3. '

PROOF: As a coordinate system centered at w, we can take (u,,g) where uy = 4 — a. Recall that
#(C,D;w) = valy, k(uq) where k(uq) = h(uq + @,0). Thus

=0 fori<s and

_ dk d'h
W(C,Diw) = s = m(") = W(‘f"o){ #0 fori=s.

In particular we have u(C, D;w) > 2 if W is a singular point. On the other hand, by (2.8) we have

the equivalence
~ . o L oy
W : ordinary double point <= 5-1;((1,0) =0, Hh)W)#0

oh oh 9h
— -aTl(a,O)'_ 0, -55(0’,0) # 0, -5-’“—2(01,0) # 0.

The last condition implies that w € C is a regular point and pu(C, D;w) = 2. This proves the

assertion (i).

Now we prove the assertion (ii). Let s = u(C,D;w) and assume that 22(a,0) = 0. Let
ha(ta,9) = h(uav+ a,g). Then hy =0 is a defining equation of C. By the assumption, we can
write

ha(Ua,9) = u2U + ¢V
where U,V € Oca,w, j > c2,w- Then the deﬁl)ingequfttion of &hib:U is a
P*ha(ta,£) = wp*U + £2p*V = 0.
Thus using Prop.osition (2.7), we can see easily that w € Cisa cusp singularity if and only if j = 1,

s =3 and V is a unit. This implies that w € C is a regular point and p(C,D;w) = 3. Q.E.D.

DEFINITION (2.10). Recall that a regular point P of a curve C is called a flex of order k if the
intersection multiplicity of C and the tangent line at P is (k + 2) ([Z1]). We call a regular point P
of C a D-flex of order k if P € C N D and the intersection multiplicity of C and D at P is k + 2.

Hereafter we call an ordinary double point simply a node.

The following corollary follows immediately from Lemma (2.9).

7
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COROLLARY (2.11). Let C = {h(u,g) = 0} be a curve in the base space and let C = p~(C). We
a.ssunie that the singular points of C are either nodes or cusp and there is no singular point of C on
the intersection C N D. Let d(C) and s(C) be the number of the nodes and cusps of C respectively
and let d(C) and s(C) be the number of nodes and cusps of C respectively. We also assume that
u(C,D;P) < 3 for any P € C N D. Let ty(C) and t3(C) be the number of the D-flex of order 0

and of order 1 respectively. Then the lifted curve C has only nodes and cusps and we have

d(C) = 2d(C) +1,(C),  s(C) = 2s(C) + t3(C).

§3. CONSTRUCTION OF CUSPIDAL CURVES

In this section,‘we consider irreducible projective curves with many cusps. Let F((X,Y, Z) be
an irreducible homogeneous polynomial of degree n and let C = {(X;Y; Z) € P%; F(X,Y, Z) = 0}
be the corresponding projective curve. For convenience, we assume that the intersection of C with
the infinite line Z = 0 is generic.. Namely F(X,Y,0) = 0 consists of n distinct points and we
consider hereafter the affine equation f(z,y) = 0 of C where f(z,y) = F(z,y,1). We assume that
C has only nodes and cusps as its siﬁgular points. Let d(C) and s(C) be the number of nodes
and cusps respectively. We first recall the known bounds for d(C) and s(C). Suppose that C is
non-singular. Then by the Pliicker’s formula, the genus of C is (n — 1)(n — 2)/2. For the general
case, we deform the curve by C; = {f(z,y) = t}. For any sufficiently small ¢, C; is non-singular.
Let C' be the non-singular model of C = Cp. Then the Euler-Poincaré characteristic x(C') satisfies
x(C") = x(Ct) + 2(d(C) + s(C)). Thus by considering the genus of C’, we have

(3.1) 4C), (0) < d(C) +s(C) < L1 =2)

~ The second equality holds if and only if C is rational. If C is rational, by Pliicker’s formula for the

dual curve, s(C) satisfies:
(3.2) s(C) < M (C : rational).

We refer to [B] for the detail about thesé things. See also [W]. For a non-rational curve, the number

5(C) may be much bigger but we do not know the maximum of s(C) for a generic n. For n = 4,5, 6,
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8 =3,59is the maximum respectively. See §§3, 4, 6. Let Py,..., P, be the cusps of C. We say
that {P1,...,P,} are independent if for any Pj,..., P, which are sufficiently near to Pj,...,P,s
respectively, there exists an irreducible curve C’ of degree n which has cusps at P = P{,...,P,.
Note that the necessary condition for a curve {f(z,y) = 0} to have a cusp singularity at a given

- point P = (a,f) is given by three linear equations and one quadratic equation in the coefficients
of f(z,y) :
7] af
(33) f(erB) = L8y = L) = B ) =0.
oz Oz
Therefore counting the number of coefficients of f(z,y), we get the following estimation for the

independent cusps :
(3.4) 3(C) < ﬁ(ll?g—}-)- for independent cusps.
The following example shows that the number of cusps which are not independent may be much

bigger.

EXAMPLE (3.5). Let ny = n — 2[n/2] and n3 = n — 3[n/3] and let C be the curve defined by

the following Join type polynomial

[n/2] n3 [n/3]
fzy) = (=) [[@-a) -6 [[v—m) [[ (- 85)°
i=1 k=1 J=1

where n2(z) = 1 or ¢ — ao according to n is even or odd respectively. Fﬁr a generic choice of
{6,005+, /2)s 115+ +» T3> B1s+ -+ s Binyat}s C has [n/2][n/3] cusps {(@;,B;);i = 1,...,[n/2],j =
1,..., [n/3]} Thus asymptotically, we can put n?/6 cusps. In the case of nz = é, we can replace
T ,(y = 7k) by (¥ —7)?. Then our curve also obtains [n/2] nodes : {(ai,7);1 < i < [n/2]}. If we
take special a;,1 < i < [n/2],7,8;,1 < j < [n/3], we can put more nodes or cusps. See §4 and §6.

These cusps are not independent. The following table shows the above estimations.

n | 3 4] 5 6 7 8 ] 9 | 10 | 11 12
(222 1 3 4 6 7 9 |10 12 ] 13 | 15
(el 11 13 |5 6 | 8 |11 | 13 | 16 | 19 | 22
ZaT 1 [ 2 | 2 6 6 8 | 12 | 15 | 15 | 24
=Dn=f) 11 | 3 6 10 15 21 | 28 | 36 | 45 | 55
Table (3.A)

9
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- Hereafter we consider the case that f(z,y) is a symmetric polynomial. We use the systems
of coordinates (u,g) in the base space and (u,£) in the source space as in §2. For brevity’s sake,
we simply denote /g instead of £. Thus u = z + y and /g = z — y. Note that g is a weighted
homogeneous coordinate of weight 2. Let h(u,g) be a polynomial of degree n under the symmetric
weight as in §2 and let C = {(u,v);h(u,g) = 0}. We assume that C is symmetrically regular at
infinity as before. We study the curve C of degree n which is the inverse image of C by p : C* — C2.
Its defining polynomial is f(u,./g) = p*h(u,./g) = h(u,g) where g = \/_172. We also assume that
hn(u,g) = 0 has no multiple roots. This says that the infinite line Z = 0 is generic with respect to
C. The number of free coefficients of h(u,v) is [n/2]([n/2] + 2) for n even and [n/2]? + 3[n/2] + 1

for n odd. Thus by the same argument as above, we have an estimation

2 2]+2
W) < (BAMRAD - eyen
_— 2
n/f2 +in2+1 n: odd

for the number of the independent cusps of C. Of course, this estima;tion is asymptotically equiv-
alent to (3.4) for s(C). One advantage of the study of symmetric curves C is that we can read
almost all information about C from the information about C and the intersection C N D. On the
other hand if C is defined by a polynomial h(u,g) of symmetric degree n, the degree of h in the
variable g in the usual sense is [n/2]. Thus the number of the generators of the fundamental group

71(C? — C) can be half of the generators of the fundamental group 7;(C? — C).

(A) ADMISSIBLE CHANGE OF COORDINATES.

Now we consider the change of coordinates in the base space which does not change the
symmetric degree. As degg = 2, we can not carry out a general linear change of coordinates
without changing the symmetric degree but a change of coordinates of the following type does not

change the symmetric degree of C.
®(u,9) =(U,G); U=au+pB, G=79+6u*+eu+(, a,7yeC*

In the case of § = 0 (respectively § # 0), we call ® an admissible linear change of coordinates
(resp. an admissible quadratic change of coordinates). An admissible linear or quadratic change of

coordinates changes nothing about the curve C or its complement C? — C up to an isomorphism

10
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but the lifted curves C and <I>’(5') are not necessarily isomorphic if the intersection of C and D
changes. In fact, the following proposition says that we can always put one node or cusp in cifc

and D are transverse.

PROPOSITION (3.6). (I) Assume that C and D are transverse. Then

(i) there is an admissible linear change of coordinates ® so that the curve ®(C) gets a D-flex of
order 0 in the new coordinates and

(ii) there exists also an admissible quadratic change of coordinates ® so that ®(C) gets a D-flex of
order 1 in the new coordinates.

(II) Assume that C has a single D-flex of order 0. Then we can change this flex into a D-flex of
order 1 by an admissible quédra.tx'c change of coordinates.

(IIT) The above changes of coordinates can be done in a family of admissible change of coordinates

®, with ®, being identity.

PROOF: Let P € C be a regula.f point where %(P) # 0. Then the tangeﬁt line Lp at P can
be written as ¢ — au + 8 = 0. For almost all P, the intersection multiplicity of C and Lp is 2.
So assume that u(C,Lp; P) = 2 and let ®(u,g9) = (U,G) where U = u,G = g — au — § be new
coordinates. As u(®(C),D;®(P)) = u(C, Lp; P), it is obvious that $(C) gets a D-flex of order
0 in this coordinates. This proves (i). For the assertion (ii), we consider a quadratic change of
coordinates ®(u,g) = (U,G) where U = u,G = g — yu? — au — § where g = au + [ is the tangent
line of C at P. Let E = {g — yu? — au — § = 0}. It is easy to see that there is a unique vy € C
such that u(C, E;P) > 3 and the equality holds for almost all P. We assume u(C,E;P) = 3 and
we consider the above quadratic change of coordinates. Then &(C) gets a D-ﬁex of order 1 in this -
system of coordinates. This proves the assertion (ii). If C has some nodes or cusps before the above
change of coordinates, we can choose P € C so that the tangent line Lp or parabola E does not
pass through the singularities. Assume that D is simply tangent to C at (a,0). Then we can take
a quadratic change of coordinates U = u, G = g + B(u — )? for a suitable 8 to change this D-flex
of order 0 into a D-flex of order > 1. If P is not generic in the sense of (I-ii), we take the sinrilar
quadratic change of coordinates centered at a sufficiently near regular point P’ € C. The assertion

(II1) is almost trivial. Q.E.D.

11
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Now we study several examples of cuspidal curves of degree n for small n in detail. A symmetric
curve of degree 3 with one cusp is simply given by the lifting of a curve C' : h(u,g) = 0 with one
D-flex of order 1. For example, we can take C = {h(u,g) = (u + 1)g — v?*}.

(B) MAXIMAL CUSPIDAL CURVE OF DEGREE 4.

We first construct a curve A = {h(u,g) = 0} of degree 4 which has 1 cusp singularity at
w € A— D and a D-flex w' € AN D of order 1. In the notation of Corollary (2.11), A has the
invariants s = 1 and 3 = 1. For such a curve, we have s(A) = 3 and the above Table (3.A) says
that A is a rational curve. The determination of the defining polynomial h(u, g) is much simpler
if we choose the singular point and D-flex point in special position. Thus we take w = (1,1) and

w' = (0,0). We first consider the condition for w to be a cusp singularity. Write first

37 : h(u,g) = hgy(v) + hezy(v)(g — 1) + 7(g - 1)?

where {h(;(u); i = 2,4} are polynomials of u with degh(;) < i. As w = (1,1) is a singular point of

A, we have
dh,
(3.8) hay(1) = —EL(1) = ha(1) =o.

The condition for w being a cusp is :

(39) ) (w) = 220 1), (%‘%(1)‘)2 ~o.
The condition (3.9) is a quadratic equation. By (3.8), we can write
(3.10) haay(u) = (u— 1)} (au? + bu+¢), hy(u) = (v - 1)(du +e).
Then (3.9) is equivalent to: |

4(a+b+c)y -.(d+ e)2 =0.
Now the condition that u(A, D;w') = 3 is equivalent to val h(u,0) = 3. Thus

c+e+"y=_0, —2¢+b+d—e=0, a—2b+c—-d=0.

The solution space is 1-dimensional. For instance, we can take
(3.11) A:h(u,g)=(u—-1>@Bu+5)-6(u-1)%(g-1)~ (g -1)* =0.
Figure (3.B) shows the real plane sections of A and A respectively.
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Figure (3.B) A: left, A: right

Now we consider the fundamental groups m1(C? — A) and 7;(C? — A). Zariski claims in [Z1]
that three cuspidal curves of degree 4 are the exceptional rational curves whose complements have
a non-commutative fundamental group of order 12. We will reprove this assertion. In fact, as
the moduli space of curves of degree 4 with three cusps is irreducible (see Appendix (3.A)), the
fundamental group of the complement of any curve of degree 4 with three cusps is isomorphic to

the group described in.the following.

THEOREM (3.12). The fundamental groups m;(C? - Z) is isomorphic to the group

(p: & pEp = EpE, p* =€)

and 7, (P? — A) is isomorphic to the finite non-abelian group of order 12:

(0, & pkp = EpL, p*E2 = e).

PROOF: We consider the fundamental group m;(C? — A) and 7;(C? — A) simultaneously. Let
q: (C?, A) — C be the projection into the u-coordinate and let §: (C?, A) — C bé the composition
@ = qop. We consider the pencil {g~'(a);a.€ C} and {i‘l(a)_; a € C}. There are only two critical
values u = 1/3 and u = 1 for ¢: C? — A — C. As h(u,0) = u3(3u — 4), we get two more critical
values u = 0,4/3 for the pencil {§"(a)}. See Figure (3.B). We take a system of generators £;, &
for m(C? — A), in ¢7*(1/3 — £) where ¢ is small enough. As a system of generators for ;(C? — A),

we take p1,p2,p},p5 as in Figure (3.C). For the simplicity of Figures which follow, we assume
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hereafter every small loop is oriented counterclockwise unless otherwise stated. The monodromy

relation around u = 1/3 gives the relation :

(B1)

{ =6 for A
PL= P2, PL=P; for A.

Figure (3.C) (u =1/3 —¢)
Thus we have that 71(C? — A;wg) & Z. The monodromy relation. around u = 0 for A gives the

following cusp relation for A:

(R2) P1P1P1 = P1P1PY-

For the sake of the calculation of the monodromy relations around u = 1 and u = 4/3, we show
in Figure (3.D) how the two intersection points A N ¢~1(u) (resp. the four intersection points

AN§(u) ) move homotopically when « moves from u = 1/3+ctou=1—c¢.
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Figure (3.D)
Fromu=1/3—-¢ctou=1/3+¢orfromu=1—¢tou=1+¢, umoves on the circle |u—-1/3| =¢

or |u — 1| = ¢ clockwise. The essential point here is that two points of ¢g~1(u) N A (resp. four
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points §~1(u) N A) do not cross the real axis (resp. the real axis and the imaginary axis) during
the motion of u from 4 = 1/3+¢ to u = 1 — ¢ and they are.symmetric with respect to the real axis
(resp. the real axis and the imaginary axis). Figure (3.E) shows how our generators are deformed

in the fibers §~1(1 — ¢) and §~1(4/3 - ¢).

7 (1-¢) 4(4/3—¢)

Figure (3.E)
Strictly speaking, each loop in a different fiber has a tempor'a.ry base point in that fiber. This base
point is joined to the original base point through the triviality of the fibering structure over the
fixed path. Thus the monodromy relation around u = 1 can be easily computed as:

(&) { p201P2 = Pip2P}

(P p101)P2 (™" p101) = P01 101 )P}
It is easy to see that these relations are derived from (R;) and (Rz). Finally the monodromy
relation at u = 4/3 gives
(Rd) P2 = (P P1p1 )P p1p1)
which reduces to p} = (p})? by (R1) and (R;). Thus writing p = p; = p2 and € = p} = pi,
71(C? — A) is isomorphic to the group

(b &ipbp = £pt,p* = €7)
as desired. For the fundamental group 71 (P? — A) we add the vanishing relation of the big circle:
© papr1pipy = e. Thus m1(P? — A) is represented as
(p:€:pkp = Ep,p* = 2,07 = ¢).
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Now the relation p? = £2 is derived from the other relations as

= (pp)* = (¢pt)* = €.

This is a finite non-abelian group of order 12 which is studied by [Z1]. Q.E.D.
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