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§0. Introduction
This is a'joint work with Antonio Lanteri.
The linear system IKX+C| “adjoint” to a curve C on a

surface X has played an important role in understanding the
geometry of X since the early days of surface theory. The

adjoint bundle KX+L to a very ample line bundle L on a smooth

complex projective surface X was investigated in modern terms
by Sommese [S] and Van de Ven [VdV2](also, see [SVdV]l). The
study of KX+L was made in [LP] when L is simply supposed to be

an ample line bundle. Recently, several authors ([F51, [W]1,
[YZ]) have dealt with a generalized polarized pair (X,§€)
consisting of a smooth complex projective variety X and an
ample vector bundle € on X, and have investigated the nefness

and the ampleness of the adjoint line bundle KX+det €. In

this paper we treat an ample and spanned vector bundle € of
rank » (r z 2) on a smooth complex projective surface X, and

study some properties of the adjoint bundle KX+det €.

Precisely, we ask the following

Questions. (a) When is Kx+det € spanned ?

(b) When is KX+det € very ample ?
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We can obtain a complete answer to (a) by using Reider’s
method [R]1. In fact. we will prove‘the

Theorem A. Let € be an ample and spanned vector bundle

of rank r > 2 on a smooth complex projective surface X. Set L

= det 8. Then K.+L is spanned unless (X,€) = (Pz,opu)“’z).

The same method also enables us to give a partial but

satisfactory answer to (b). The precise statement of our
result is as follows:

Theorem B. Let € be an ample and spanned vector dbundle

of rank r > 2 on a smooth complex projective surface X. Set L

= det € and assume LZ > 9. Then KX+L ig very ample unless

(X,8) is one of the following.

(1) X is a‘EJ—bundle over a smooth curve C and SF =

o (1)®2 Jor any fiber F of X — C.

F
®3

2
(2) (X.8) = (P ,0,(1)77).

R

(3) (X,¥)

R

2
(Pz,oP(Z)wP(l)).
(4) X,8) = (P ,Typ).

Note that this theorem proves the 2-dimensional part of

the conjecture (2.6) in [LPS] since L2 = 9 in the three cases
(2), (3) and (4). By the way we notice that the higher
dimensional part of it should be restated in the following

form.

Conjecture. Let € be an ample and spanned vector bundle

of rank n > 3 on a smooth projective wvariety X of dimension n.



Let L = det € and assume Lt P (n+1)n+1. Then KX+L is very

ample unless X is a Emrl—bundle over a smooth curve C and

2 = GF(1)®" for any fiber F of X —s C.

This paper is organized as follows. In Section 1 we
review basic results. In Section 2 we prove the Theorem A.

The proof of Theorem B occupies Section 3.

We would like to thank Professor T. Fujita for many
valuable comments in preparing this paper. Without his help,

we could not have completed the proof of Theorem B.

We will work over the complex number field. Basically we
use the standard notation from algebraic geometry. The

canonical bundle of a Gorenstein variety X is denoted by KX‘

The words “vectbr bundles” and “locally free sheaves” are used
interchangeably. The tensor producté of line bundles are
denoted additively, while we use multiplicative notation for
intersection products in Chow rings. The numerical
equivalence is denoted by =, A vector bundle is called
spanned if it is generated by its global sections. A
polarized surface is a pair (X,L) consisting of a projective

surface X and an ample line bundle L on X. The A-genus A(X,L)
of the polarized surface (X,L) is defined by A(X,L) = 2+L2—
hO(L). The sectionael genus g(X,L) of the polarized Gorenstein
surface (X,L) is given by the formula 2g(X,L)-2 = (KX+L)L. A
polarized surface (X,L) is said to be a scroll over a smooth

curve C if X is a Eﬂ—bundle over C and LF = 1 for any fiber F
of X — C.
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§1. Preliminaries
This paper relies heavily on Reider’s method, which we
recall first in the following form.

Lemma 1 [R]1. Let N be a nef line bundle on a smooth
projective surface X. ‘

(1) 1If Nz > 5 and KX+N is not spanned, then there exists
an effective divisor E satisfying either

NE =0, E° = -1 or NE = 1, E® = 0.

(2) 1If N2 = 9 and KX+N is not very ample, then there

exists an effective divisor E satisfying one of the following
conditions.

NE = O, Ez = -1 or -2;
NE =1, Ez =0 or -1;
NE = 2, E2 = 0;
N = 3F, E2 |

= 1.

Second we use WiSniewski’'s idea ([W]l, Lemma 3.2) to prove

a result on ample and spanned vector bundles on curves.

Lemma 2. Let € be an ample and spanned vector bundle of

rank r >z 2 on a projective curve C. Take arbitrary points pl,

pz, - ,pr_l of C with Ky = multpi(C).
+—-1
(1) If C is rational, then ¢, (%) 2 (Z p)+1.

i=1
1

A o

(2) If C is non-rational, then 01(8) = (ES;%)+2.
t=1

Proof. We proceed as follows.

Step 1. Let F be the fiber of the projection P,(8) —

C over xeC and go:IPC(S) — P:i= P(HO((S (1))) the finite

P (8)
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morphism associated with ‘@E%:(E)(l)"

Step 2. Fix a point, say pl. By changing pi's if

necessary, we may assume

eF, ) =@F, ) = =@(F, )
and
@(Fpl) * w(Fpi) (J <t gr-1).
Then we can find a hyperplane H in P containing m(Fp ) but not
, 1
@(Fp ) (j <1 g r-1); there is, accordingly, a section s of €
i
with (s)o =2 {pl’ p29 "t pj} and (8)0 o {pj‘i'l. "t pr—l} =
a.
Step 3. Set 2 = {pl’ pzt " pj} - {p€Sing(C)lpe(s)0}

and let f:é — C be the normalization of C at every point of

5. We let Z be the scheme of zeros of f*sel(C,rf"€). Then f*s
induces the exact sequence

0 — Ox(2) — e — % o0
on &, where € is an ample and spanned vector bundle on C of

rank r-1. Thus 01(8) = length Z +cl(§) 2 (§5u1)+01(§).
i=1
Step 4. Add smooth j-1 (j = 1) points of C to f’?(pj

-1 -
» I (pr—l) and call them by

+1)f
| ) pr—Z'

Step 5. Apply steps 1 - 4 to € and continue in this
manner.

We consider the case r = 2. If C is rational (resp. non-

rational), then 01(§) > 1 (resp. 2 2) because € is an ample
and spanned line bundle. From this, our result follows
immediately.
When r > 2, we use induction on r to get our result.
Q.E.D.
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Corollary 1. Let € be an ample and spanned vector bundle
of rank r = 2 on a projective variety X. Put L = det €. Then
X has no effective 1-cycles E such that LE < r.

Corollary 2. Let X, € and L be as above. If an

effective 1-cycle E on X satisfies LE = r, then E Eﬂ.

Finally we prove a slight strengthening of WiSniewski’s
theorem ([W], Theorem 3.4) which will be used later on.

Lemma 3. Let X be a smooth projective wvariety of

dimension n > 1 and € an ample and spanned vector bundle on X

of rank r > n. Assume cn(E) =1. Then (X,€) = (E;1J2P(1)$n).
Proof. When r = n, this follows from [Wl, Theorem 3.4.

We claim that cn(g) can never equal 1 for r > n. To see this,

suppose to the contrary that cn(E) = 1. Since € is spanned,

by the same argument as in ([0OSS], Ch. 1, Lemma 4.3.1) there

is an exact sequence of vector bundles
O——>C9X®r_n——>8———>3*'———->0,

where F is an ample and spanned vector bundle on X of rank =n.

Then cn($) =c¢ (& = 1. Consequently (X,F) =z (Em,ofxl)$n).

(
n
We have also 01(8) = 01(3) = n and hence, by restricting € to
any line 1l in Eﬂ, 01(81) = n, which contradicts Corollary 1.

Q.E.D.

§2. Proof of Theorem A
Theorem A. Let € be an ample and spanned vector bundle

of rank r > 2 on a smoolh projective surface X. Setl L = det

€. Then KX+L is spanned unless (X,€) =~ (Ez,ofxl)ez).
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Proof. Let P = I%K(S) be the associated projective‘space

bundle and H the tautological line bundle on P. Then H is

ample and spanned since so is &€ Set.d = Hr+1.

(2.1) First note that bz(P) = bz(X)+1 2 2. We claim

that d > 3. To see this, suppose to the contrary that d < 2.

If d = 1, then (P.H) = (P’"“,@P(l)), which contradicts b, (P)

> 2. If d = 2, then P is either a smooth hyperquadric in

dPr+2 or a double cover of ngd’ Applying [L1, Theorem 1 to

the latter, we have bZ(P) = 1 in both cases, a contradiction.

(2.2) VWe consider the case 02(8) 2 2. Combining the
formula Lz = 02(8)+d ([F31, (2.2)) with (2.1) gives Lz 2 5, so

that Lemma 1 applies; but the exceptions to the spannedness of
KX+L are excluded in view of Corollary 1.

(2.3) Since 02(8) > 0 by [BGl, we have only to discuss

the case 02(8) = 1. From Lemma 3 it follows that (X,8) =
(PZ,C’P(I)QZ). Then KX+L = OP(-I) is not spanned, so we are

done. Q.E.D.

§3. Proof of Theorem B
Theorem B. Let € be an ample and spanned vector bundle

of rank r > 2 on a smooth projective surface X. Set L = det €

and assume Lz =2 9. Then KX+L is very ample unless (X,€) is
one of the following.
(1) X is a Eﬂ—bundle over a smooth curve C and SF =

a:ll?u)"’2 for any fiber.F of X — C.

2 @3
(2) (X,¥) (P,0p(1)77).

R

(3) (X.,¥

IR

(P%,0,,(2)80 (1)) .

y
(4) (X8 = (P',Tp).
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Proof.» Assume that KX+L is not very ample. Then by

Lemma 1 and Corollary 1, there exists an effective divisor F

satisfying one of the following.

(i) LE = 2, E2=0;

(it L =3E, E° = 1.

(3.1) In case (i), combining LE = 2 with Corollary 1 and

Corollary 2 gives r = 2 and E ~ EJ. Since E2 = 0, X is ruled

and F is a fiber of the ruling. We use Corollary 1 again to
see that every fiber F is irreducible and reduced. Thus X is

a Eﬂ—bundle over a smooth curve C and &€ =~ OF(1)®2.

F
(3.2) In case (ii), E is ample and so K is irreducible

and reduced. By Corollary 1 LE = 3 implies r < 3. If r = 3,

then from Corollary 2, E =~ Eﬂh By the classification theory

of polarized surfaces of sectional genus zero ([LPl1, Corollary
2.3), we have two pogsibilities:

(3.2.1) (X’OXA(E)) > (PZ,OP(i)), i=1,2.

(3.2.2) (X,OX(E)) is a scroll over Eﬂ.
In case (3.2.1), 1 =1 and L = GEA3). Consider the vector
bundle 8®OEJ—1). This is trivial when restricted to any line

in Ez. Therefore itself is trivial ([0OSS1, Ch. 1, Theorem 3.

®3

2.1), and hence € -~ GEJI) In case (3.2.2), we can write X

= IP(¥F) for some normalized vector bundle F of rank two on EJ.

Moreover, O,(E) = H($)+p*B for some line bundle B on Eﬂ,

(
X
where H(¥) is the tautological line bundle on X and p is the
projection. Set e = —cl(ﬁ) and b = deg B. Then b > e > 0 by
the criterion for an ample line bundle (fH1, Ch. 5,

Proposition 2.20). On the other hand, since Ez = 2b-e =1, O
2 1-b = b-e > 0. This is absurd.

(3.3) In the following we can assume r = 2. We claim



that the arithmetic genus g(E) = g(X,OX(E)) £ 1. As in step 1
of Lemma 2, let Fx be the fiber of the projectioniPE(EE)-—e E

0 -
ovgr xeE and qo.PE(SE) — P:= IP(H (OPE(QE) (1))) the finite
morphism associated with |O (1)1. We set Sing(E) = {p,.,

Py (%) 1
' pt} and take a point peF with @(Fp) * m(Fp ) (114 gt).

i
Then we can choose a hyperplane H in P containing ¢(Fp) but

not m(ij) (1 i1 g t); that is, there is a section s of
i

EE with Z:= (s)oap and Z ~ Sing(E) = @. This section s gives

the exact sequence

0 — 0(2) — & — Q@ — 0

on E, where @ is an ample and spanned line bundle on E. We
may assume deg @ = 2, since deg @ = 1 implies £ ~ Eﬂ. Thus Z
= p and LE = Q#OE(p). Consider the exact sequence

0 —Q —L,—L — 0.

E p ;
Since LE is spanned, HO(LE)-—e Lp is surjective and so hO(LE)
= hO(Q)+1 2 3. On the other hand, since A(E,LE):= l+deg LE—

hO(LE) = 4—h0(LE) = 0 ([F11, Corollary 1.10), we have hO(LE)

£ 4. Assume first hO(LE)
1

P' ([F11, Lemma 3.1). Assume hO(LE) = 3. Then A(E,Ly) =1,

= 4. Then A(E,LE) = 0 and hence E ~

which implies g(E) = 1 by (F21, Proposition 1.5, and our
asgsertion is proved. Therefore the classification theory of

polarized surfaces ofrsectipnal genus < 1 applies.
(3.4) Now suppose g(Xﬁﬁx(E)) = 0. Then the same

argument as in (3.2) shows (X,L) =z (PZ,O 3)), hence € is a

(
P
uniform bundle of splitting type (2,1). By the classification
theory of uniform bundles on Eﬁ [VdAV1]l, € is either the

direct sum of two line bundles or the twisted tangent bundle.
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Consequently € = OFAZ)eOEAI) or TE”
(3.5) To complete the proof of Theorem B, we discuss the
case g(X,OX(E)) = 1. There are two possibilities ([LP1,
Corollary 2.4):
(3.5.1) X is a Del Pezzo surface and GX(E)‘= —KX.
(3.5.2) (X.OX(E)) is a scroll over an elliptic curve C.

In case (3.5.1), KX2 = 1 and L = —3KX. In case (3.5.2), with
the same notation as in (3.2.2), we have e = -1 and b = O.

Thus F# is indecomposable and L = 3H($)+p*B for some line

bundle B of degree O on C. In sum, (X,L) is one of the
following:

(1) X is a Del Pezzo surface with KX2 =1, eand L = —SKX.
(2) X

IPC($) Jor some indecomposdble vector bundle F
of rank two on an elliptic curve C with 01($) =1. L = 3H(F)

R

+p*B fdr some line bundle B of degree O on C, where H(¥F) is
the tautological line bundle and p is the projection X — C.

In the rest of this paper we show that neither (1) nor
(2) occurs. In case (1), there exists a smooth elliptic curve
Cel—KXI. In case (2), since F is normalized, there is a
section C (by abuse of notation) such that Ce|H(F)|. We
recall the following ' ' |

Lemma (3.6). Let € be any ample vector bundle on an
elliptic curve C. Then hO(S) = 01(8) and hl(S) = 0.

Proof is easy and well-known. '

(83.7) We set

P = }PX(E) ,

H = the tautological line bundle on P,

w:P — X = the projection.
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Then we have the intersection table

02(8)+H3 -1 -9,

Hr*N = LN,

He Ne* N = NN,
where N and N are line bundles on X.

(3.8) Consider the exact sequence

0 — 8®C9X(—C) — »8 — SC — 01.

We have h0(8) =-h0(H).;'4 because H is ample and spanned. On
the other hand, by (3.6), ho(gc) = cl(gc) = LC = 3 in either

case, and so it follows that ho(Eeax(—C)) > 0. Now let

De|H+n*0X(—C)|. Then 0 < H°D = H3+H2w*@x(—C) = 9-0,(8)-LC =

6—02(8); thus 02(8) < 6. FKurthermore, by Lemma 3, 02(8) > 2.
We proceed now by cases.
(3.9) :02(8) =6

Let D be a divisor in the linear 'system |H+n*OX(—C)|;

since H?D = 0, D = 0. Thus H ='n*OX(C), a contradiction.

(8.10):c,(8) =5

ZD = 1, which
implies that D is irreducible and reduced, so that (D,HD) =

(IPZ,OLP(l)). Since DF = 1 for any fiber F ofvn, by

Let D be any member of |H+n*0x(—C)|. Then H

restriéting n to D, nD:D —s X is a birational morphism. Thus

X Eg; a contradiction.

(3.11):0,(®) = 4

R

Let'ue1H+n*0X(—C)|.- Since H?
possibilities:

(a) D = 2D, where I is a prime divisor on P.

D = 2, we have three

(b) D = D +D”, where D’ and D’ are mutually distinct
prime divisors on P.
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(¢) D is irreducible and reduced.

In case (a), for any fiber F of m, 2D'F = DF =1, a
contradiction.

In case (b), for any fiber F of », D)F +D”F = 1. Thus we

may assume D'F = 1, and hence nD,:D' — X is a birational
morphism. Since sz' =1, (U .HD,) = (PZ,OP(I)).‘ 80 X = JPz.

This is impossible.
' 2

. 0 0
In case (¢), since A(D,HD) = 2+HD -h (HD) = 4-h (HD) =0

([F11, Corollary 1.10) and HD is spanned, we have 3 g hO(Hb)
< 4.

Assume first hO(HD) = 4. Then A(D.HD) = 0. We combine

this with HDZ = 2 to see that D is isomorphic to a

hyperquadric in Eﬁ ([F11, Theorem 2.2). If Sing(D) = ¢, then
1
D

P x]Pl. Since n.:D — X is a birational morphism, X =~

D
P xIPl, a contradiction. If Sing(D) = &, then D is a quadfic

cone with vertex p; If we blow up the point p, then we obtain

=

a birational morphism ¥, — D, where 2, is the second

2
a contradiction.

2

Hirzebruch surface. Therefore X ~ 22,

Assume hO(Hb) = 3. Then A(D,HD) = 1. We compute g(D,

HD). In case (1), Zg(D,HD)—Z = (KD+HD)HD = (KP+D%H)HD = (-

* * *
2H+m (KX—3KX)+H+n KXfH)H(H+n KX) = 2. In case (2), Zg(D,Hb)—Z
= (=2H+n™ (~2H(F)+p" (det F)+3H(F)+p"B)+Hin™ (~H(F))+H)H(H+n'™ (-H
(¥))) = 2. Thus in either case g(D,H

D) = 2. If we apply
(F4]1, Corollary 6.13 to (D,H

D)’ then we deduce that the

morphism ¢:D ——¢4P2 defined by IHDl is a double covering of

1P2 and that the branch locus of ¢ is a curve of degree 6.

* % 2
Therefo;e KD = Q £2{P+go (BIP(3) = OD. We comput: KD . In case
* * *,,
(1), KD = (KP+D)\D = (-2H+w (KX—SKX)+H+n KX) (H+m KX) = -1.
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This is absurd. In case (2), KDZ = (-2H+n™ (~2H(F)+p" (det F)

+3H (F)+p*B) +H+n™ (- (5))) 2 (Hen™ (-H(F))) = -2. This is
impossible.

(3.12) VWe study the remainder of the case (1). We need
the

Riemann-Roch theorem. Let & be a vector bundle of rank 2

on a smooth projective surface X. Then

X(@ = — (0] (K)o ()=, (D421 (O .

We have 01(8®2K
Riemann-Roch,

0 1
2h (8®2KX) = 4—02(8)+h (8®2KX),

2 0 0
inasmuch as h (8®2KX) = h (KX®§®(—2KX)) = h (8®2Kx) because €

= K, and 02(8®2K

%) X = c,(8)-2. By

x)

~ EoL. Assume first c,(€) = 3. Then hO(SQZKX) > 0. Let

De|H+n*(2KX)|. Then HZD = 0 and hence, by the same argument

as in (3.9), this is impossible. Assume 02(8) = 2. Then we

have also h0(8®2KX) > 0. For any member D of |H+z*(2KX)I. HzD

= 1. But then the same argument as in (3.10) applies to D,
and again we have a contradiction.

(3.13) Finally; we deal with the rest of the case (2).
Since LF = 3 for any fiber F of p, EF = OF(Z)QGF(I), so S:=
p*(8®(—2H($))) is a line bundle on C. We have an exact
sequence

(3.13.1) 0 — 2H(F)+p"S — € — R — 0 |
for some line bundle R on X. Then R = det 8—2H($)—p*S = H(F)
+p*T for some line bundle T on C with t:= deg T (= -deg S).

Furthermore, 02(8) = (2H($)+p*S)(H($)+p*T) = t+2 and Rz = (H
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($)+p*T)2 = 2t+1. Assume 02(8) = 2. Then t = O and Rz =1.

Since R is ample and spanned, (X,R) = (IPZ,OIP(l)), a

contradiction.

. Now we study the case 02(8) = 3. The following argument
is due to T. Fujita. We have deg T = -deg S = 1. Fix a point
poeC such that det F = Gb(po). Then, for any aePicO(C), there
exists a unique point paeC such that a = Gc(pa—po). Since

hO(H($)+p*a) = 1, there is a unique effective divisor CaelH($)
+p*a|. Since CH(F) = (H(F)+p @)H(F) = 1 and H(F) is ample,
Ca is irreducible and reduced. Moreover, for any fiber F of

o2, CaF = 1. This implies that Ca is a section of p. Note
that X = tJCa (aePicO(C)). Ca gives the exact sequence

0 — p (-a) — H(F) — HF, — 0.
(24
Taking P, Ve have

() 0— -a—F —p (HEF ) — 0,
(24

and hence p (H(F), ) = O,(py)+a = 6,(p,). LetF = P_I(P ).
o

Then (3.13.1) can be writtén as
0 — OX(ZCO—Fa) —_— OX(CO+FB) — 0

for some a,ﬁePicO(C). Let eeHl(OX(CO—Fa— )) be represented

"6

by the above extension. We claim that elc = 0 for some .
0 Y

vePie (C). To see this, first consider the exact sequence
(3.13.2) 0 — OX(CofFa—FB—Cy) — OX(CO—Fa—Fﬁ) — GCT(CO_

Fa— l8) - 0.

Note that Ob(py_pbfpﬁ) = OC(—p—7+a+ﬁ)' We have

B (04 (CyF o\ FgC.)) = B (Op(~b,pg)=7) = O
and
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(0, . o) = B O, 0,05)) = B Oplb_g)) =

0.
Thus the long exact cohbmology sequence associated to (3.13.2)
gives |
1 :
(3.13.3) 0 —- H (Oc(—pa-pﬁ)—y) = C

- H?(@X(co—ﬁa—Fﬁ)

)se

A
1
T (Op (b8 = €

Now we have
B! (Op(~bybg) 1) = B (Op(-2ybgt2op.)) = H (Op(-py, 5
py))
and
B! (04 (CyF,Fg) = H' (380,(~p,mbg))
Since ¥ = é@@ (po), (3.13.3) is the dual of

0 — Ho(oc(p_7+a+ﬁ))

Hy 0
T 1 (Fe0, (5, 0)

+6 Py )) = 0,
which corresponds to the exact sequence of global sections
associated to (* ) tensored by 0 (p ﬂ)’ thus the image Im(ﬂf)

—-)H(@ (p

is isomorphic to the subspace of sections of H($)®0X(Fa+ﬁ)

vanishing along Cy' On the other hand, the family {C } covers

X. Therefore Im(ﬂ ) =€ aptually moves in H0(3®0 (p ﬁ)) as vy

moves in Plc (C). Let Ez (H ($®0 (p B)) 0)/@ Then pu:

Pic (C)sy b [Im(ﬂ )]efz defines a curve Im(ﬂ) in Eﬂ On the

other hand, l:= (Ker(e)—O)/w is just a line in.Pz Thus Im
() ~n Ll = @. This implies that e-yy = 0 for some yePieO(C).
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elc = 0, and we are done.
Y

So OC (ZCO—Fa) is an ample and spanned line bundle on

i.e., A (e) =
Y()

R

C7 for some y. Since deg (ZCO—Fa) = (ZCO—Fa)CYV= 1, C

o
Cc
y 14

EJ. This is impossible; thus our Theorem B is proved.

Q.E.D.
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