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PSEUDODIFFERENTIAL OPERATORS WITH ANALYTIC 35
SYMBOLS AND THEIR APPLICATIONS

Tran Duc Van
Institute of Mathematics
Hanoi, Vietnam

This paper contains an cxposition of the ideas on the
use of infinite order differcential operators which are
local representatives of pscudodiffercential operators
with analytic symbols to provide a convenient method
for investigating partial differential equations and
their initial and boundary wvaluc problecms.

I. Introduction. The theory of pseudodifferential

operators has extensive and fruitful applications to partial
differential equations (PDEs) and, among their number, to

mathematical physics (see, for example, [1-4]).

In [5] Dubinskii Yu.A. prescented a new concept of psuedo-
differential operators with constant symbols analytic in an
arbitrary domain G < RN and gave various applications to
mathematical physics. The basis of these applications is the
nonformal algebra of differential operators of infinite order
(DOIO) as the operators acting in the corresponding Sobolev

spaces of infinite order.

To illustrate the idea on the use of pscudodifferential
operators with analytic symbols (PDOAS) we consider the

Dirichlet problem for Laplace equation

2 2
(1.1) 27u :L‘izo,t>o,xe R
2 3
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u(0,x) = o(x) ,
(1.2)

]u(t,x)’ £ M 2 4+ o0 (t—=> +0) ,

where o(x) € 12( Rl) .

For solving this problem we put D < %'3/ 9x considering
D as a real parameter and find the solution of ordinary
differential cquation
2 2
£ -0U=0,00,0 =1, [U,D)] 2 m.
at?

(e}

It is easy to see, that U(t,D) = exp (-t |D] ) and,
consequently, the formal solution of problem (1.1)-(1l.2) is
presented by the formula

(1.3)  u(t,x) = U(t,D)e(x) = exp (-t IDD)o(x) ,

where D now is the operator of differentiation, i.e., D= %?/ax.

The operator exp (-t |D|) has got the symbol exp (-t l%]),
which has a singularity at ¥ =0 . At that time, the formula

(1.3) has meaning if we put

Dl 9(x) = Do (x) - Do_(x) ,

where
(1.4) o (x) = = S 2T XFax .
- 21 1
Ry

(Here Et'g) is denoted the Fourier transformation of ¢(x)).

Then the operators exp (~+ ]DI) acts on ¢(x) by the formula
exp (=%]D])e(x) = exp (-tD)e (%) + exp (tD)o_(x) ,

that is
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exp (=t {DD)o(x) = ¢ (x+it) + ¢_(x~it) .

By the same token the solution of (1.1)-(1.2) is written in

the form

u(t,x) = @+(x+it) + ¢_(x-it) ,

where the functions ¢, are defined by (1l.4)..Substituting
these expressions (1.43 into the obtained formula we have got
the classical Poisson's integral
u(t,x) = & g o(y)dy
T2 2
R T+ (x-y)
Thus, the solvability of (1.1)-(1.2) is established.
Note that the domain of analyticity of the symbol
exp (-t |¥l) consists of two components Ri and EE , which
correspond two function spaces, where the operator exp (-t%(D])
acts invariantly as an operator of translation on x it, that
is as a differential operator of infinite order. Thus, in local
the operator exp (-t{D]) is a differential operator of infinite
order acting in corresponding suitable function space and, in

this case, DOIO is an instrument of investigation.

The basis of our consideration is the nonformal algebra
of DOIO, as the operators acting in the corresponding Sobolev
spaces of infinite order. This makes it possible, by considering

0/9x as a parameter in the PDE
(1.5) L( /3% ,9/dx)ulx,t) = £(x,t)

to solve (1.5) as an ordinary differential equation, to which

are adjoint the initial or boundary conditions.
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Considering a PDE in the Sobolev space of infinite order
we do not require that this equation has any definite type.
The type of the equation has no role. We emphasize, however,
that in the process of solving of problems that are well-posed
in the spaces of finite smoothness, the Sobolev spaces of
infinite order play an intermediate role, being merely an
instrument of the investigation. But in the solution of problems,
that are ill-posed in the sense of Hadamard-Petrowskii, the
introduction of Sobolev spaces of infinite order constitutes
the very essence of the approach. It means that the problems
which are noncorrect in the classical sense are correct in these
spaces.

To illustrate this method we consider the Cauchy problem

for the heat inverse equation

2
(1.6) 29-4-1—“- =0, u(0,x) =0(x) , t >0 , x& [Rl
At p) 2
X
Pubting p = 9%/ x> , we can find that
2,2
u(t,x) = e"Jba /dx o(x) .

For any t > O +the operator ecexp (-t 32/ 9:{2) is a ‘PDO, the
symbol of which is a(t,%) = exp (t }2) y T e lRl. According
to Theorem 4.1 in [5] and Theorem 2.3 below the operator

exp (-t'32/”6x2) gives isomorphisms

exp (-t 3%/ 9%%) : H;°-> Ly( rl) ,

exp (~622/3%2) + W ORBY) — W (RY)

e

where
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.
H = {cp(:c) eilg( R , |l e®S w(?)“Lé( gy <t t>0};

/
W+o°={ o(x) € &f , Supp ’5(3') is compact} s W= (W+°o)) .

c s . =9 Foo
We remark that, for any initial function ¢(x) e Hy (o(x)e W )
there exists one and only one solution of the Cauchy problem
. . 1 +o0
of the equation (1.6) in the sense of L2( R™) (W ) . After
some simple .calculations one can get that for any w(x)<§,H;°
(or o(x) e W+ao) the solution of problem (l.6) is given by

the formula

+00 §i§’22
u(t,x) = 1 J e 4% p(x+i¥ )dy , t>0.

2\J3Tt - 00

Thus, the technique of PDOAS and the introduction of
Sobolev spaces of infinite order are the core of described
above method : problems which are noncorrect in the classical

sense arc correct in these spaces.

In this paper we shall give a survey of our results
concerning the PDOAS, their applications to mathematical
physics and approximate methods of solving initial and boundary
problcms based on the technique of DOIO. In the next section

+ 00

we investigate the test function space W and the space

of gencralized functions W °°

and the properties of DOIOs.
In the scctions III, IV we give some applications to Cauchy
problems and boundary value problems. The last section is
devoted to describe the approximation technique based on the

use of PDOAS and function spaces of infinite order.
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II. The PDOAS and the spaces of test functions and

+o0 o0
generalized functions W (G) and W (G).

In this scection we shall state somec our and Trinh Ngoc Minh's
+ o0

results on PDOAS. Namely, we construct the function spaces W

+ o0

with the property : The PDOAS act invariantly in W and

constitute an algebra isomorphic to the algebra of analytic

functions in G .

2.1. The space in a neighbourhood of zero. Let R =

Rl,..."RN 1 0 ¢ Rj é +O<J 9 j=l,-oc’N ) bG a VeCtOI‘, alld th

Sy
We

={.§ e RY , |§jl < R. , j:l,...JJ} be a parallelepiped.

J

+
denote by W (Sg) the set of function f£(x):BY —» €

satisfying the following conditions :

to

i) £ admits analytic continuation as an entire function
CN

ii) There exist constants c,m and a vector r such that

I"R(i-e., I'-AR' Py j=l,ooo,N) aﬂd

J J

N
| £(2)] = e(1+ }z))™ exp (Z rjllm Zj') .
J=1

From the Paley-Wiener theorem it follows that f£(x)

+00
belongs to W (SR) if and only if £ e S' and there exists

~
r < R such that supp ’F(:’;') C S, , where f denotes the

+o0
Fouricr transform of f . Examples of functions in W (SR)

are

: all functions in Héo(SR) [5] 3 all functions in)??yp ,

1l p<€+90,0%y.<R., j=1,...,N [6] ; the quasipoly-

J J

nomials exp (i-Ax).Pm(x) , Ae Sg » and, in particular, the

polynomials l,x,xz,...; the trigonometric functions f]? sin X,

and fl? COS X.

1

i) ete.
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+o00
We introduce a topology in W (SR) as follows. A

+ o0
sequence fn(x) —> f(x) in W (SR) if
i) fp(x) — £(x) uwniformly on eéch compact set K < SR’ and

ii) there éxist constants c,m,r R such that
l fn(z)l < c(1l+ |z exp (z.|In z]) y  n=l,2,...

This topology possesses the properties important for us. For
+o0
example, the space W (Sg) is closed ; the imbeddings
o0 + 20 + o0
H (8g) €W (8g) and VnyPc W (Sg) ,0£y 2R, 1;_:)135@,
are continuous ; and the Fourier transformation maps W (SR)
continuously into g‘(SR) , where 3'(SR) ={ Y(%) e s',
supp ¥ < SR} with the convergence Y (%) _&_; $(%) if
and only if 1) ¢ .(¥) - Y (E¥) in S8' and 2) there exists
a compact set K < Sp such that supp ¥, ¢ K , n=1,2,...
+oo
We now proceed to consider the action of DOIO in W (SR).

Let o0
A(D) = Z a D a €€
( ) o b4 [0 4 3

jot =0

A(D) is a differential operator whose symbol
o0

<
ACE) = L a, €

|l =0
is an analytic function in SR .

THEOREM 2.1. A DOIO with a symbol analytic in SR acts
+00
invariantly and continuously in W (Sg) .

We note that the technique of differential operators of
infinite order and fine properties of generalized functions in

S' with compact support (thesc properties are established in

9



[7]) axe used in the proof of Theorem 2.1.

We further dcecnote by W"°°(SR) the set of all continuous
+ -
lincar functionals on W w(SR) . In W °°(SR) we introduce

the Fourier transformation by the formula
<B(E),0-5) € )V ntx) 000>,

o0 +o0 ~
where he W (SR) ,y P W (SR) and o(-¥%) E'(SR) ; here
(?(-E) is a generalized function acting according to the

formula
H=50, YO IE ), -5 , Y(E) eC (HD .

A rcemarkable property of functions in W-OO(SR) is the
following : F(W= (SR)) = COO(SR) , where F denotes the

Fourier transformation.

THEOREM 2.2. A DOIO with symbol analytic in SR acts

invariantly and continuously in W"OO(SR) .

2.2. Spaces in an arbitrary domain. Let G IRN be some

domain. We sct (1)
+o0 ' ~
W (G)E{f(x):f(x)es s Supp f(‘g‘)CG}.

Convergence in W*OO(G) is defined as follows. A sequence
fn(x) - f(x) in Wwo(G) if the following conditions are
satisfied /

i) fn(x) = £f(x) uniformly on cach compact set K < (RI}\IC .

ii) There cxist constants ¢ and m such that [:E‘n(x)lﬁ

(1) In the case meas G =o0 in the definition of Wwo(G)
it is further required that there exist a compact set KCG
~
such that supp f(¥) <K .
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c(1+]x])® , n=1,2,...
iii) There exists a compact set L € G such that
&mpﬁﬁE)cL,1mL2“”
It is not hard to show that any function u(x) e mf“?G)

can be represented in the form

u(xl = ZE:

+00 1
h (x)e W (8, (A)) = W (S G >8 (A
whore Uy x) i e ( Rk) ) Rk( »)

is a parallelepiped with center at 'Kk , and I is a finite

set of indices.

Further, let A(¥) be an arbitrary complex-valued
funétion which is analytic in G . It is then possible to
choose S ;(A;) so that in each S ;( A,) the function

R R* Ot
AC¥) can be expanded in the Taylor scries

(=" %]
jal= ©
“+o0
For any function u(x) e W (G) we definc the action of the

®DO0 A(D) on u(x) by the formula

G % D 7 L alAm- AD% G,
iel |uf=0 *
+o0
and by Theorem 2.1 A(D)u(x) is a function in W (G) .
Moreover, it can be shown that this definition does not depend
on the number of representing the function u(x) , i.e., the

action is well-defined.

We now denote by (W+°°(G))x the space of continuous

to0, -
linecar functionals on W (G) , and we set W a?G):(W*°°(-G))x .
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Let A(¥) Dbe a function analytic in G . We assign to it a
¢D0 A(D) acting in W —(G) according to the formula

ZADIA() ,0(x) YT B(x) ,A(-DIe(x)> , B e WOE), ¢ < W (6).

THEOREM 2.3. A ¥PDO A(D) with symbol analytic in G acts

+
invariantly and continuously in W‘”(G) (and hence also in
W"°°(G)) . Moreover, the set of all such ¥YDO constitutes an

algebra isomorphic to the algebra of functions analytic in G .

ITII. Cauchy problems for systems of PDEswith a distin-

guished variable. We consider of the Cauchy problem for any

system of PDEs of the form

3mjuj(t,x)

(3.1) + Ajkw,—;-"t—,D)uk(t,x) = By(t,x)

9 k=1

(3.2)Bkuj(o,x)/ E = op5(X) 5 k=0,1,0.. ms-1 , 3=l,..., £,

where m.-1

! i
A4y ($,9/2%,D) = EAijk(t,D)—af , D = (—i—_?- yeres=i 53-
i=o0 ot Xy Xy

the m., > 0O are integers, the A.., (t,D) are arbitrary DO

ijk
and foi.each t the symbols Aijkgt,gf) are analytic functions
of ¥ in some domain G < RN which depend continuously on
t € R' .

We cstablish well-defined solvability of problem (3.1)-
(3.2) in the spacecs Wﬁ?a) and particularly, within the frame-
work of the theory of genceralized function (W+de),W”°°(G))
any partial differential operator with constant cocfficients

also has a fundamental solubtion of the Cauchy problem.

We note that recently in a number of papers (see, for

/o
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example, [8]), solvability of the Cauchy problem for equations
of Kovalevskaya type in the class of all analytic functions (or
analytic functionals) has been established. However, it can be
shown that there exists an equation of the form (3.1) for which
the Cauchy problem cannot- be solved in the class of all analytic
functions. Therefore, the introduction of a more restricted space
(such as wH° in this paper) is essential in order to establish
well-defined solvability of the Cauchy problem for any differen-
tial equation with a distinguished variable +t .

For simplicity of the exposition we setb mj
We denote by W” “(G) the space of vector-valued functions
u(x)= (ul(x),.,ue(x)), u; (x) e W’ (@), i=l,,., , and we denotec by
ck(m yW (G)) the space of vector-valued functions u(t,x) which

= ’ j=l’.ll,

+o00
for each t € ml are vector-valued functions in W" (G) depending
continuously on t together with their derivatives through order k.

+oO +°°)'€
THBOREM 3.1. Let ¢ € W (G) and h(t,x)e CORL,W (6))

be arbitrary functions. Then there exists a unique solution of
the Cauchy problem (1), (2) in the space cm(m;,w*“”e(c)) .

THEOREM 3.2. Let ¢ e W oo (G) and h(t,x)e cocml,w‘“‘gG))

be arbitrary functions. Then there exists a unique solution of
the Cauchy problem (1), (2) in the space Cm(R "OOF(G)) .

The idea of the proof of Theorem 3.1 and 3.2 is as follows.
First of all, we observe that by Duhamel's principle it suffices
to consider the case h(t,x) = 0 . Further, the required assecr-
tions for a Cauchy problem of first order are proved by a method
analogous to that of [5] except for the uniqueness of a solution
of the Cauchy problem in the space w*°(G) of test functions.

In the present situation there arises a difficulty connected

with the fact that the Fourier transform of a function in W+a%G)

//
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can be a genuinc generalized function (for cexample, a delta
function). To prove uniqueness of the Cauchy problem in ﬁoo(G),
by means of a change of variables (see [9] or [8]) we reduce
problem (1), (2) to a Cauchy problem for a system of first

order and usc a method analogous to the familiar Holmgren method.

From Theorem 3.2 it follows, in particular, that for any

opcrator
m-1
) Jn K
(L) S a(s,0) L0
At PR k=0 }tk
a fundamental solution of the Cauchy problem exists and is

unique. It is a generalized function in W_OO(G) .

IV{ Some concrete examples

In this section’ we show that the previous results can be

applied to some problems of mathematical physics.x)

1. Cauchy problem for one differential equation of
relativistic quantum mechanics. In the halfplane R we

consider the problem (see J. Bjorken, S. Drell [10], Ch.I, §1)

(#.2)  u(0,x) = o(x) , x € R®

where o = h/mec  (the notations are standard). We shall

consider the operator A(D) =VI-w?A as a FDO with symbol
ACE) = 1+w? g° . Obviously, AC(E) is really analytic in

full Euclidean space mﬁ . Conscquently, we can apply the results

#) For the data from H°°§G) the examples 1-3% dare considered

in T5].

/J¢
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+00
of Section III: for any initial functions o¢(x) & W (IRB)

there exists one unique solution of the problem (4.1)-(4.2)

u(t,x) = exp {-i’—i;\} I- sz}(p(x) .

2. Cauchy problem for the Laplace equation. In the half-
plane IRE =.{ t >0, xe€ lRl} we consider the problem

2y . %4
2 X2

(4-5) = O ]

(#4)  u(0,x) = o(x) %% (0,%) = 9(x)

where the functions ¢(x) and Y(x) are given. Putting

p = 9/9 x we have from (4.3)

2
’au+p2u = 0 .,
42

From this we obtain the formula
u(t,x) = eitpcl(x) + e"itpcz(x) ’

where the functions cl(x) and cg(x) are arbitrary. In order
to determine these functic_)ns we use the initial conditions

(444), from which

ci(x) + cp(x) = o(x) ,

ip cl(x) - ip cz(x) = Y(x) .

After elementary calculations we get the formula

itp ~itp Jitp _ -1itp
u(’c,x) = e + e e e

o(x) +

Px) .

2ip

/3
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Taking into account the relation p =3/90x , we f£ind that the
desired solution has the form

e—ita/ax
2i9/9%

eit'3/3x+e-it'a/ax@(x)+ o10/9%_

Y ,

(4.5) u(t,x)=

or, equivalently,
(4.6) u(t,x) = [cos £9/9x]e(x) + [§-%—l}—-~{-;?i-a—-}E 1Y¥Y(x) .
id/9x
Let us clucidate what the initial functions ¢(x) and Y(x)
should be in order that the formulas (4.5) and (4.6) have a
.nonformal sense. It is obvious that the operator
oQ
. L R PN 1
elta/ax - 2 (it) 2“3
neo B At
+ o9 1
acts invariantly and continucusly in W ( R™) , morcecover, for
any o(x) :
. o0
. Lo n
oL0/0x o(x) = 2 , Ll%l QL—D o(x) = o(x+it) ,
n
n=0 ¢

dx -

+00
since any function @(x) from the space W ( Rl) is an entire
function. It follows, comsequently, that the first term in (4.5)

+o0
and (4.6) has a nonformal sense when o(x)e W (lRl)

AV, &IRAX L o(xeit) 4 o(x=it)

2

o(x)

Putting x
247t _
D 4G = fwis)ag vo
X . (o]

where ¢ is an arbitrary constant, we get that the second term
in (4.5), (4.6) is also determined for any function Y (x) e

+
W oo( lRl) ; moTrGcover,

' %
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— . it
LAt3/9x _ i8d/9x 1 s
oz WA AL

+ o0 1 “+o0 1
Thus, for any e¢€ W (R") , e W (R") the formulas (4.5)

and (4.6) give the formula of d'Alembert's type

(xeit) (i) 1 xX+it
(t,x) = o(x+it) + o(x—=1it + x Y (%) a .
o 2 2 }§—i’l: i

Finally, we note that the fundamental solution of the Cauchy
problem
2 2
3y +'3 u

=0, u(0,x) =0, iiﬂ(o,x) = 6(x) ,
M2 Ix° 2%

has got the form

Co,x) = [ SILEU0X 150y |
i9/9x

As in [5, §2] one can obtain that on test function o(x) e
+c0 1 '
w (R,
€ (x,t) = -ﬁ- [© (x+it) - O(x-it)] ),
i

where O(x X it) is a complex translation of Heaviside function.

3. Boundary valuc problem in the strip. Let G = {
“l/2 Lt <1/2 , x € Rl} be the strip of the variables (t,x).

We consider the following boundary value problem

2 2
D°u + aZ’B u o_
21;2 33{2

(4e7) 0, aett, Jal=1,

(4.8) u(1/2,x) = ¢, (x) , —%% (-1/2,%x) = ¢_(x) .

Putting %3/8}: =D <> 5 and consider two boundary value
i

problem for ordinary differential equation with the parameter ¥ :

15



1t 2 2
ui (JG,E) -a 3 ui(t,E) =0
under the boundary conditions

u,(1/2, %)

i
(o)

i, u,;,(-l/?-,g) =

0, u(-1/2, ¥)

’

u_(1/2: )

"
[

The dircct calculation shows that

0 (b, 5) = HRQHI/DE -y (4 xy  sha(t-l/2)S
+ cha ¥ = a% cha s

Consequently, the solution of problem (4.7)-(4.8) accepts a
form

u(t,x) = U, (£,D)e, (x) + U_(t,D)o_(x) =

= cha(t+1/2)D <p+(x) + sha(t-1/2)D

chaD aDchaD

¢_(x)

or,

u(t,x) = cha(1/2+t)Du+(x) + sha(:}—)l/ZE u_(x) ,

where the functions wu (x) are solutions of the equations
[chaD]ut(x) = cpi(x) .

Let a =zo+it , 0 € lRl y T € lRl . The behaviour of the symbol
cha¥ = cos ai¥ essentially depends on o . Namely, if o = O
then cos ai¥ =cos t¥ =0 when ¥ =u/2 + kT , k=0,¥1,...
In this case the domain of emalyticity of the symbol 1/cos t¥§
is G = lRl\ {1;'1(11/2 + kn )} . Thus, in the casc of wave
equation (a = i) +the Dirichlet problem has one¢ and only one
solution for any q)i(x) e’ Wioo(G) . By the classical point of

view, this problem is ill-posed.

/¢
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If o # 0, then for any o we have on the ray 3z = aX
the relation Ichz} ~ chog , and, consequently, the Dirichlet
problem is well-posed not only in the space W+°°( Rl) but also
in the space of finitely smooth functions with weight chog .
In particular, when Rea # O +the Dirichlet problem (4.7)-(4.8)
is well-posed in the Sobolev spaces HT( Rl) , i.e. well-posed

in the classical sensec.

4, In this and the following examples we consider the case

of function spaces with weights. Denote the function space

o0

5°(6) = { o(x), supp (¥) < T ,

Mu2=g1&§ﬂzf%§Mg £ +w},
§ G

h (%) = min ||3- = y 5-+= is the distance
where (% Te BG'§ MIRN 3 NIRN

from ¥ to T in. RN . We investigate the Helmholtz's equation
2
Au(x) + Walx) = h(x) ,

o0
where w is a real parameter. Let h(x) e Hj, () (or h(x)

H}w(G)) , where G ={ T e iRN , }"2 éwz} . Then the unique
solution u(x) is presented in the form u(x):[I/CAQ-sz)]h(x).

5. Consider the equation
[« &)
sin (D)u(x) = h(x) , (x) I%, G) ,
where G = [kmn, (k+1)n] , k¥ 1is an integer. Then
u(x) = (I/sin (D))h(x) .

6. Let G = -{f c B : Izl < l} . Consider the equation
R

7



Au = h(x) , h(x) eHi“(G) ,

(=0

where S)(E) = 5| fRN . Then, for any h(x) € H:t (G) there

Ry
+
exists an unique solution u(x) € H (G)

u(x) = (I/4 )n(x) .

V. Approximation methods

This section contains some our and Dinh Nho Hao's results
concerning the approximate methods of solving PDEs based on the

technique of DOIO .

The technique of DOIO has been used by many mathematicians
and mechanicians in recent years to solve broad classes of ODEs
and PDEs (see, for example [11,12]). It is this technique we
shall make use of to approximate the image of a function ¢ in
WJO?G) under a certain operator A(D) with the symbol A(¥)
analytic in a bounded domain G C RN . It is well known that
for many ODEs or PDEs the problem of fiﬁding their solutions
is reduced to thatof calculating the image of a function in
Wto%G) under a certain PDO A(D) (Scctions 2,3 above). For
example, for the Cauchy problem du _ L(D)u , u|t=0.= o(x) ,

P)
etL(D)

the role of A(D) is taken by , for the problem

L(D)u = h , the role of A(D) is taken by —%—) , etc.
L{D

Thus, our problem is reduced to that of finding a sequence
of operators A (D) with analytic symbols An(§ ) such that
for a function o(x) given in WiO?G) the members An(D)w(x)
can be relatively easily found and the sequence An(D)m(x)
rapidly converges to A(D)e¢ in a desired norm. For this purpose,

we shall make use of algebraic polynomials and trigonometric

1y
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polynomials to approximate the symbols A(% ) .

Note that our approximation methods are based also on the
approximation of smooth functions by entire functions of

cxponential type. Namely, the following asscertions are valid.

Lemma 5.1. Let f£(x) belong to Sobolev space Wi';( IRN) s
l £ p < +o0 ..Then there exists a entire function g, of
exponential type Y , g, emyp such that the estimates are
holad :

D le-gll , < &S, §o

b) For ocezf, el £ m

0% - el , - —o Z_mf(s),%

)
ym—la' lB,:'m P

where (£, --1-)p is a module of continuity, and

_Q(f(B), )%)P > 0, Vo> o0 .

Lemma 5.2. Let f£(x) e CI( IRN) . Then there exists a
sequence of entire function @yk of exponential type Vk

(g € s (IRN)) , such that for any compact K < Ry
yk ykoo

le-¢ |

0 k 900 .
gk i) 7 ’

The proof of these lemmas follows from Theorem 5.2.4 [6].

By virtue of Lemmas 5.1, 5.2 and the fact that the space
WMO( RN) contains all 7f’( y 1L £ D < oo, We can approximate
smooth functions or the fu?;lc):tions from Wll‘;( R™) by the functions
from W+°o( IRN) .

Thus, for the initial and boundary value problems, the data

4
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of which is functions of finitc smoothness, our approximation

method consists of two steps :

First step : Approximation of the smooth functions by the

400
functions from W (G)

+00
Second step : Finding approximation solutions in W (G).

We below will discuss the sccond step in detail .

5.1. Approximation of the symbol A(¥ ) by algebraic

polynomials

a) Approximation by Taylor scries

Let A( ¥) be an analytic function in
Aj={x|x e BY , |x;l2 V5, V;>0, de {1,2,...,0}}
)’—{ ’ J < j? J> y J € 3C ey ’

ACE) = Z am‘gu ) Z la,| VY < +o0

el >0 el > o

where o = (al,az,...,aN) , \V = Vl cee 'V;N is standard

multi-index notation.

We must approximate the cxpression

5Gx) = DGR = O a D%(x) , 0« W (Dy) .

jal> o

Since Zz:j laml‘va £ +o0 , there exists a vector €=(€1’52""
je|l >0

eN) where e; > 0 such that Z [. laocl (YV+ e)a4+oo . The
lel>0
function A(¥) is analytic in A\H-E , and it can be analy-

tically extended into E]V+€ =-fz,z’j = xj+iyj,]xj} < vj + ej ,
’Yal < \)J + Ej y 3 € [1,2,...,1\1]}.

The following theorem shows that the functions gnzAn(D)¢ =



95

1]

> T o . .
a,D”¢ corresponding to the Taylor polynomial An( F) =
jel £n

2 a, ‘goc of the function A( ¥ ) can approximate A(D)¢ .
el n
+00
Theorem 5.3.If ¢ € W (Ay) , then g(x) = Z aaDa(p(x)
oo lel= 0

converges in the topology of the space W (Ay) (see the
sections II and III). Further, if <pew{vp then g(x) =
2 aaDa(p(x) converges in the norm of LP( IRN) and the
lei>o0
following incqualities hold :

le i, = 1A |, < AN @ ll, « max [AC2) (1+ ) el
zeaij+e
lello = Il A(D)o || « max [ACE)IlWel, ,
[2 2 Sed, Pl
g8, 0l p = ( > I ag \J“)Ncpﬂp = max [A()] (+ P el ,
| @] > n+l 2 GBD)“_E

(n+l)
fle-Byll p « max A D0y, &5 0 as noee

redy (n+1)!

where A(V) = Zlaal YE, 1+ S (14 %l)...(l + Eﬂ))

jal=>o0 1 VN

The proof of this thcorem follows by an estimation of the
Taylor coefficients 3, of A(¥) and the Bernstein~-Nikolskii

inequalities ([6]).

Now, we consider the following Cauchy problem
28 _A(D)u =0,
PR

+o0
u‘t=o= o e W (4y) .

2/
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tA(D)

By the Theorem 3.1 we have u(t,x) = e o(x) =

[ o)
k,k

:E:: 4 (D) o(x) and this expression is correctly defined in
k=0 k!

+o0,
W (Ady) . The following theorem shows that un(t,x) =

n k,k

Z : 24 (D) ¢(x) in fact is an approximate solution of the
k=0 '
problem.

Theorem 5 M4IFf o e71tw then

. n+l L
fuCe,)-u, (6,0 1, & (ea( )] etA(.V)Ilmlfp

]

(n+1)!
luCt,.)=a (6, £ 1 (% max ACE) Y*lexp[t max ACE) ]|l ol
o 2 (Il+l)! *géAv EéAV 2

The: right hand sides tend to zeroc as n -»o0 .

The Taylor series is a good approximation only in a
sufficiently small neighbourhood of the point of expansion.
Outside of this ncighbourhood it can be a very bad approximation.

Consider, e¢.g., the Cauchy problem for the backward heat cquation

2
:é_"-l- + .’é—g = 0 ’
%t 3x2
u = sin kx e )T .
| t=0 koo
We have d2
-t —--2 o)
o] 2m
u(t,x) = e sin kx = 2:3 (Cid sin kx
n=0 m! dx2m
O
m 2\ 1.2
= ZE: =) (=k sin kx = ¢¥ sin kx .
m=0 m!

22
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n
If we take u (%,%) = 7 X gin kx .
m=0

as approximate solution, then for large numbers k +this

sequence converges very -slowly. In fact, for +t =1 we have

o0 kzm o0 k2m
[l o, (1,%)-u(1,%) || ST E s = o, K
Ex§ ) m=n+l o 00 m=n+l B!

If k = 10 , then for n = 100 +the inaccuracy of approximation
lOO101 e100

——~—— > =—— ., To improvec upon this short-
1011 30

coming of Taylor sceries we shall use Bernstein polynomials,

is larger than

Lagrange polynomials and the polynomials of best approximation

for the symbol A(%) in Ay .

b) Approximations by other algebraic polynomials

Let G ={ ¥:02 5,21, iell,2,...,N]}. We consider

the Bernstein polynomials

n n kl kp
B,(A,5) = 2| ...Z(—E,...,—--)pnklc El)...pnkN( ¥x)

kl=° kN=O n
h ( 5.) (E)Ekjcl E)'n-kj If A'e Lip, 1 f
where D ) = . Y(1- &, " e € Lip or
ij J k'j J J Mj
every variable Ej ([13], p.102) then
N E.(1- E)
[ace) - B (A, 8D ¢ 2 My ———d"
N j=1 2n

Let N=1,6G=[ab] and a=] <58 <...¢§ =b.

Set Y (B) =(§~-%)...(¥-8),

23
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S AEOY.(E)
Ln(E) =~>——‘ ‘ é L'EE

We have

1 .
RD_(E) = IA(E)—LH(E)I = )M),lW(E)I , where 0<tz«1l .

(n+1)!

If \PE(E) = '].‘D(E) is the Chebyshev polynomial of degree n
([1#], p.14 ££) , then

R (E) P IA(IH']')('tE )I ‘(b_a)ll .
h (n+1)! o2n-1

Let N=1 and G = [-1,1] and Pn(x) be, for every n ,
the polynomial of best approximation of A(E) in G . Set

E (A) = inf  sup |QE) - ACE)[ = sup [B(3) - aCE®)],
Q€ P, rea EeG

where Pn is the space of polynomials of degrce at most n .

From [13] p.66 we have

E (&) < M, AN(C Eywn®, 4,8

2
ne [pptlyees Jo 4y = A (F) = max(\}l_f ’ lz ) ,
- n

A (§) =1. Here p is an arbitrary natural number.

From these estimates and Theorem5.3we can prove the

following thcorem.

Theorem 5.5.If ¢ & HOO(G) ([.5]) then

[ a(D)o - B (4,D)0 |, £ Cf‘-l Toll,

2§



59

méx lA(n+l)( £ )I

N+l
W A(MDYe-L, (D)o I, £ Q=2 iy,
n (n+1)! 52n-1 2

laDye - 2Dl & B lloll, < ¢ loll,
n

5.2. Approximation by trigonometric polynomials

Let A-y: { X lxj} _é\)j y Je {1,...,N}} . From [5] we
have H (4Ay) = U T . If ACE) 1is a periodic function
o<y g2

with period 2VY , analytic for all E € RY , then A(¥) can
be approximated by trigonometric polynomials. If A(¥ ) is not
2) -periodic, then we can extend it as a 2(V+e)-periodic
function in 'lRN with an € > O and it also can be approximated
by trigonometric polynomials. In fact, for any function

Ye o (Ay,) »¥(E) > 0, ¥(E)=1 in Ay (such
function always exists ([ 6])) the function Y (¥ )ACE) can be
extended to a 2(V+e)-periodic function in C°°( IRN) , and we

have Y(E)ACE) = ACE) in Av .

Hence ik—z—“
A(g) = Zl Ake e ’
k| > o
. ik BT
where A, = 2 S YCEM(E) e Y*® gg

Ty e
(Vy+ep)e.OVyrey) A,

Here take € = 0 if A(E ) has period 2V .

. BT

ik =—

Set A (¥) = Zj A o V+e
o<«lklen

It is clear that

25
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A (De(x) = Z Ao(x + Iy,

oz lk|l<4n V+e
This formula is very convenient for practical use.

Theorem 5.6.If @é)’vaP then A,(D)e(x) converges to
A(D)e(x) in the LP( IRN)-norm. Further, let p = (A ,00e,A)
be a vector whose components arc all equal to a natural number
A , and let for any nonnegative integer vector 1 £ pu be
| a1y | 2 u. Then

CM
| a(D)o - 2 (D)o ||, £ ']:fjg"”u i,
n 2
where C depends on A but does not depend on M and nw .
If AV+8 = [-n,n] then

2o - 4,(DIo ||, £ e(n) l—"ﬁq—ﬂ loll,

where q is any natural number, e(n) = mqw(A(q), -]=), n>2.
n

Proof. We have

la(@e - 4,(Dde ||, < 2 lagl o Il

|k|2n+l

On the other hand, from [13] Z : ]ak)/.--—-gE—I , where C

Ikl >n+l o -2

depends on A but docs not depend M and n»n . The first

inequality of the theorem is proved.

The second inequality follows from the inequality

2 lakl < ¢&(n), ogn ' on)« mqw(A(_Q), i
| k| > n+l q n

See [15, p 295/296])

24



61

Corollary. If N =1 and G = [-m,n] , then there exists
a number ¢ with 0« €@ £1 and a constant C such that

‘ g+l (
A(D)e - A (D)o || p £ 2C Y Ilo "P .
In fact, from [16] it follows that there exist 6 ,
0« @< 1,and C such that [A | £2C 6", ne {0,%1, x2,... 4.
Hence
m+1

A(DYe-2, (Do Il , 2 > 1Al lle I,«¢ PRI P iy

In|>m+l Inl > o+l 1-0

In cases, where it is difficult to calculate the Fourier
cocfficients of A(E) we can use trigonometric interpolation.
Let Ay ve = [-myn] , N = 1 . Consider 2n+l different points
2 sto, 1seeatgreessty € (-mym] o For A €CP,, ([15], Chapter 5)
we take the interpolated trigonometric polynomial T, € Vn ’
where Vn is the (2n+l)-dimensional space.whose basis is
fl , COS X, 8in X ,..., COS DX, sin n.x} . It is easy to verify

that r, can be written in the following form

n
Zl n\.n
J=—n
where

ﬂ sin((t-tll;’)/Z)

m.

n
J

ke {_fg;,éa ,n} sin((-tg‘—tﬁ)/Z)

In the special case, where t° - t% , = —2%
J =17 ons1
Jé {11,...,11-!-1} , we have

a1 sin((2n+1)(t=%3)/2)

J - g
2n+l sin((t=t3)/2)

27
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n n . . 21 T n
T = - + jh = J =lyee, D} h = - L t- <L
J ot IR { e } ’ on+l’  2n+l 0

L . Hence, from [15] (Chapter 5) wec obtain the cestimate

2n+l

I & - =, (Do}, = e(n) -1-22—1—’ o,

where q is any natural number, e(n) < mé(A(Q), l) .
n

5.3. Examples. As remarked above, in order to find solutions
of Cauchy problems in spaces Wﬁxz one must calculate the result
of applying a pseudo-differential operator A with analytical
symbol to functions ¢ & “fdi For this purposc we use algebraic
polynomials and trigonometric polynomials to approximate the
symbol A(E ) . In this scction we demonstrate the idea of
trigonometric approximations of the symbol A(E ) . After
approximating A(E) by trigonometric polynomials we obtain
that A(D)e(x) is represented only by translations of o(x) .
(It is clear that in this case differential opcrators of infinite
order are translation operators). These representations of

solutions are new and comfortable for applications.

1) Helmholtz's problem for G = [-m,n]
| 2
d 2
(= == + a%) u(x) = h(x) .
dx®

We have u(x) = ————!;———E h(x) . The symbol of the operator

ae
-+ &
ax®
i is ————l——g and in [-m,m] we have —i—l—— =
_ QE_ 2 g? + a €< + a2
x2
o0 T
- 2 : , where ¢ = S dg —'——[ekaEl( ~ka+ikm)-
2n Yo 1:,"'32

ba'e



63

- ¢ K8Ei(ka+ikn) - ¢ PEi(-ka-ikn) + ¢ X8Ei(ka-ikn)] ([16], p.139).
On the special function ¥i(z) one can read 1D [17], Chapter 3,

k
where we can find that Bi(z) = ¢ + 1ln(-z) + sz i

k=1 ktik
|arg(-2z)}] « mn , where C = 0,5772157... is Buler's constant,

In z = 1lnjz| + iarg 2z , larg 2 | £ = . Thus, we have the

following formula of the solution of our problen

u(x) = i ZZj C) u(x+k) .

T Yemoo

2) The Cauchy problem for the healt equation

2
du_ 2% |, =eeX
3'[7 DXE t=0 2%
22 2
We have u(t,x) = ax w(x) The operator e ox has
2.2 ilxke
a symbol et B 2 2y EZ: dk(t)e R , where dk(t) =
k=00 5 2k2
N _ ink _ T
~ta® €% -i Tz (aV“g > th) 2. 2
= e dE = 4a“ty* 4§ =
-y - n2k2 -y
4a2t 2 ink
= e erf (ayt + ) , see [16], p.1%9, and [17].
ayt ” ) 2 a\t
Notice that erf z = S ¢S ds . Thus we have
o

u(t,x) = 2V Z d, (B)o(x+r k“)

k==co

3) The Cauchy problem for the inverse heat equation

Ru_ _23% -
TR TS S PR )

ot a
We have u(t,x) = ¢ 2 ¢(x) . The operator e has

2]
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2, .2 < itk g
a symbol B TS C ooy :l_J bk(t) e Y 7, where
=—00
H 2, .2 -ilksg 2.2
by (t) = § @T0E° V7 gp o 2 oMK rpiayEy - ATE )
-y ayt 4a2,“2 2ya\t
Z S2
sec [16], p.1%9, [17]. Here erfi z = S ¢” ds . Thus we have
)
[ o]
a(t,x) = 2V 2 ) b (6)e(x + l%‘- ) .
k==oc0

The intercested reader is refered to [18,19] for more dectails.
For other cessential results concerning the differential operators

of infinite order and their applications, peruse [20-24].
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