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A Geometric Approach to Diffraction Problems

Kiyémi Kataoka ( )!ﬂi\;ﬁﬁ )
Department of Math. University of Tokyo

In this paper, we introduce an improvement of the method
and the results obtained by Kataoka-Tose [2]. As an important
application to diffraction problems we give a new geometrical
proof of Lebeau's result [3] on the second analyticity of solu-
tions in the shadow. Further we obtain some theorems concerning
microloéal mixed problems. These theorems are essentially in
[2], but they are formulated entirely in a coordinate-invariant
way for the future purpose.

Firstly we recall the formulation of boundary value problems
by Kataoka-Tose [2]. For example, we consider the Dirichlet pro-

blem

{P(t,x,Dt,Dx)u(t,x) =0 (t>0) (1)

u(+0,x) =0
n -— —
where (t,x)ERxR , Dt—8/8x, Dx—(B/BXl,---,B/BXn).

D )= D2 + A
X

P(t,x,D N l(t,x,DX)Dt + Az(t,x,Dx)

tl
(a second order c®-differential operator). Taking the canonical

extension U(t,x) of u, we can reduce (1) to the following deg-
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enerate problem

{t'P(t,x,Dt,Dx)u(t,x)=0

supp (4) C {t>0 }.

That is, we can identify U with a section of

hme( M, F{tZO}(Bt,x)) for M = p/ptP. (2)

On the other hand, noting that

Tit>01 0 By, %)= "f{llmz=0}(r{t30 1B OD=RT 1m0y T re5018:%Z0 0l
we have RHmnD(M, P{tzo}(Bt'X))=RP{ImZ=O}RHomD(M,F{tzo}(BtO;))[n].

So we can consider u(t,x) as a section of

" (F)
H {Imz=0}'F
where
P ~
F =RHomD( M. r{tzo}( Btofz))“(o"f’,zf‘ tG/jE/,Z)|W@Y(t) (3)
with W={(%ﬂz)GCan;Re?ép,Im?;O}. Then we remark here that F

has a natural extension F to the universal covering of {(?ﬂz)

G(:ﬂf%??O}. Precisely, F is defined on the real monoidal space
Y)?'=(X—Y)US X with natural projection ¢ onto X for X=meCn
Y Y/X t 7z

~ .
and the submanifold Y={(%1z)éx;t=0}. If we write ”E/=rele with

(r,0)€[0,+o)xR/21Z, then

Ty/x

Yy = [0,+oo)rxSéxCrzl _ /X et oex, (4)

and.-each stalk of F is given as follows :

' ~ (5)
~ logt

P
{ G? 2 on {r¥0}=Xx-Y,
ntG’@/,ZP[

Q (2]
—2wi] at (O,e,z)GSYX,
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A/
where igif is considered as .an analytic. function on
s o .
{tecC; ?%0, %rsﬁarggi:6+2ﬂ+e}, for some ¢>0,
and [+*] denotes the equivalence class modulo. GA/Z‘(O z) This

is the reason why we introduce the following sheaf BY(Gk) instead

of {t>0}(B GV ).
Definition 1. Let X,Y, and Yf be as above. Then we define
a sheaf BY(GR) on ‘% Z[0,+») xstxcg by giving each stalk as
follows
G&l(%eié'%) on X-Y (i.e. ;>0),

By(ox (2 8 2y = .
lim {e (W_) /O (V_ )} on s yX (i.e. r=0),

ea+0

where 5&(W ) is the space of holomorphic functions on

g
t

N
W = {(%ﬁz)éx—y;0<fﬂa, ]z-§|<g, -g<arg 8<2ﬂ+€}

€

N
with the universal covering space X-Y of X-Y, and

v = {(¥,2)ex: |T]<e, |2-%|<c ].

It isiclear that this sheaf does not depend on a choice of coor-
dinates and depends only on a pair, X and Y. Further, we introduce

~

a notation aY(Ok)for a sheaf on YX

ay(04) = 3. (05ly y)

with the imbedding j: X-Y —> Y?. It is easy to see that

aY(Ok):G& on X-Y and that

aY(eg)I(O,g';) = llmOO’(U ) (6)
with g3+
U = {(%ﬁz)ex;0<|?ﬁ<g, lz—§|<g, |arg%ﬁg|<e}.
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Hence we have a natutral sheaf morphism

K 2 BY(G’X)

>aY(Gk)
induced by

K s Gk(WelZOQ(VE) ——> Oy (U.).

€
~ ')
[£(F,2)] ——3 £(Fe?™ 2)-£(2)

The following exact sequence is easily obtained, but the

most important for the sheaf BY(Ok).

Proposition 2. We have an exact sequence of Dx—modules
0 — Tyh HL(8) — B, (65) —K— o (6) — 0 (7)
y/x"y ' Ux Y'UX Y X
on 'X.

By employing BY(Ok), we obtain another expression of F in

(5):

-1

F = RHom —1‘0 (TY/X

M,B,(0,)) (8)
Ty/x X Y' X

Then we have an estimate for the microsupport SS(F) of F, which
is similar to our previous result in [2]. To simplify our situ-

ation, we embed YY into a (2n+2)-dimensional c’-manifold z as a

submanifold with Cw—boundary; that is,

YX ={(r,e,x,y)€Z;r30}Q—%>Z=RrxSlxR2n L 5 (re’

6" x,yY

e,x+iy)EX.

(9)

Further, every sheaf on Y? extends to Z2 as 0 on {r<0}.

o o ©° 0 o © © 0
Theorem 3. Let p=(r,8,x,y;r*dr+6*d6+Re(rzdz)) be apoint of
T*Z. Then, for the Dx-module M=DX/DX¥P defined in (2), B does
-1 .
not belong to the microsupport of F=Rfom -1, (7 M,By(65)) if
X

one of the following conditions is satisfied :
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1) ¥#0, and o(P)(%eig,Q,e_ié(%*—igg),%)%0 when %>0,

2) }=0 and 8*40,

3)§=§*=0 and the condition on roots of c(P)(O,E,e_ig(w+%*).2)=0
with respect to w: one root in {Rew>0} and the other one
in {Rew<0}.

Remark. In this theorem, we treat only a second order diff-
erential operator with the Dirichlet condition. However, the
method of proof works also for any order operator with general
boundary condition. In that case, condition 3) becomes more
complicated because it includes a condition on the Lopatinski

determinant (see [2]).

Proof. Set +t1* be a natural map

T* T*XxXZ —> T*Z (10)

induced by 1 in (92). Then, in {%>O}, since 1 is Cw—diffeomorphic
and 8, (05)=6;, SS(F)=r*(Char(#))={c(P)+(7*) '=0}; that is, condi-
tion 1) implies BﬁSS(?). To see case r=0 , we rewrite BY(GQ)

as follows:

y£=0}. (11)

By(Oy)={f(r,8,2)er 0,); (rD_+iD

{rzO}(Br,e b4 &)

Hence the method of proof by Kataoka-Tose [2] works also in this

case. We omit the details.

Let us apply this theorem to mixed problems with the
Dirichlet condition. The first application is giving a new simple
proof for Lebeau's theorem on diffraction [3]. The method of
his proof is in constructing a parametrix by using Airy's funct-
ion and second pseudodifferential operators. Our proof is based

on some geometric arguments concerning the characteristic variety.
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DX) be a differential opera-

Definition 4. Let P(t,x,Dt,

tor with real principal symbol. Then, P is said to be strictly
0

diffractive at a point P=(0,Xx;if_,in)€iT*(R xR}) from {t>0} iff

{t=01} is non-characteristic for P and the following conditions

(12),(13) are satisfied:

[+
o(P)(B)={o(P),t}(P)=0, (do(P)adtAw)(p)40, (12)
{o(e), {o(p),t}} (0,%,R..m > o. (13)
n
Here w=ntdt+jflnjdxj and {f(t,x,;t,;),g(t,x,;t,;)}=
n .«
of a9 _ 3ag 23f P (af 39 _ 3g 2af ) .

In fact, under condition (12) the bicharacteristic ray passing
through 5 is tangent to {t=0}. Further, under (13) this ray is
strictly tangent to {t=0} from {t>0}. For a second order diffe-

rential operator P, we may assume the form

P = Di + R(t,x,Dx) + l-st order term (14)

after some coordinate transformation fixing {t=0}. Then the

conditions (12), (13) reduce to the following :

o o o0 n
nt=o(R)(O,x,n)=0, (do(R(O,x,Dx))A.z n.ax )#0,

)| . 0
j=1 1 3 (xXim
and

aO(R) [V )
at (0,X,n)<0.
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In particular,
v = {(x;in); o(R)(0,x,n)=0} (15)

is regular involutive in iT*Rz. We denote by SS%(f(x))CZT%@
the second spectrum of f(x) along V. Here V is the partial
complexification of V with respect to natural Hamilton flows in

V. To simplify our situation, we assume
\Y ={nl=0}. (16)

In fact, if we extends our operators to microdifferential opera-
tors, such a reduction of V is always possible under suitable
guantized contact transformations. Then, T§V is expressed in

local coordinates as

~

*Y = . ', ixk
TV {(x;n'dx ,1xldxl)}, (17)
'V [ -

where n —(nz,...,nn) and x (XZ"°"xn)' Further we have

°.°l ', 3 2

(x;n'dx ,ildxl)&ssv(f) — > f€C_,07 |(§;iﬁ-dx')' (18)

equivalent 1
. 2

That is, SS;(f) measures the gap between Cxl,X'lV and cx'QElIV'
where Cx'Gé is the sheaf of microfunctions with holomorphic

1
parameter zl=xl+iyl. Under these preparations we state the

theorem by Lebeau.

Theorem 5. (Lebeau [31]) Let P=Di + R(t,x,Dx) + (lower

order terms) be a differential operator as in (14) defined in a

neighborhood of (0,§)eR ng. We assume that

t

o(R) | 0. (19)

t=nl=0
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o
Let §=(O,§;iﬁdx) be a point of iT*(Rthz)fﬂrh=0} such that

00(R) ° o d0(R) °o @ :
T(leln)<01 —W(leln)#o' (20)

Let u(t,x) be a hyperfunction solution to the problem

' Pu =0 in {0<t<s§, |x-%X|<8} ,
u(+0,x) = 0 in {|x-x| <8}, (21)

$S(u)N{0 <t <6, |x-x| <8, | n-n] <8}
C:,{(t,x;int.in); n >0 (or n <0)}

for some §>0. Then we have 582 _na{D,u(+0,x))=0; that is,
{nl—o} t

Dtu(+0,x) depends holomorphically on x1 near (§;iﬁ'dx').

Remark. The last condition in (21) means that the solution
u may.have..only shadoew singularities; that is, u(t,x) may have
analytic singularities only on one portion.of glancing rays
divided by {t=0}.

A sketch of our proof. Let X={(?,z)€Can}:> Y={(%,z)eX;

t=0} be complexifications of Rthz and {O}XRE, and put

M = DX/DX'tP(tIZID'_E’IDZ)' (22)

Here T, z are the complexified variables for t,x. Further let

6

T 243Y§ 9(r,e,x+iy)l-——>(rel ,X+1iy)eX Dbe the projection intro-

duced in (9). Then we have

-1

T Tres01 By, x) g0 RE

{9=0,Imz=0}(8y(0§))[n+l] (23)

by using Proposition 2. Hence the canonical extension U of u

belongs to Hn+l(RF (F)) with a complex

{6=0,Imz=0}
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_ _ -1
F= Riom -1, (70 # By(0g) (24)

on Z. We denote by 1y, the microlocalization functor due to
Kashiwara-Schapira [1], and consider the double microlocaliza-

tion procedure ”{G=Imzl=0}(“{1mz'=0}(?)) for F. 1In fact,

U{Imz'=0}(r) is a complex of sheaves on
H.=T* z={(r, 8,2z, ,x";in'dx") €RxS  xCxiT*R" 1} (25)
1 '{Imz'=0} rVr ey 7 ’
and Mip=1mz =0} M{mmzr=03 P on
= * = LI ' v, * *
H, T{6=Imzl=0}Hl {(r,xl,x iin'dx'; 6*dé+y7ydy,) }. (26)

Let nlel——$>Zr{Imz'=O},

ﬂ2: H2 ———e»le{6=Imzl=O} be natural projections. Then we

have a canonical spectrum morphism:

2 -1 -1 ~ ~
spo: Ty T Rr{6=0,Imz=0}(F) >'“{e=Imzl=0}(“{Imz'=OﬁF))'
(27)
On the other hand, as seen in (5), we know that F is just a
sheaf on 2 and that
~ -1 P ~ N/ -1
?Ir=0 - T ((G/Xnt.gx)lY] > T (Gly) (28)
7} \\J

U(?,z)r————f>D%U(O,z)

by Cauchy-Kowalevski's theorem. Therefore we also have a morp-

hism (Neumann morphism) induced by (28):

u{6=Imzl=0}(u{1mz'=0}(?))Ir=6*=0

1

> ¥{o=Imz,=0} W{1mz'=0} (T 04)) I gx=0

-1
=1 “{Imzl=0}(u{1mz'=0}(6§))IgEO[_l]'(zg)
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From the combination of morphisms (27) and (29) we obtain a

splitting of the mapping

u{t,x) ———> [Dtu(+0,x) ]€C2
{n1=0}

. n+1 - : 2 .
the sheaf of second microfunctions of x along {n1=0}. Hence,
in order to obtain the theorem we have only to show the follow-

ing two facts: For o=-1 (or =1),

. . ~ n+1l ~
(1)~ (The image of u(t,x))eH (Rr{oe*zO}(“{e=Imzl=0}(“{Imz'=0}(F)))’

(1) 55 (o rm, 203 0b(me =0y (F) DY (0 XsiRrax'; 0d82dy, sode) .

Indeed, the fact (ii) induces the wvanishing:

~

RF{O@*iO}[u{e=Imzl=O}(U{Imz'=0}(F))]|9h=0 = 0.

The fact (i) is a corollary of Schapira's theorem:

Theorem 6. (Schapira [5]) Let u(t,x) be a hyperfunction
satisfying the conditions in (21) except "u(+0,x)=0". Then,
there exists a function U(%,z) holomorphic in a neighborhood of

{(?,z)ecxcn; 0<Ret<e, 0<Imt<e (or 0<-Imt<e ),

|z—§‘<e, Imz€T }

9 2 2
with some ¢>0 and F={y€Rn;(y,n>>e/qy| -{y,%) } such that

ss ((U(t,z)¥(t)) - f(t,x)) % (0,x;indx).

z=x+i0T
Theorem 4.1 of [5] is different from ours, but its proof essent-

ially implies the above statement.

10
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By using U(%,z) we can write [U] as a boundary value of

U(T,2z)299% which is a section of 8,(05) on

{(r,0,z)€2; |r|<e, |z-x|<e, Imz€ T, 0<6<% (or 0<-6<%)} .

Therefore we have fact (i) above.

The fact (ii) is a corollary of Theorem 3. and the estima-
tion rules of microsupports under u*—functors due to Kashiwara-
-Schapira [1]. Indeed, to obtain (ii) we have only to show the
following : There exist small positive constants e, &(e), where
§(€) is an increasing function of ee(O,eo] and it tends to 0 as
€ —> 0. Then for any (6,6)€{0<e<eo,0<6<6(g)}, any g=+1 and any
element of

{(r,n*,x;n' 0%, 0%, x* n'*) eRxRxR xR "L xRxRxRP xR L, 0<r<ey, | n¥l<ey.

o © .
|x-x|<€0, |n'—n'|<eo, |r*|<eO, |6*|<eo, |x*|<eo, In'*|<eO }
SS(F) does not contain the codirection

+ien¥*

(r,-e0,x T

1 x'+i€6n'*;—nﬂy'i&dyl+ear*dr+se*de+sax*dx)éT*L.

Further, by Theorem 3 we can reduce this condition on SS(F) to

the following : One root with respect to w of
-ieqg . . i kT
o(P)(re ,x1+1snI,x'+186n‘%eleo(W+86r*),€6XI+16,€6X3*+in')=0

is in {Rew>0} and the other one in {Re w<0} for any ¢, §, o, T,
X, n', nt. n'*, r*¥ x* as above.

Since the roots w are given by

w =—e6r*ie—i€9J—o(R)(re_

leO,xl+ignI,x'+igdn'*,sdxi+iﬁnl,€5X'*+in'),

for each nl=11, it is sufficient to show that

“2ie0 Ry > 2626%62 (30)

|og(R)| - Re(e 0

11
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On the other hand, by (20) we can write

-9(R)(t,x,im=0(R)(t,x,M)=-t A(t,x, n)+n, *B(t,x, ),

where A and B are real-valued analytic functions of real t,x,n

satisfying

a=A(0,%,N)>0, b=B(0,%,N)40.

Therefore,
E=—e~21€00(R)(re—ieo,x1+i€nf,x'+ieén'*,eéxI+i§nl,esx*+in')
——re 3189 4ie corice C)+8e 21 (b +e Corice C.)
071 072 1. 7073 074
=—ar(1+€OC5)+bn16(l+€0C6)
+iO[ar{sin(3€)+€€0C7}—bn1G{Sin(2€)+€eoc8}). (31)

Here Cl,...,C are real-valued analytic functions of 80,2,6,...

8
etc. which are bounded from above and below by constants indep-

endent of 80,5,6,...etc.. Hence, when bnl=-|b|, we have

|E|+ReE ZIImEIz/(2|E|) 3{(ar+|b|6)€}2/{(ar+|b|6)(3+6e)}
> |bles/4, (32)

for sufficiently small €0>O. Further, when bnl=|b|,choose A

in {%<K<l}. Then we have

|E|+ReE >ReE >(1-1)]|b|é&/2 on { 0<r<i|bl|é/a}, (33)

' _ 2
|E|+ReE ZIImElz/(ZlEI)—(ar{Sln;i?;:éi?ﬁﬁfiB/SQf/2)

. 2
3z%x|bia{sin(3e)-§i%i351} on {r>x|b|s/a}  (34)
for sufficiently small eO>0. These estimates (32)~(34) lead
to the condition (30) for sufficiently small eo>0. Thus the

proof of Theorem 5 is completed.

12
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Before treating microlocal Dirichlet problems,
we introduce a theorem on the microsupport of H{g=0 Imz=0}(F)

> -1
for -RHomT—lD (T M'BY(GX))‘ Here,

X
M= QX/QX?-P
and a second order operator
P = p% + R(?,z,DZ)
t
Q
defined in a neighborhood of (0,xﬁ€Rth2.
Theorem 7. We assume that o(R)(t,x,in) is real-valued

for real t,x,n. Then we have the following estimates for the
support and the microsupport of 6= {00 Imz=0}(F) in a neigh-

borhood of (0,%):
Supp(G)A{n§0} C {(r,x;0*d0-ndy); £30, (6%)°-rG(R)(r,x,in)=0)
U {r=6*=0, o(R)(0,x,in)>0}, (35)
SS(G)N {r=06*=0(R)=0,nX0}{(0,x;0dp-ndy; r*dr+x*dx+g**dg*+n*dy);

2 - x*-aa)o(R)(O,x,in)=O}. (36)

(n*-

. i iy *
Proof. Since Supp(u{6=0,ImZ=0}(F))C:SS(thT{e=O,Imz=O}L'
we can easily verify estimate (35) by Theorem 3. Further, to
see (36) we must verify the following: For any codirection f*dr

0 9
+X*dx+0**d0*+n*dn satisfying

ke d _ %, 0

= 57)0(R)(0,%,in)%0, o(R)(0,X,in)=0 (37)

[+
a=(n
there exists a small constant g0>0 such that

@= SS(?)(\ {(r,-e8** x+ien*;er*dr+p*de+Re( (ex*+in)dz))ET*L;

O<e<e O<r<e IX—;|<€ In-n|< |r*—§*|< lo*|<
0’ s 0’ 0’ n-n €0: EO' €Ol

[} (<]
|x*-x*|<e,, |o**-g%%|<e , |n*-n*|<eq }- (38)

13
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Therefore by the argument similar to one at (30) we have only

to show the following inequality:

|Im(e_2i€e**0(R))|2 > 4€2(r*)2|0(R)|, (39)

-1 * %
where o(R)=0(R)(re ied ,X+ien*,ex*+in) with e,r,x,n,r*, 0%%,

x* ,n* in (38). On the other hand, the assumption (37) implies
the following equalities:

-icBHh*x*

| 6(R) (re ,x+ien*, ex*+in) | = O(ey), (40)

-2igO** -igQ**

Im(e o(R) (re ,X+ien*, ex*+in))

= e(a+0(ey)). (41)
Clearly, the combination of (40) and (41) induces inequality (39)
for a sufficiently small e.>0.

0

In order to combine u{e=0 Imz=0}(BY((9’X)) with usual micro-

local theory, we recall some complexes of relative microfunctions.

Clex = uhom(ZM ,O&)[n+l], (42)
+ +
CQIX = phom(ZQ,Gk)[n+l], (43)
o
Caim = Ry (Co xlpuy) (44)
+ N

where M=R xR, D M, ={(t,x)EM;t20}DN={(t,x)€M;t=0}, Q=M _-N and

a natural map

1: T§X£9(0,x;wdt+indx)k————+(x;in)éT&Y, (45)

<]

and CNIM
+

Here are concentrated in degree 0, and we

CM I X
+

have the following facts :

Supp(CM !X)={(t,x;wdt+indx)eT*X;tzO,Resz,t-Rew=0},
+

Supp(CQ'X)={(t,x;wdt+indx)€T*X;tEO,Rewio,t'Rew=0}.

14
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Then, noting that Supp(CM IX) and Supp(C ) are contained
+

QUX

in TﬁX\JT&X , we have natural maps

T* TﬁXKJT&X' D(t,x;wdt+indx)—> (t,x;-t+Imwde-ndy)ETHZ,

(46)

dt : TMza(r,x;eae+yay)F—————9 (r,x;realmg+Yay)éTMX, (47)

induced by T: Z5(r,06,z)— (rele,z)éx at (9). Here M is identi-

fied with {(r,6,z)€Z; 6=0,Imz=0}.

Definition 8. We define some complexes of sheaves on TﬁZ

as follows:

CM+,Z = iy (By(Sy)) [n+1], | (48)
-1

Corz = Mmlay(Og))n+l]= 1y (RTy y(7 "C%))[n+d]  (49)

.

CQIZ = R(T*)!(CQIX)‘ (50)

Easily to see, all these complexes coincide with (T*)*(CM) in

{r>0}. Further , since R(T*)!(ngx)l{r=0}

and T*|T§X=p°1 with a natural closed injection

=R(x*), (Co xlmay)

p: TAY 3 (x;indx) > (0,x;0dp-ndy)ETEZ, (51)

we obtain a relationship :

0 0
CQ|Z|{r=O} = p*(CN|M+)' (52)
L]
That is, CQ!Z is concentrated in degree 0 and it combines the
o 3 13 3 . 3
sheaf CN|M+ of mild microfunctions with CMl{r>O} in a natural
way.

Remark. From the exact sequence (7) we obtain a distingui-

shed triangle as follows.

15
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1
p*uN(HY(G’X))[n]——eCM+l

+1
g T CQIZ R (53)

Here the. first one is concentrated in degree 0. Further we have

the concentration in degree 0 for CQIZ at least when n=dimM-1=1.

Therefore CM |z is concentrated in degree 0 at least when n=1.
+

It is well-known that there are two natural morphisms

[»]
Trace : (C

N M 3f(t,x) —> £(+0,x)€ CN

(54)
+
o 5 ~
ext cN!M+ f(t,x) ——> f(t,x)€ 1*(CM+(X|T§X)’ (55)
N
Here £(t,x) coincides roughly with f£(t,x)Y¥(t). Therefore,
"Trace" and "ext" are defined also for 89'2 as
Trace : p_l(C | ) —— ¢ (56)
Qlz' {r=0} N’
0
. LY *
eXt H CQ'Z 7 (T )*(CM_I_'X). (57)
In particular, "ext" is a sheaf imbedding. Unfortunately, "ext"

is not Dx-linear, but there is a formula for differentiation;

for example,

Dt(ext(f)) = ext(th) + Trace(f).§(t).

(58)
Therefore it is convenient to introduce a Dx-submodule of
(T*)*(CM+’X) including ext(gQ'Z).
Proposition 9. Put a complex on T&Z :
CNtz = 04l (R, (G5) ) [n+l]. (59)

Then CNlZ is concentrated in degree 0 and it is a Dx—submodule

*
of (Tt )*(CM+|X)' Further the sum

Q 0
CM+JZ = eXt(CQlZ) + CN‘Z (60)

16
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is a direct sum and it is a Dx-submodule of (t*),(¢C In

).
M+|X

particular, we have an exact sequence of DX—modules on Tﬁz:

o

> C —> 0. (61)

¢
> "M

12

Qlz

Proof. The concentration of (C follows from the well-

N|z

-known vanishing theorem due to Kashiwara on relative cohomology

groups for Gk' Hence we have an exact sequence of sheaves on N:
1 o
0 —> H (L) |y — T(By) _">"M/z*(Cle) —> 0. (62)

1
Here I (B,)=C and HY(G'X)!N"PTEZ(CNIZ)' On the other

|
N|z'T*z

hand there is a natural sheaf-morphism :

CNgz=p*“N(RFY(G'x))[n+” e R(T*)*(uN(@'X)[n"'lJ):(T*)*(CNIX)'
(63)
Therefore we have natural Dx—morphisms:
CNlZ —? (T*)*(CN[X) ——*-(T*)*(CM+|X) —> (T*)*(CM)- (64)
Since H;(@k)lN={f(x)eFN(BM);SS(f)C:iTﬁM}, by using (62) and
(64) we know that the natural morphism
T c Ta(C (65)
'ITM/Z*( NIZ) —'—_——7'”*( M)

is injective. Hence in order to prove the injectivity of the

3 *
morphism CNIZ — (T )*(CM+IX)’ we have only to construct a

— C by two integral transfor-

splitting of identity CNIZ

®2 such that

N|Z

mations @l,

® )
2 T Oy g) —>C (66)

sz'{|n|=1} NIZ'{InI=1}'

1.C

n-1 = nl=11, and z'=z4(s" " ")".

Here N'=NxS —-{(O,X;Ode—ndy)GTﬁZ;

17
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Indeed, we can employ the kernel functions similar to those
used in the proof of the flabbiness of microfunctions due to M.
Kashiwara. We omit the details. Moreover note the following

commutative diagram:

4 0 - (* *
Copz=H" (RCT*) (Cgyo)) > (Tl 1) /() el y)
ext /CPZ
S ) (67)

Here P19y are natural morphisms and 91 is injective. Hence,

considering morphisms (64) we obtain the injectivity of the

morphism

° )

= *
CM+]Z eXt(CQ|Z)+CNlZ —> (1 )*(CM+IX)
. . * 3. 1 -
from that of the morphism: CNIZ —> (T )*(CM+IX)' Simultanious
. e ) o . 0

ly we proved that ext(CQIZ)r\CN'Z =0. The closedness of CM+IZ

under DX—operation is directly derived from Lemma 10. This

completes the proof.

We recall here Fourier-Sato transforms defined by Kashiwara-

-Schapira in [1]. Let P+ Py be projections in

Py P
TyZ < T\2 ;;Tb*;lz ——— T}2,
and Pi be closed subsets of TMZxMTﬁz given by
P, = {(r,x:83,+90 ;e*do+ry*dy); £(86*+9y*)>0}. (68)
+ +

For FE€ObL(D (TMZ)), GeOob(D (Tﬁz)) we set

conic conic

F = Rp,, (R, (p]'F)),
5 i (69)
G¥= Rp;,(RT, (p, G))[n+1].

F~ is called the Fourier-Sato transform of F and Gv the inverse

18
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Fourier-Sato transform of G, respectively. Indeed "v" is the

inverse of "“". Here we omitted the orientation sheaf. Since

uM(F)=vM(F)‘ for a F€ Ob(D+(Z)), we may study \M(F) instead of
by (F). We set open subsets D€(§,§), D2(§,§) of ¢! for any
€50 and any (0,§’<;éae+§ay)eTMz=
o . - . ; -
D (%,7)= {(£,x+ixy)ec™ ;T |+ | x-%|<e,0<h<e, |y-F | <e}, (70)

D(%,y)={(E,x+iryleC

n+l;|T|+|x—§|<e,0<k<e,|Y-§|<€,

(-Re¥) +|ImE| <pr}. (71)

Lemma 10. For any p0=(0,§;éae+§ay)éTMZ we have

q Vi _ . g+l o - v
HEey )V Eonm1 D) = T HYTD o) (e, (72)
a, .9 Vo Z 1 q, . +,9 ~ v
H(Cg ) 1D = Hp oL BLe (. 73

In particular, )v[—n—l] and (8 )V[—n—l] are concentrated

(CN|Z Qlz
\4

in degree 0 and we have a Dx—closed expression for (8M lZ) :
+.

° \ . + 0 A 1 o ~
(c ) [-n-11] = lim {0, (D (x,y))Y(t)+H (D (X,y),0{)}.
M, 12 Pp Z+0 * ¢ Yoe X

(74)
Proof. (72) and (73) are derived from general theorems in
[1] concerning microlocalization. Further the concentration of

cohomology groups follows from the convexity of De and D° with
€

small ¢>0.

Proposition 11. There exist natural px—morphisms of comp-
*7 o
lexes on TMZ'

by by
Mz 7 Cy |z T (1)aley |y (75)

+ | X
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o
such that wz-wl gives the original sheaf imbedding of CM |2
+

*
to (1 )*(CM+|X)'

Proof. It is sufficient to see that the natural Dx—morphism

(Cy 1)V I-n=11 —> ((1%) 4 (Cyy (x))VI-P-1] (76)
M, |2 TR M |x

. v _ .
splits through (CM+]Z) [-n l]_vM(BY(Gk))' Since all the complexes
in (76) are equal to each other on {r#0}, we have only to constr-
uct such a splitting in a neighborhood of {r=0}. Note that

-1 .
((T*)*(CM+|X))v[-n-1]=Rp1*(RPP_(p2 (1*)4(Cy x)) is concentrated

+ |
in degree >0, and that

0 * Vi_n- = -1 &

={£(t, €Ty (By) | o $,7SS(£)C((t,x;in At+indx);tdn +¥n >0}
+ ’

V{tn,=0, n=0} } (77)
for p0=(0,§;éae+§ay)eTMz. On the other hand,
q - 14 q 4
H (“M(BY(Gk))’pO‘ i§p+0 HA(W_(pg),By(Oy))  (Ya), (78)

with
W€(p0)={(r,xe,x+ixY)eZ;0§r<g,|x—§|<e,0<x<e,

le-0|+|y-v]|<e}. (79)
Since T(We(po))\Y is biholomorphic to a convex domain
{(a+ixe,x+ixy)ECan;u<logg,|x—§|<e,0<x<g,|e—§|+|y—§|<e }.

we obtain the concentration of VM(aY(Ok)) in degree 0. Then by

using exact sequence (7) we obtain also the concentration of

20
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vM(BY(Gk)) in degree 0. Moreover note that we have the following
identification
T(W (Pg) . By (O5))={E(x, 8,3, ¥)ET 1 0 (W (Rg), By (6;);
(rDr+iDe)f=0 }. (80)

Let f(r,06,x,y) be any section as above. Then a hyperfunction
g(r,x,\):= £(r,A8,x,\y) (81)

}({(r,x,A)éRanxR;r<e,|x—§|<e,0<x<e}, B )

elﬂ{r_>_0 r,x,\

is well-defined and it satisfies an equation

Dkg = eDef + yDyf =(1erDr + 1yDX)g. (82)

In particular the boundary value g(r,x,+0) is well-defined as a

o
hyperfunction in P{r>0}({r<e,|x—x|<e}, B. ,) Wwith an estimation

sS(g(r,x,+0)) C {(r,x;in dr+indx);rbn_+¥n>0 }.

It is easy to see that the boundary value g(r,x,+0) does not
depend on the choice of half line {y=Ay, 0=A8, O<i<e} when
(§,é) moves. Consequently we have an estimation of SS(g(r,x,+0))
as in (77). Therefore we obtain a natural DX—morphism‘for comp-
lexes:

b vy(By(Oy)) ——> ((1%)4(Cy )V I-n-1].
+

On the other hand for a section fl(?,z)Y(t)+[f2(?,2)]€@%(D;(§.§))
1 o ~ . ~ o -~ .

xY(t)+HY(D€(x,y),®&) with a fz(t,z)CGR(De(x,y)\Y) we can define

a section

£ (re'® 2)v(r)re, ((r+i0)e™® 0

,z)—fz((r—iO)ei ,Z)

of F(Wexpo),BY(Ok)) with a smaller €'>0 (see (1l1)). It is easy
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to see that this gives a natural px—morphism for sheaves:

p v
by (Gy |g)" [-n-1] > vy (By(05)),

and that ¢§°WY coincides with the natural px—morphism. This

completes the proof.
As a corollary of Proposition 11 we have the following:

Theorem 12. Let P(t,x,D,,D ) be a c¥Y-differential operator

tl

defined in a neighborhood of (0,%). We assume that N={t=0} is

non-characteristic for P. Set a DX—module
M= D,/D,F%P(¥,2,D,D )
XX r < lz

for an integer £>0. Then we have the following isomorphisms for

complexes

-1 9°
(TT M,CM |Z

RHom -1
m X N

5 Ry 1
) = om_-

D

-1
(m "M,C )
D M, |2

X

S RHom_-1_ (1 MM, (1*) 4 ( 83
rd Om'" DX ™ M' T )* CM+|X)). ( )

In particular the microsupports of these complexes coincide with

-1
that of SS(uM(RHomT—lDX(T M,BY(O%))).
Proof. It is sufficient to show that the isomorphism
RHom -1 (1 M,C. 1) 23 RHom -1 (1 M, (%), ))

on {r=0}. 1In particular we have only to show the isomorphism

-1 o
D) (m "M,ext(C

RHom“—l
X

-1

~ -1

D N

X

where we used the same notation 7 for projections “M/Z’ ﬂN/M'
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Indeed, noting that p_lcN|zC:1*(CN|X) we easily obtain the

isomorphisms for the 0-th and the first cohomology groups in
(84) from a division theorem on sections of CN|X and CM |X' We
+

omit the details.

is conically flabby on T*Z. 1In

Lemma 13. (t*).(C M

M |x)
+
particular, for any conically closed subset S of Tﬁz we have the

gquasi-isomorphism:

* ~ *
Tt 4 (Cy |x)) == RIg((T*)0(Cy 1)) (85)
Proof. Set M_={(t,x)éM;t§O}. Then we have an exact sequ-

ence of sheaves on T&Z:

0 —2 (1*),(C ) —> (%), (C )@(T*)*(CM |x)

N|x M, |X

—K;»(r*)*(cM) —>3 0. (86)

Indeed the surjectivity of k comes from the surjectivity of the

morphisms:

-1
FM+(BM)@PM_(BM) —> B and T By —> (T*)*(CM)-

M

Therefore the flabbiness of (T*)*(CM lX) reduces to that of
+

(T*)*(CNIX) and (T*)*(CM). Note here that (T*)*(chx) is iso-

morphic under a quantized contact transformation to a sheaf

q,(C_G7). Here (C_Os is the sheaf on iT*RxC of microfunctions
X W X W X" W

with l-holomorphic parameter w, and (g : iT*szCw-—» iT*R: is the

projection. On the other hand, we obtained in [6] the partial

flabbiness of CxO@ with respect to (Xx;indx)-coordinates. 1In

. * .
particular q*(CXOQ), and so (t )*(Cle) are conically flabby.
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Thus the proof is completed.

As a.direct corollary from Theorem 12 and Lemma 13 we have

a quasi-isomorphism:

-1
RPS(UM(RHomT-l (T M'BY(@k))))

Px

225 Riom -1 (n—lM.FS((T*)*(qM+IX))) (87)

DX
for any conically closed subset S of Tﬁz and for y in Theorem
12. Hence applying Theorem 12 to the operator P in Theofem 7,

we have some theorems on unique continuation and existence for

microlocal solutions.

Theorem 14. Let P=Di + R(t,x,Dx) be a second order

c®-differential operator defined in a neighborhood of (o,x)éRthg

with real principal symbol. Let y(r,x,8%*,n) be a real Cl—func—
tion defined in a neighborhood of p0=(0,x;0de—ndy)éTﬁZ such that
y is homogeneous of degree 0 in (6*,n) with ay(0,x,0,n)#0. We

assume the following (i), (ii):
(1) o(R)(0,x,1in)=0,

(1) (3 ¥+0,=8,93 Jo(RI(F.x,in) |, g on * 7 O- (88)

Then, we have a unique continuation property for CQIZ—solution :

4 Pu=0

° Pu=0 (Cop)y s
<0} alz pO’ u(+0,x)=0

[ue(c ) s
212°py" 4(+0,%)=0

} AN {UGF{

o

{wzo}(cﬂ|z)90 and any g(x)&r

Further, for any f(t,x)e&r {wb(xln>30}

(C..) with wO(X,n)=¢(0.X,0,n) we have a unique solution u(t,x)

N pO
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o

T . .

{Pu(t,x) = £(t,x),
u(+0,x) = g(x). (89)
Remark. For a hyperfunction solution u(t,x) of Pu=0 in {t>0},
we mean that
o SS(U)n{t>O}C{(t,X;intdt+indx);
- 1 ‘l’(tlxy—tnt,ﬂ)zo} ’
and j\:g SS(DFu(+0,%))C{¥,(x,n)>0}.

Proof. By Theorem 7 and the argument at (87) we have an

exact sequence

tP

+

Then by the flabbiness of (t*),(C ) we can reduce this theorem

M, |X
to the exactness of the above sequence. We omit the details beca-

use the argument goes in the same way as in [2].

References.

[1] M. Kashiwara and P. Schapira, Microlocal Study of Sheaves.
Astérisques 128(1985).

[2] K. Kataoka and N. Tose, On hyperbolic mixed problems,
J. Math. Soc. Japan, 43(2) (to appear).

[3] G. Lebeau, Regulaite Gevrey 3 pour la diffraction, Comm.
In Partial Differential Equations, 9(15)(1984),1437-1494.

[4] J. Sjéstrand, Analytic singularities and microhyperbolic
boundary value problems. Math. Ann. 254(1980), 211-256.

[5] P.Schapira, Microfunctions for boundary value problems.

25



208

Prospect in Algebraic Analysis, to appear.
[6] K. Kataoka and N. Tose, Vanishing theorems for the sheaf of
microfunctions with holomorphic parameters. J. Fac. Sci. Math.

Univ. Tokyo, 35(2)(1988), 313-320.

26



