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1. Introduction

In this note we establish a formula which gives quantized contact trans-
formations of pseudodifferential operators in terms of symbols. A quan-
tization of a given contact transformation ¢ is an extension of ¢ to aring
isomorphism ¢, between the rings of pseudodifferential operators ([KS],
[M], [SKK]). We calculate the symbol of ¢,(P) in terms of the symbol
of an operator P. As an application of the formula, we define the char-
acteristic sets of pseudodifferential operators of infinite order and show

that the sets are invariant under quantized contact transformations.
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2. Quantized Contact Transformations

Let ¢ be a contact transformation defined by the following relations:

#(y,1) = (2,¢)

with

a8
r=y+ %(yv E):

a5
n=¢&+ —a':;l‘(y’f)’

where ¢ = (£1,...,%p),...etc., and S is a holomorphic function homo-
geneous in ¢ of order 1 such that |S(y, £)|/]¢| is very small. Let a be an

invertible microdifferential symbol of finite order.

THEOREM 1. For every formal symbol P(z,§) there is a formal sym-
bol Q(z,£) such that

(1) P(z,8) 0 (°®Pa(z,8)) = (5 a(z, £)) 0 Q(z, §).

Here o denotes the composition by the Leibniz-Hérmander rule:
1
A(.’L‘,f) ° B($7 E) = 253?14(3?, 6) : 3:3(33, f)

In the case of microdifferential operators of finite order, this theorem
is given by [M]. The correspondence P(z,§) — Q(z,¢) induces a ring
isomorphism ¢, : E® — ER, which we call a quantization of ¢. Theorem

1 follows from the following theorem (we assume a = 1 for simplicity):

2
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THEOREM 2. There are two invertible microdifferential symbols A(z, &),

B(z,¢&, () of order 0 such that P and Q satisfy (1) if and only if

Q(z,¢)
= A06(3c+az)o3(+a,~3qB P(z+0,£+n+9(z+a’z+y+a,£))|y=0,z={5

n=0,{=¢?

where o is characterized by o(z,¢,() = —9(z+0(z,&,(), €, () and where
6,9 are defined by

5(371 f) - S(y,f) =<z -y, 9('7"73/76) >,

5(z,§) = 5(z, () =< & = (,9(z,£,() > .

The symbol A is constructed as follows:
(eac'aee—s(z,f)) 0 e5(@€) — Az, )

is an invertible microdifferential symbol of order 0 (cf. [K], [KW]). 4 is
the inverse symbol of A’, that is, a symbol satisfying AoA' = A'04 = 1.
We can construct B in a similar way by using ¢ a,nd‘show that the
principal part of B coincides with that of A" modulo ( — £. Anyway,
the important fact is the following: both A and B are invertible and of
order 0. So they do not affect the ”characteristic”, which is defined in

the following section.
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3. Characteristic sets of pseudodifferential operators of infinite order
Let P(z,&) be a symbol in the sense of [A].

DEFINITION 3. An element x = (g, ) is said to be non-characteristic
with respect to P =: P(x,§) : if there exist a conic neighborhood §2 of
cx (in T*X ) and a positive number r such that for every € > 0, there is

C. >0 for Whl.Ch‘ we have
[P(2,&)| 2 Cee™l 4n Qn {2}

We write Char(P) the compliment of the set of all non-characteristic

elements with respect to P.

Of course, if P is of finite order this definition of Char(P) coincides

with the usual ones. In general, we have
Char(P) D Supp(E®[ER P).

If z* does not belong to Char(P), we may assume that P(z, ) is written
in the form e?(®£) with a symbol p(z,&) of order 1-0. By Theorem 2,
Q(z,£&) can be written in the exponential of some symbol of order 1-0

(cf. [A]). Moreover, ¢ is given by
2S
b:(a+0(5,6,6),6 + 52(2,0(2,6,6), ) - (,6)

Hence we have

THEOREM 4. Char(¢.(P)) = ¢(Char(P)).
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