goooboooogn
0 7590 1991 0 46-57

Galois representations attached to Drinfeld modules

FRILKER HO #E—BF  ( Yuichiro Taguchi )

- In the talk, I announced some results on Galois representations attached
to Drinfeld modules ( see §1 below ) and sketched the proof of the
finiteness theorem (1.2). In this note, I will show how a theorem of
Fontaine (Théoréme 1 of [4] ) can be modified ( §3 ) so as to work in
the course of the proof of Theorem (1.3).

1. Results and proofs

In this section, let K be an algebraic function field in one variable over
a finite field. Fix once for all a place co of K, and let A be the ring of
elements of K which are regular outside oo.

Let F be a field of finite type over A, i.e., a field F' which is endowed
with a ring homomorphism 4 : A — F and is finitely generated over
Im(y) as a field. We say that the “characteristic” of F is infinite if v
is injective and finite if Ker(y) is a non-zero prime ideal p of A, and
write “char”(F) = oo or p accordingly.

Given a Drinfeld module ¢ over F of rank r, one can attach the v-adic
Tate module T,(¢) for any non-zero prime ideal v # “char”(F). This
is a free A,-module ( A4, is the v-adic completion of A ) of rank » on
which the absolute Galois group Gal(F*¢?/F) acts continuously. For
fundamentals of Drinfeld modules, see [1] and [2]. ( See also [5] in this
volume. )

Denote by K, the fraction field of A,. Our main result is:

THEOREM (1.1) ( [6], [7] ). Assume F is a finite extension of K or
“char”(F') is finite. Let ¢ be a Drinfeld module over F. Then for any
non-zero prime ideal v of A different from “char”(F), T,(¢)®4, K, is a
semi-simple K, [Gal(F*°? [ F)]-module.

This follows ( [6], Appendix ) from

THEOREM (1.2) ( [6], [7] ). Let F, ¢ and v be as in (1.1). For any
Gal(F*¢? | F )-stable A,-direct summand of T,(¢), to which corresponds

a sequence ¢ — ¢ — ¢ — --- of isogenies of Drinfeld modules over F,
there are only finitely many isomorphism classes of Drinfeld modules in
{¢nin ‘2 1}

Remark.  The assumption that the extension F/K is finite ( when
“char”(F) = oo ) should be removed, but I have not yet checked it.
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The proof of (1.2) goes in a similar way as in Zarhin [8] and Faltings
[3], and uses the theory of modular heights. In the infinite “characteris-
tic” case, the Arakelov theoretic arguments and the study of w-divisible
groups are needed. For details, see [6] and [7].

Now we restrict ourselves to the case where F' is a finite extension of K.
Then for a Drinfeld module ¢ over F, we can define the “discriminant”
A(@) of ¢ (7], §6 ), which is an ideal of the integral closure R of A4 in
F. '

THEOREM (1.3) ( [7], §6 ). Let n be a non-zero ideal of R and v a non-
zero prime ideal of A. Then there are only finitely many isomorphism

classes of Galois representations T,(¢) ®4, K, arising from Drinfeld
modules ¢ over F' with A(¢)|n.

In the case of abelian varieties, the corresponding theorem ( [3], Satz 5 )
holds under a weaker restriction ( i.e. “Supp(A(¢)) C Supp(n)” replac-
ing “A(¢)|n” ). But it is unlikely that we can weaken the restriction
in our case because of the lack of the Hermite-Minkovski theorem for
function fields. So the proof of our theorem requires an estimate of
the differents of field extensions arising from division points of Drinfeld
modules:

PROPOSITION (1.4) ( [7], §6 ). Let ¢ be a Drinfeld module over F of
rank r, and let a € A — 0. Then we have the following inequality of
divisors ( denoted additively ) of F':

D(F(¢;a)/F)<r [(a) + 8(r,a)qg 82 A($) + (¢ — 2) - oo] ,

where F(¢; a) is the field of a-division points of ¢/F, ©(/) the different,
q the cardinality of the constant field of K, deg(a) := log,#(A/aA), and

§(r,a) = (¢™5 —1)/(¢ - 1).

The estimate of the different is performed separatedly at each infinite
or finite place of F'. In the case of infinite places, a “successive minimum
base” of an A-lattice is used ( [7], (6.6) ). The case of finite places is
easy ( [7], (6.4) and (6.5) ), but it would be interesting to give a general
statement ( Theorem (3.4) below ), which can be regarded as a higher
dimensional generalization of (6.4) of [7].
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2. The Taylor expansion

This section is a preliminary for §3.

Let R be a commutative ring and R[[X]] = R[[X;,--- ,X4]] the ring
of formal power series over R in h variables. For a multi-index n =
(n1,--- ,m4) € N* ( N is the set of natural numbers including 0 ), we

define a “differential operator” J—f,[':; as follows:
FfX)=YamX™ =3 @my,ee,mn X1t - - X" € R[[X]], then‘

o M\ vmen

e f(X) =3 :am(n>X

_ m, . mi—ny | ymi—n
= E /T (n1> (nh)X - X ,

where (m) = m‘) e (m") is the “multi-binomial coefficient” with (m‘)
n ny ng g

= 01if n; > m;.

Remarks (2.1). (1) s is R-linear.

n

(2) %= =n! 6X’~ ( where n! := ny!---np! ) is the usual differential

operator, and ¢+ n!( =% )" if n! is invertible in R. In particular, we

8 __ &
haveﬁ_-é—f.

(8) For f(X) € R[X]], put fr(X) := f(X+7Y) € R[X,Y]] =
RX][Y]]. We have

gnf”(x )=( 5‘; (X +Y) in R[X,Y].

@ )= Y (fepPpe) for £, g € BX].

k+l=n

(5) Let S be an R-algebra and I an ideal of S. Assume S is complete
with respect to the I-adic topology. If f(X) € R[[X]] has the value
f(z) € S at a point = = (z1,--- ,z3) € §*, then 5= f(X) also has the
value g%("?f(x) at z for any n € N*

PROPOSITION (2.2). For f(X) € R[[X]], we have the formal Taylor

expansion ( or rather, the binomial expansion )

(2.2.1) FX+Y)= Y af;n

In|20

)-Y™ in R[[X,Y]].
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If f(X) has the value f(z) € S at = € S* and y is an element of I*,
then f(z + y) € S also exists and we have

(2.2.2) fz+y) =), aXn " #(z)-y™ in S.
Inl>0

Proof Write f(X+Y) = 3 an(X)Y™ with a,(X) € R[[X]]. Applying
-5 to both sides and reducing modulo Y, we obtain ( cf. Remark (2.1),

()

o F(X) = an(X)

and hence (2.2.1).
The latter half of the Proposxtlon is obvious.

3. Estimate of differents

First we recall Fontaine’s numbering of the ramification groups of a local
field and some of his results ( [4], §1 ). Throughout this section, if L is
a discrete valuation field, O ( resp. my, resp. kz ) denotes the integer
ring of L ( resp. the maximal ideal of Oy, resp. the residue field O /mp,

In the following, K is a complete discrete valuation field with perfect
residue field k of characteristic p # 0. Let vx denote the valuation on
K normalized by vg(K*) = Z, and also its unique extension to any
algebraic extension of K. If a is a subset of an algebraic extension of K,
we put vi(a) := inf{vg(z);z € a}.

For a finite Galois extension L/K, Fontaine defines a lower ( resp.
upper ) filtration G(;) ( resp. G ) (i,u € R ) on the Galois group
G = Gal(L/K), which is connected with the usual filtration G; ( resp.
G" ) defined in Chapitre IV of [Corps locauz] by

Gi = G(it1y/e)y  Tesp. G* = GOHY,
where e = er, /i is the ramification index of L/K.

He also defines a real number iz x ( resp. ur/x ), which is charac-
terized as the largest real number ¢ (resp. u ) such that G(;) # 1 ( resp.

G £1 )- i)k and upjx are connected by

iL/K
uL/K = / : (G(z) : l)da:.
0

Then he proves the following
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PROPOSITION (3.1). Let L be a finite Galois extension of K.
(1) ( [4], 1.3 ) Let Dy, x be the different of the extension L/K. We have

vi(Dr/x) = vL/x — /K-

(2) ( [4), 1.5 ) For a real number m > 0, consider the following property
(Pm) on the extension L/K:

For any algebraic extension E of K, if there exists
an O g -algebra homomorphism : O, — O/ 0% x
( where af g == {z € Og;vk(z) > m} ),

then there exists a K-embedding : L — E.

(Pm){

Then
(i) ifm>wup x, L/K has the property (Pn);
(ii)) if L/K has the property (Pp,), we havem > ur /g — eZ}K.
Now we shall refine Fontaine’s Proposition 1.7 of [4] as follows. The

. main point is that it works, mutatis mutandis, even in positive charac-
teristics.

PROPOSITION (3.2). Let B be a finite flat Ok -algebra which is locally
of complete intersection over Ok . Suppose that there exists an element

a € Ok such that O} o is a flat (B/aB)-module.

(i) LetS be afinite flat Oy -algebra and I anideal of S. Suppose either
the S-submodule a='IP~lof K ®g¢, S is topologically nilpotent ( i.e.
Nn>1(a™1IP~1)* =0 ), or I has a PD-structure such that ﬂnZlI["] = 0.

(a) For any O g -algebra homomorphism u : B — S/al, there exists
an Og-algebra homomorphism 4@ : B — S which is uniquely deter-
mined by u(mod.I) and makes the following diagram commutative:

B — s S§/al

| !

S —— S/I.
(b) The canonical map of sets
Homg, _a1g(B,S) — Homg, _ag(B, S/I)

1s injective.
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(ii) The K-algebra By := K Qgp, B is étale. Let L be the smallest
subfield of a separable closure K *°P of K which contains the images u(B)
for all u € HomK_,lg(BK,K”P) Then L/K is a finite Galo1s extensmn

and vk < vi(a) + —‘ mzn{'vK(a),'vK(p)}

The proof is essentlally the same as the original one due to Fontaine,
but we reproduce his proof here for the covenience of the reader.

Proof. (i),(a): We may and do suppose B is a local ring, because B
is the product of a finite number of local rings. Let mp be the maximal
ideal of B. Replacing K by an unramified extension if necessary, we
may also suppose B/mp = k, the residue field of Og.

Then Q}B/ox is a free (B/aB)-module. Let z;,---,z; be elements

of mp the images of which form a k-base of mp/(m% + mx B). We see
from the definition of differential modules that dz;,--- ,dz, generate
91 /0y » and further, they form a (B/aB)-base of 03 /oy because of the

canonical isomorphisms

Q.IB/OK ®B BO -—-—'v——-—)- Q.IBO/k (BO = B/mKB),

mp/(m} + mxB) —— mp, /m}, —— O}, ®s, k,

where mp, = mg/mg B is the maximal ideal of B,.
Now let
a:Okl[[X:,---,Xi]] — B

be the unique continuous O x-algebra homomorphism such that a(X;) =
zj, and let J := Ker(e). Since B is finite of complete intersection over
Ok, J is generated by h elements, say P;,---, P, € Og[[X1, -+, X4]]-

For each 2z, we have Zj %’;—(ml,... yZr)dz; = 0 ( note zi—j = 8—‘35
), which implies g)%-(zl,--- ,Z) € aB. Hence there are p;; € B such

that —-——(:1:1, -+ ,p) = ap;;. The fact that Q}B/o is a free (B/aB)-
module means that the free B-submodule of @h 1 BdX; generated by
EJ 7% (z1,-- - ,zr)dX;, 1 <4 < h, coincides Wlth the one generated by
adX;, 1 < 3 < h. We can therefore find ¢;; € B such that

aXm Z ql,(z

(zla "7$h)de), 1Slsh‘)

i.e., aly = (qi;)(api;). ( 1y, is the unit matrix of degee h. ) Since B is a
free O x-module, we can divide both sides by a. Thus the matrix (p;;)
is invertible in My (B) and (q;) = (pi;) ™.

6



02

The case of PD-ideals is proved in [4], so we suppose a~*I?~! is topo-
logically mlpotent Then the ideal a=*IP~! 4 I is also topologically
nilpotent. Set I, := (a=1IP~14+I)*1], n > 1 ( so that a~1I?~! is again
topologically nilpotent and S is canonically isomorphic to the projective
limit of the system (S/In)n>1 ). It is easily seen that IZ C aly, and
I2 C I,. To show the assertion, it is enough to verify:

For any integer n > 1 and an O g-algebra homomorphism u : B —
S/al,, there exists an Og-algebra homomorphism v' : B — S/al,,
such that »'(mod.I;,,) is uniquely determined by »(mod.I,,) and u' makes
the following diagram commutative:

B —— S/al,
¢ |
S/laly, —— S/I,.

In other words, writing I for I,, and I, for I, :
- For any elements uy,---,u; of S such that

Pi(uy,--- ,up) = a); withsome \; €I (1<1i<h),

there exist p1,- - ,pun € I such that p;(mod.I;) are uniquely determined
by z;(mod.I) and

(3.2.1) Pi(uy + py,--- yup +pr) €al, (1 <i<h).

If u; € I, we have the Taylor expansion (2.2.2)

(3.2.2) Pi(uy + p1,--- ,un + pr) = aX; + Z (ul, cyup)p; + Ry

with .Rq = erlzz %,X%;(uly Tt ,Uh).
For any element P € J, we have E‘SJ—}{—DT(:BI,--- »Zh) € aB, i.e.
J
8

P

('Xla . 1Xh) € a‘DK[[le' v )Xh]] + J.
If |r| > 1 and r! is invertible in Ok, we see mductlvely ( ¢f. Remark
(2.1), (2))

5’P
oXr

(X1,---,Xp) € aOk[[Xa,--- , Xp]] +J

7



so
%Xf;(ul,- -+ ,up) € ¢S+ al = aS.

Since I? C I,, we have
5P
86Xt

if |r| > 2 and r! is invertible in Og.

On the other hand, we have p” € Il ¢ I? C al, if p divides 7!, and

-g-(-}:—(ul,- -+ ,uy) are always in S ( Remark (2.1), (5) ). Thus we have

('u'17"' )uh) '#r € a'I27

(3.2.3) R; € al,.

Take an element P;; € Ox[[X1, - ,X4]] such that a(P;;) = p;; € B
for each (%,7). We have

$P;

EE(‘BD“' »Th) = GPij,

i.e. g—%— = aP;; + R;; with some R;; € J, from which follows the
congruence

§P;
-ﬁ-(ul,‘ -+ yup) = aPij(uy, -+ ,un) (mod.al),
j
and
6 P;
(3.2.4) E(ul, coeup) - i = aPii(ug,- - ,un) - p;  (mod.aly).
j

Putting (3.2.3) and (3.2.4) into (3.2.2), we have

Pius + paye e un + pa) = o + > Pij(ua,-- yun)-p;) (mod.aly).
7 |

Since S is flat over O, the condition (3.2.1) for p; is now equivalent to

Ai+ Y Pij(ur, - ,up)-p; =0 (mod.ly), 1<i<h.
i

Since the matrix (p;;) = (Pij(z1,---,zan)) is invertible, the matrix
(Pij(u1,- - ,un)) is invertible modulo aI. Now the existence of p; € I
satisfying (3.2.1) is clear. Moreover u;(mod.I), 1 £ j < h, determine

8
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p;i(mod.I), 1 £ j < h, uniquely, because they determine A; = 0 (mod.J)
and P;j(u1,--- ,us) (mod.I) uniquely and I? C L.

Part (b) of (i) follows immediately from Part (a).
Proof of (ii):  Since By is finite over K and QIBK/K = KQoy Q}B/Dx =
0, By is étale over K. So we can write By = Hi=1 L,, where L, are
finte separable extensions of K assumed to be contained in K*¢?, a fixed
separable closure of K. Then L is the composition of the Galois closures
in K**? of L,/K,s = 1,--- ,t. Hence L/K is a Galois extension.

If a is a unit, then Q‘IB/DK = 0, B is étale over O, L/K is unramified,
and uy g = 0.

Suppose a € mg. We will show that L/K has the property (Pp,) for
any m > vk (a) + € with € := ,,1T1 -min{vk(a), vk (p)}.

Writing J(F) := Homgp  —a1g(B,Og) for a finite extension E of K, we
see that

J(E) = Homg—ag(Bxk, E)
= II!_,{K — embeddings : L, — E}.

Here we have #{ K-embeddings : L, — E} < [L, : K] and the equality
holds if and only if FE contains a subfield which is K-isomorphic to the
Galois closure of L,/K in K*¢P. Hence we have

HI(E) < #3(L)

and the equality holds if and only if there exists a K-embedding : L —
E. So it suffices to show :
If there exists an O g-algebra homomorphism

n:901p — Op/ag/x with m>wvg(a) +e,

then we have #J(E) < #J(L).
Noticing that a% x is of the form al with an ideal I of Og which
satisfies the assumption of Part (i), we can define, by (a) of (i), a map

CJ(L) — I(EB) ; ur—u,

where u” is the unique element of J(E) which makes the following dia-

gram commutative:
nou

B —— Og/al

unJ' l

Op —— Og/l.

9
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It suffices now to show that this map is injective.
To see what the kernel I' of the composition

/] canon.

97 —— Op/al —— Og/I

is, let K' be the maximum unramified extension of K contained in L.
Then there exists a unique K-embedding : K' — FE for which 7 is an
O g -algebra homomorphism, because O g+ is formally étale over O . Let
a be a prime element of 97 and let P be the monic minimal polyno-
mial of a over Ok. Since L/K' is totally ramified, P is an Eisenstein
polynomial;

P(X)=a0+a1X+---+a.n_1X"‘1 -I-Xn,

with a; € Ok, vr(a;) > 1, vx(ap) =1,and n = erx = [L: K']. If
B is an element of O with S(mod.al) = n(e), we must have P(f8) €
al. Comparing the valuations of P(8) and its terms, we see vg(f) =
vg(a) = 1/n. Thus the kernel I' is {z € Or;vkx(z) > m — vk(a)},
which satisfies the assumption of Part (i).

If u,v € J(L) and u” = v", we have nou =nov (mod.I) and u = v
(mod.I'), from which we obtain u = v by Part (b) of (). Thus L/K has
the property (Pp,).

By Proposition (3.1),(2),(ii), we have m > uyp/x — CE;K if m >
vi(a)+ €. Hence upx < vi(a)+e+ eZ}K.

If ey /x is prime to p, L/K is tamely ramified and

upx =1 < vk(a) +e.

Suppose p divides ey x, and let G := Gal(L/K). Then ey xur/k is
an integer divisible by p, because uz/x = [*/*(G(z) : 1)dz, p|(G(z) : 1)
if z <11k, and G(,) may “jump” only at points z € eZ}KZ. Hence the
inequality

(p—1)er/xur/x < (p—1)er/kvi(a) + epx(p — 1)e + (p — 1),

where the terms except (p—1) are integers divisible by p, implies uy /g <
v (a) + e.

COROLLARY (3.3). Let the notation and hypothesis be as in Proposition
(3.2), and let D1, i be the different of the extension L/K. Then we have

vk (Dr/x) < vi(a) + Fiymin{vk(a),vx(p)} unless vi(Dp/x) = 0.
Proof. If L/K is unramified, then vg(Dr/x) = 0. If not, we have
ir/x > 0 and ( Proposition (3.1),(1) )

. 1 . .
vr(Dr/x) =ur/x — ik < vr/x < vk(a)+ p——___—l-mmwK(a),vK(p)}-

10
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THEOREM (3.4). Let A be a complete discrete valuation ring with finite
residue field, and fix a prime element w of A. Let K be a local field of
“mixed characteristic” over A, i.e., a complete discrete valuation field
K with perfect residue field which is endowed with an injective ring
homomorphism A — K inducing a local homomorphism A — Ok.
Let n > 1 be an integer and J a finite flat m-module scheme over O g
( [7], §1 ) such that the invariant differential module wy of J is a free
(Og/7"Og)-module. ( A typical example of such a w-module is the
kernel of #™ on a w-divisible group (loc. cit.) ). Let u, := nvg(r) +
—L-min{nvg(r),vk(p)}, H the kernel of the action of G = Gal(K**? /K )

p—1
on J(K*¢?), L := (K**?)H | and Dy/x the different of the extension

L/K. Then we have G*) C H for all u > u,, and v (D x) < Uo-

Proof.  Replacing K by its maximum unramified extension, we may
suppose the residue field k of K is algebraically closed. Then the general
theory of group schemes says that the affine ring B of J is locally of
complete intersection. Since Q%/ox = B Qp, wy is a free (B/n"B)-
module, we can apply Proposition (3.2) and Corollary (3.3) with a = 7™
and obtain the theorem.

Remark (3.5). In some simple cases, direct calculations yield sharper
results. For example, let A and n be as above, F' the fraction field of
A, and Fp,, n > 0, the field of n™-division points of a Lubin-Tate group
over A associated with . If L/K = F,,/F, with m > n, we have

{m, fn=0
§7A ol
L/x "+(m—-n—-1)¢g""g—-1), ifn>1

vk (Dr/x) =V[L : K] [min{m,vr(q) + ¢ "™} — ¢" ™ /(¢ - 1)] .
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