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Abstract

It is well known that Lyapunov function gives a sufficient condi-
tion for the stability of differential equations. However, the prob-
lem how we can construct the function is not solved, except in
some special cases.

On constrained differential equations, this paper gives a suffi-
cient condition for the existence of a generalized ,Lyapunov func-
tion which is called a quasi-potential. We shall show that this
potential is induced from the constraint space. As a result, not
only a neccessary condition but a sufficient condition for the ex-
istence of the orbit with jump is obtained simultaneously. Fur-
theremore, being given a suitable cross section, a problem where
an attractor exists in this system is solved through the potential.
Hence, in constrained differential equations, we can now analyze
both the unstability including jump phenomena and the stability
of the systems.

1. Introduction

In differential equations, generally, we attempt to construct a multi
variables scalar function on which the stability and the unstability of the
system are represented.

But we shall soon be found that this attempt does not succeed, be-
cause there are no mutual relations between the differential equations
and the scalar function. Therefore, we restrict the equations by some
constraints. Then we shall come to deal with constrained differential
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equations or its (singular perturbations”. In the system, we shall try to
construct the function on which the above properties are represented un-
der the assumptions. And we shall show the conditions with which jump
phenomena in (1) occur.

2.Constrained differential equations and its quasi-potential

Throughout this paper, we shall consider the following constrained
differential equation, $x\in R^{n},$ $y\in R^{l}$ and $u\in R^{m}$ ,

th $=f(x, y)$ , $( \dot{x}=\frac{dx}{dt})$ (1)

$g(x, y, u)=0$ ,

$f$ : $R^{n}xR^{l}arrow R^{n}$ ,
$g$ : $R^{n}\cross R^{l}xR^{m}arrow R^{l},$ $(n\leq l)$ ,

where $x,$ $y$ are state variables and $u$ is a parameter. Then, we shall give
a sufficient condition for the existence of a quasi-potential $F$ (multi vari-
ables scalar function) defined under mentioned. Now, let $x_{0}\in R^{n}$ be an
isolated singular point of (1) and $N(x_{0})$ be a neighbourhood of $x_{0}$ .

Definition 2.1 A quasi-potential $F$ : $R^{n}xR^{m}arrow R$ has following
properties $a$), $b$), $c$) on $N(x_{0})$ :

a) for any $u$ ,

$F(x(t), u)$ is smooth with respect to $t$ , (2)

b) for any $u$ ,

$\frac{\partial F(x,u)}{\partial x_{i}}=0$ , $i=1,2,$ $\cdots$ , $n$ , (3)

c) for any $u$ ,

$N(x_{0})=N_{u}^{0}(x_{0})\cup N_{u^{+}}\cup N_{u^{-}}$ and $N_{u}(x_{0})\neq N_{u}^{0}(x_{0})$ , (4)

where
$N_{u}^{0}(x_{0})=\{x\in N(x_{0})|\dot{F}(x, u)=0\}$ , (5)

$N_{u}^{+}=\{x\in N(x_{0})|\dot{F}(x, u)>0\}$ , (6)
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and
$N_{u^{-}}=\{x\in N(x_{0})|\dot{F}(x, u)<0\}$ . (7)

The condition a) is a natural assumption. The condition b) asserts
that the isolated singular point $x_{0}$ in (1) is a singular point of $F$ , simul-
taneously. The condition c) asserts that $N_{u}^{0}(x_{0})$ on which the value of $F$

is invariant divides $N(x_{0})$ into two regions. One is monotone increasing
and the other is monotone decreasing, respectively.

Definition 2.2 If $N(x_{0})\neq R^{n}$ , we call this function $F$ a local quasi-
potential. If $N(x_{0})=R^{n}$ , we call it a global one.

If only the property (7) holds on $N(x_{0})$ , then it is called Lyapunov
function. Therefore, this function defined above is a generalized Lya-
punov function.

3. $The$ conditions for the existence of the quasi-potential

On the parameter space $R^{m}$ , we assume that a critical state in which
there is a division $U_{1},$ $U_{2}$ of $R^{m}$ ;

$J_{u\in U_{1}}\neq\emptyset$ and $J_{u\in U_{2}}=\emptyset$ (8)

occur, where

$J_{u}=$ { $x\in R^{n}|f(x,$ $y)$ is discontinuous}. (9)

And we assume that $f(x, y)$ is Lipschitz continuity for any $x\in R^{n}\backslash J_{u}$

Let $D_{y}g(x, y, u)$ denote Jacobian matrix of $g$ and $g_{y}(x, y, u)$ denote
partial derivative of $g$ with respect to $y$ .

Lemma 3.1 Changing the coordinate, in the system (1), if
$rankD_{x}g(x, y, u)=n,$ $rankD_{y}g(x, y, u)\geq n$ and $rankD_{y}g(H_{1}(y, u),$ $y,$ $u$ ) $<$

$n$ for some $u$ , then the set $U_{1}$ in the system rewritten into (12) is not
empty.
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proof) Calculating the constraint equation in (1),

$g_{x}(x, y, u)\dot{x}+g_{y}(x, y, u)\dot{y}=0$. (10)

When choosing the appropriate coordinate $z$ which is a sub vector of $y$

as state variables, from the first condition, there is a smooth function $H_{1}$

: $R^{l}\cross R^{m}arrow R^{n}$ such that

$x=H_{1}(y, u)$ . (11)

Substituting (11) to (10), (l)is transformed into (12),

$g_{y}(H_{1}(y, u),$ $y,$ $u$ ) $\dot{y}=-g_{x}(H_{1}(y, u),$ $y,$ $u$ ) $f(H_{1}(y, u),$ $y,$ $u$ ). (12)

From the second condition, 1 $D_{y}g(H_{1}(y, u),$ $y,$ $u$ ) $|=0$ for some $y,$ $u$ , there-
fore $J_{u}$ in (12) is represented as follows:

$J_{u}=\{z\in R^{n}|rankD_{y}g(H_{1}(y, u), y, u)<n\}$ . (13)

Then,
$U_{1}=\{u\in R^{m}|rankD_{y}g(H_{1}(y, u), y)u)<n\}\neq\emptyset$ . (14)

$\square$

Let $f_{2}(x, u)$ denote $f(x, y)$ constrained by (1). Then, under the two
conditions again, we get the following theorem.

Theorem 3.2 If rank$D_{y}g(x, y, u)\geq n$ and the equation (1) has the
property of hyperblicity at $x_{0}\in R^{n}$ then there is a quasi-potential on
$N(x_{0})$ .

Proof) From the condition $|D_{y}g(x, y, u)|\neq 0$ , there is a smooth func-
tion $H_{2}$ : $R^{n}\cross R^{m}arrow R^{l}$ such that

$y=H_{2}(x, u)$ . (15)

Choosing n-dimensional coordinate from (15), multi variables scalar func-
tion, $F_{k}(x, u)$ : $R^{n}xR^{m}arrow R$ is defined as follows:

$F_{k}(x, u)= \sum_{i=1}^{n}k_{i}y;$ . (16)
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Then, (16) represents the constraint space $\Sigma_{u}$ ;

$\Sigma_{u}=\{x\in R^{n}|g(x, H_{2}(x, u), u)=0\}$ . (17)

On the other hand, by using (15)

$f_{2}(x, u)=f(x, H_{2}(x, u))$ , (18)

therefore we can rewrite the system (1) as follows:

$\dot{x}=f_{2}(x, u)$ . (19)

From the other condition of hyperblicity in (1), for some $u,$ $D_{x}f_{2}(x_{0}, u)$

has positive or negative eigen values. As the distinct eigen vectors hold
orthogonal relations (22), following (20),(21) are established.

Let $\lambda_{r:}\in R^{n}(1\leq i\leq n)$ be a right-side eigen vector and $\mu_{l_{j}}\in R^{n}(1\leq$

$j\leq n$ , $i+j=n$) be a left-side eigen vector associated with a negative,
positive eigen value of $D_{x}f_{2}(x_{0}, u)$ , respectively.
Then, a gradient vector $\nabla_{x}F_{k}$ of $F_{k}$ at the stable (unstable) orbit keeps
orthogonal relations;

$\nabla_{x}F_{k}(x, u)\cdot\lambda_{r}$ . $=0$ , $1\leq i\leq n$ , (20)

$\nabla_{x}F_{k}(x, u)\cdot\mu_{l_{j}}=0$ , $1\leq j\leq n$ , (21)

$\lambda_{r_{i}}\cdot\mu_{l_{j}}=0$ , $\mu_{r_{i}}\cdot\mu_{l_{j}}=0$ and $\lambda_{r_{i}}\cdot\lambda_{l_{j}}=0$ . (22)

Therefore, $k\in R^{n}$ is determined uniquely by solving (20), (21). From
(16),$for$ some $u$

$N_{u}^{0}(x_{0})\neq\emptyset$ (23)

which contains $x_{0}\in R^{n}$ Moreover, as $F(x, u)$ is smooth, there is a
tangent space at $x_{0}$ satisfying (3). From the assumption, the signs of
eigen values are positive or negative, (20) and (21) give the property (4).
Lipschitz continuity of $f(x, y)$ assures the existence and uniqueness of
solutions in (1). So, (4),(5),(6),(7) are satisfied. $\square$
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4. $A$ jumping condition on the quasi-potential

Some properties are on the quasi-potential $F$ when the system (1)
does not hold local solvability at some $p\in\Sigma_{u}\subset R^{n+1}$ in (17). For some
$u\in R^{m}$ , let $L_{u}$ denote a subset of $R^{n}$ such that

$L_{u}=\{x\in N_{u}^{0}(x_{0})\backslash \{x_{0}\}\}$ , (24)

and let $\Pi_{x}$ : $\Sigma_{u}arrow R^{n}$ be the natural projection defined by

$\square _{x}(x, u)=x$ . (25)

Next Lemma 4.1 is a well-known neccessary condition for the exis-
tence of jumping points.

Lemma 4.1 If $p\in\Sigma_{u}$ is locally solvable, then $p$ is not a jumping
point.

proof) As a vector field is defined uniquely under this condition, $p$ is
not ajumping point. $\square$

Theorem 4.2 Let a quasi-potential $F$ on $N(x_{0})$ exist. Then $L_{u}\neq\emptyset$

and then the tangent space $T_{p}(\Sigma_{u})$ at some $p\in\Sigma_{u}$ does not intersect
$KerII_{x}$ , the kernel of $II_{x}$ , transversally.

proof) For some $u\in R^{m},$ $x\in L_{u}$ ,

$\dot{F}(x, u)=(\frac{\partial F}{\partial x}I\cdot(\frac{dx}{dt}I=0$ . (26)

The relation (26) implies that the tangent vector along the orbit in
(1) and the gradient vector of $T_{p}(\Sigma_{u})$ keep an orthogonal relation. There-
fore, $p$ is not locally solvable. As $p$ is locally solvable iff $T_{p}(\Sigma_{u})$ intersects
$KerII_{x}$ , it is concluded from Lemma 4.1. $\square$

Now, we shall reduce a sufficient condition for the existence of ajump-
ing point. If $HF(x, u)$ , Hessian matrix of $F(x, u)$ for some $u\in R^{m}$ , is
positive (negative) definite with respect to $\dot{x}$ , then $HF(x, u)$ restricts $L_{u}$

to jumping states. Let $LJ_{u}$ denote a sub set of $L_{u}$ such that

$LJ_{u}=\{x\in L_{u}|\dot{x}^{t}HF(x, u)\dot{x}\neq 0\}$ . (27)
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Theorem 4.3 If $LJ_{u}\neq\emptyset$ , then $LJ_{u}\subset J_{u}$ .
proof) As a point of $LJ_{u}$ gives a minimal (or maximal) value on $F$

along the orbit in (1), from Theorem4.2 and (5), (6), (7), this point is
a jumping state. $\square$

On the other hand, this quasi-potential has a following general prop-
erty. As (elementary catastrohp\’es’’ are some equivalence families of
$F(x, u)$ with a non-degenerate singular point $(x_{0}, u_{0})\in R^{n}\cross R^{m}$ $(m\leq$

4), we can conclude the following corolary.

Corollary 4.4 If $u_{0}\in R^{m}$ is a singular point of $F$ and $m\leq 4$ , then
$F(x, u)$ belongs to elementary catastroph\’es.

In the following section, we shall take up van der Pol’s equation as a
typical, simple example $(n=m=l=1)$ .

5.$Van$ der Pol’s equation

His equation is represented as follows:

$\dot{x}=-y+a$
(28)

$\epsilon\dot{y}=x-f(y, u)$ , $\epsilonarrow 0$ ,

where $a$ is any constant. In this system, the constraint space $\Sigma_{u}$ is given
by

$\Sigma_{u}=\{x\in R|x-f(y, u)=0\}$ . (29)

By changing coordinate,

$\dot{x}=\frac{\partial}{\partial y}f(u, y)\dot{y}$ , (30)

and substituting (30) to (28),

$\frac{\partial}{\partial y}f(y, u)\dot{y}=-y+a$ . (31)

Generally, $f(y, u)$ is given as follows:

$f(y, u)=\underline{y^{3}}-uy$ , (32)
3
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therefore we rewrite (31) into (33),

$(y^{2}-u)\dot{y}=-y+a$ . (33)

Then,
$F(y, u)=x=f(y, u)$ , (34)

$U_{1}=\{u\in R|u\geq 0\}$ , $U_{2}=\{u\in R|u<0\}$ (35)

and
$J_{u}= \{x=\frac{2}{3}u\sqrt{u}, -\frac{2}{3}u\sqrt{u}\}$ . (36)

This function (34) is a global quasi-potential. These points in $J_{u}$ are
jumping states by Theorem4.3. We have already investigated the cases
in which there exists a local quasi-potential $(n=2,m=1,l=12)$ and a
global quasi-potential $(n=m=2, l=16)$ on the system [1].
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