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ABSTRACT
A system of $N$ negatively-charged sheets with uniform positive background is studied

numerically by transforming the equations of motion into finite-time mapping of $2N$ de-
grees of freedom. Evolution of the system from twestream instability towards large-vortex
states is shown.

1. INTRODUCTION
A collisionless plasma is described by Vlasov equation

$\frac{\partial f_{\pm}(x,v)}{\partial t}+v\frac{\partial f_{\pm}(x,v)}{\partial x}\mp\frac{e}{m_{\pm}}\frac{\partial\phi(x)\partial f_{\pm}(x,v)}{\partial x\partial v}=0$ (1)

where $f_{+}(x, v)$ and $f_{-}(x, v)$ are the distribution function of ions and the distribution func-
tion of electrons, respectively, in the phase space of the position $x$ and the velocity $v$ . $+e$

is the charge of an ion $and-e$ is the charge of an electron. $m_{+}$ and $m$-are the masses of
an ion and an electron, respectively. Eq.(l) is supplemented with the Poisson’s equation
for the potential $\phi(x)$ ,

.

$\frac{\partial^{2}\phi(x)}{\partial x^{2}}=-4\pi e(n_{+}-n_{-})$ (2)

where the number density $n\pm is$ given by

$n_{\pm}(x)= \int_{-\infty}^{\infty}dvf_{\pm}(x, v)$ (3)

Bernstein, Greene and Kruskal[l] found steady state solutions of the one-dimensional
Vlasov equations

$v \frac{\partial f_{\pm}(x,v)}{\partial x}\mp\frac{e}{m_{\pm}}\frac{\partial\phi(x)\partial f_{\pm}(x,v)}{\partial x\partial v}=0$ (4)

with the Poisson’s equation (2) $-\langle 3$).
The general solution of Eq.(4) is

$f_{\pm}(x, v)=f_{\pm}(E_{\pm})$ (5)

with
$E_{\pm} \equiv\frac{1}{2}m_{\pm}v^{2}\pm e\phi$ (6)
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Therefore, for an arbitrarily given functions of $f_{\pm}(E_{\pm}),$ $\phi(x)$ is the solution of the following
integrodifferential equation

$\frac{d^{2}\phi(x)}{dx^{2}}=4\pi e\{\int_{-\epsilon\phi}^{\infty}dE\frac{f_{-}(E)}{[2m_{-}(E+e\phi(x))]^{1/2}}-\int_{\epsilon\phi}^{\infty}dE\frac{f_{+}(E)}{[2m_{+}(E-e\phi(x))]^{1/2}}\}$ (7)

The solutions for the integro-differential equations are listed in [2–3]. However, the
stability of the steady state solutions have been studied only for restricted conditions
analyticaUy.[2-4].

On the other hand, Dupree[5] and Kadometsev-Pogutse [6] suggested the existence of
highly correlated structures in a turbulent plasma, caUed “clumps”. Therefore it is impor-
tant to study not only the steady state solution of the Vlasov equation but also its time
evolution.

In this report, we show results of our numerical study on a one-dimensional plasma
model. Our model is a mechanical model. Namely, we solve the equation of motions for
the system of charged particles. We should note that the Vlasov equation is based on the
assumption that the electric field due to the presence of charged particles is a self-consistent
field; namely the electric field is determined by the ditribution function of charged particles.
This is valid when there are sufficiently many particles within the Debye length. So it is
important to perform particle simulations for various densities of charged particles in order
to see the effects of individual collisions, which is neglected in the Vlasov equation, on the
evolution of the distribution functions of charged particles.

In Section 2, we describe the model and the results are summarized in Section 3. Section
4 is devoted to concluding remarks.

2. Dawson’s Model
The model system, which was proposed by Dawson [7-8], consists of $N$ electron sheets

and of positive uniform ion background, confined within a distance $L$ . Since the system
is one-dimensional, the electric field is a linear function of the space $x$ and it jumps with
a finite $amount-4\pi\sigma$ at the position of a sheet, $where-\sigma$ is the charge per unit area on
the electron sheet. We denote by $x$ : the position of the i-th electron sheet from the left
boundary of the system. Then, the equation of motion is written as

$\frac{d^{2_{X}}:}{dt^{2}}=-\omega_{p}^{2}[x_{i}-(i-\frac{1}{2})\Delta]$ (8)

where $\omega_{p}$ is the plasma frequency
$\omega_{p}\equiv\frac{4\pi\sigma^{2}}{m\Delta}$ (9)

$m$ is the mass per unit area of the electron sheet and $\Delta$ is the average distance of neighboring
pairs of sheets, $\triangle=L/N$ .
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Eq(l) is completely solved for a given initial condition of positions $x^{0}=(x_{1}^{0}, \ldots, x_{N}^{0})$ and
velocities $v^{0}=(v_{1}^{0}, \ldots, v_{N}^{0})$ . Thus,

$x_{i}(t)=X_{i}(x^{0}, v^{0},t)$ , $v_{i}(t)=V_{1}(x_{1}^{0}, v^{0},t)$ (10)

where
$X_{i}(x, v,t) \equiv\Delta(i-\frac{1}{2})+[x-\Delta(i-\frac{1}{2})]\cos(\omega_{p}t)+\frac{v}{\omega_{p}}\sin(\omega_{p}t)$ (11)

$V_{1}(x, v,t) \equiv v\cos(\omega_{p}t)-\omega_{p}[x-\triangle(i-\frac{1}{2})]\sin(\omega_{p}t)$ (12)

Then, it is possible that a pair of neighboring sheets may cross each other. Sup-
pose at time $t_{c}(i)$ , the i-th sheet and the $(i+1)$-th sheet cross each other for the first
time from a given initial condition. Then $t_{c}(i)$ is given as the solution of $X_{i}(x^{\dot{0}}, v_{*}^{0},t)=$

$X_{i+1}(x_{*}^{0_{+1}}, v^{0_{+1}},t)$ , namely

$[x_{1+1}^{0}-x^{0}- \Delta]\cos(\omega_{p}t)+\frac{1}{\omega_{p}}(v_{i+1}^{0}-v_{i}^{0})\sin(\omega_{p}t)+\triangle=0$ (13)

which can be expressed analytically. After finding crossing times for all pairs of neighboring
sheets $t_{c}(i)$ , we look for the minimum of them, $t_{c}= \min_{*}t_{c}(i)$ and for the pair $i_{c}$ which
corresponds to $t_{c}$ . That is, the pair of neighboring sheets, $i_{c}$ and $i_{c}+1$ , are the ones
which cross each other at the earliest time of all neighboring pairs in the system. After the
two sheets exchange the velocities, their subsequent evolution is again given by Eq.(ll).
However, in updating the initial conditions, we should find the first crossing pair $i_{c}$ and
the corresponding crossing time, which is given by $t_{c}= \min_{i}t_{c}(i)$ . Thus after the crossing,
the evolution of the system is described by

$\{v_{i}(t)=V.\cdot(x(t_{c}),v(t_{c}),t-t_{c})^{)}x.\cdot(t)=X_{i}(x_{i}:(t_{c}),v_{i}.\cdot(t_{c}),t-t_{c}(i\neq i_{c}, i_{c}+1)$ (14)

$\{\begin{array}{l}x.\cdot(t)=X_{C}(x_{j_{C}}(t_{c}),v_{+1}c(t_{c}),t-t_{c})v_{c}(t)=V_{c}(x_{e}(t_{C}),v_{\epsilon}+1(t_{c}),t-t_{C})\end{array}$ (15)

$\{\begin{array}{l}x_{c}+1(t)=X_{c}+1(x_{c}+1(t_{C}),v_{c}(t_{c}),t-t_{c})v_{c}+1(t)=V_{j_{c}+1}(x_{c}+l(t_{C}),v_{\dot{c}}(t_{c}),t-t_{c})\end{array}$ (16)

Thus, we can again determine the subsequent crossing time $t_{c}^{(k+1)}$ and the configuration
of $N$ particles in the phase space at this crossing time from the configuration $(x^{(k)}, v^{(k)})$

at the previous crossing time $t_{c}^{(k)}$ . Namely, the time interval $\tau_{c}^{(k+1)}\equiv t_{c}^{(k+1)}-t_{c}^{(k)}$ between
the k-th crossing and the $(k+1)$-th crossing is a function of the configuration at the k-th
crossing. Therefore, the configuration $(x^{(k+1)}, v^{(k+1)})$ at the $(k+1)$-th crossing is specified
completely by the time interval $\tau_{c}^{(k+1)}$ and by the configuration $(x^{(k)}, v^{(k)})$ at the k-th
crossing. Thus we have the $2N$-dimensional mapping.

$\tau_{c}^{(k+1)}=T(x^{(k)}, v^{(k)})$ , $x^{(k+1)}=X(x^{(k)}, v^{(k)}, \tau_{c}^{(k+1)})$ , $v^{(k+1)}=V(x^{(k)}, v^{(k)}, \tau_{c}^{(k+1)})$ (17)
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3. Results
We have analyzed the $tw\triangleright stream$ instabihity of $N=1260$ particles in the one-dimensional

space of length $L=4\pi$ as shown in the figures below. We initially put 630 electron sheets
with positive velocities and 630 electron sheets with negative velocities. The signs of the
velocities of neighboring sheets are opposite. The initial positions of the sheets are randomly
distributed and the distribution of velocities is chosen to be narrow ( “cold beams” ). In
fact, we put initially

$v(x)=\pm v_{0}[1+acoe(4\pi x/L)+bR]$ (18)

where $a\approx 10^{-4},$ $b\approx 10^{-8}$ and $R$ is a random number with $|R|<1$ . We take periodic
boundary condition; namely, when we have $x_{N}(t)-x_{1}(t)=L$ , we consider that the l-st

sheet and the N-th sheet cross each other. The time is scaled by $1/\omega_{p}$ .

$\tau\cdot 36$
$T\cdot 58$

$T$. 94 $T$. $\epsilon\infty$$T\cdot 170$

Fig. A typical evolution of 1260 sheets in the phase space.
The V axis is the velocity axis and the X axis is the position axis.
Time $T$ is scaled by the plasma frequency.

We can see the quick evolution of alarge vortices in the phase space and the subsequent
collapse into a single vortex. The single vortex structure seems very stable and it decays
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after along time. This type of structure formation was observed in the computer -imulation
by Ghizzo et.al.[10].

We analyzed also the mean square of relative displacement of two sheets, $<[x;(t)-$
$x_{j}(t)]^{2}>at$ the later stage $(\omega_{p}t\approx 2000)$ . It turns out to be proportional to $t^{3}$ for large
$t$ , implying that the system is in a turbulent state.

We examined the statistics of the electric field in order to see whether the Gaussian
assumption, which has been used in theretical $work_{J}s[11]$ , really holds. The ratio of.the
fourth cumulant versus the square of the second cumulant seems to fluctuate between 1
and-l. Thus we cannot verify that the Gaussian approximation may hold.

4. CONCLUDING REMARKS
We have shown that the system of charged sheets can be handled exactly in numerical

calculation by transforming the equations of motion into a mapping. This is due to the
peculiarity of the one-dimensional system. We can use this simple model to check several
important aspects of the system of charged particles, for example, as we mentioned above,
the transition from collisional regime to collisionless regime, charecteristics of plasma tur-
bulence and so on.

We may generalize the idea of mapping to the case of ion plasma [11], in which electrons
are in thermal equilibrium for a given configuration of ions, although the formulation is far
more complicated.
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