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ABSTRACT

A recurrent network, which can approximate a
universal class of nonlinear dynamic systems, and its
learning algorithm are presented. The possibility of
learning chaotic dynamics by the recurrent network
was investigated. The Lorentz attractor was used as
an example of chaotic dynamics. When the trajectory
of the Lorentz attractor was used as the teacher
signal, the network was able to acquire the time
evolution rule of the Lorentz dynamics and generated
a chaotic attractor similar to the Lorentz attractor.
The possibility of learning the hidden chaotic
dynamics was also investigated.

1. INTRODUCTION

There are three types of neural networks. The first type is a
multilayerd feed-forward network. It has been shown that a three-
layer network can approximate any nonlinear function. The second
type is a relaxation network, such as the Hopfield network.
Although its output changes in time, only the stable output is used
for information processing. Therefore, these two types of networks
can be considered static information systems. The third type is a
recurrent neural network with arbitrary feedback connections.
Since the recurrent networks are complex nonlinear dynamic
systems, they exhibit a variety of complex temporal behavior, such
as limit cycle and chaos. Our main aim is to use the nonlinear
behavior of a recurrent network for information processing $[1,2]$ .
This may open new areas for active and dynamic information
processing.

In fact, chaos and other nonlinear phenomema have been
.found in many biological systems including squid giant axons, rat
hippocampus, rabbit olfactory bulb and brain $EEG[3,4,5]$ . These
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nonlinear dynamic phenomena seem to play an important role for
information processing in biological systems [3]. We would like to
control the chaotic dynamics by using recurrent networks. As a first
step, we trained the recurrent network to learn the chaotic
dynamics [1]. Although it is impossible to learn the long term
behavior of chaotic dynamics because of the initial value sensitivity
[6], it is possible to leam the time evolution rule of the chaotic
dynamics.

Recently, Lapedes and Farber [7] trained feedforward
backpropagation networks [8] to learn discrete chaotic maps, and
studied the accuracy of the network’s short time prediction. In our
approach, on the other hand , the recurrent network can acquire
the time evolution rule of the chaotic dynamics described by
nonlinear differential equations.

In our previous paper [1], we proposed a new recurrent
neural network architecture for general purposes. It is composed of
two types of units. One is a dynamic unit whose output is
determined by a differential equation. The other is a sigmoid unit
which transforms an input to an output through a sigmoid function.
These are connected each other by feedback connections. It is
shown that this recurrent network can approximate a universal
class of nonlinear dynamic systems if a sufficient number of hidden
units is introduced. A supervised learning rule for this recurrent
network was also derived. In this article, we summarized the
previous results of the recurrent network architecture and the
learning algorithm, and presented simulation results in detail.

In the computer simulation, the Lorentz attractor was used
as an example of chaotic dynamics. The trained recurrent networks
were composed of three dynamic units, which correspond to the
three dynamic variables.in the Lorentz dynamics, and thirty hidden
sigmoid units. In one simulation, the trajectory of the Lorentz
attractor was used as the teacher signal. After 30,000 weight
updates, the recurrent network generated a chaotic attractor whose
structure$\cdot$ was very similar to that of the Lorentz attractor. The
value of the largest Liapunov exponent calculated by the trained
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network was 0.85 (desired value: 0.90), which means that the
recurrent network was able to learn the instability of the chaotic
dynamics.

Next, we investigated the possibility of learning the hidden
dynamic variables of the chaotic dynamics. When one variable was
hidden, the trained network generated a chaotic attractor after
50,000 weight updates. The trayectories for visible variables were
very chose to those of the Lorentz attractor, while the hidden
variable trajectory was deviated from that of the Lorentz attractor.
The implication of this result is also discussed.

2. UNIVERSAL APPROXIMATION FOR NONLINEAR DYNAMIC
SYSEMS

Most of nonlinear dynamic systems can be described by the
following equations of motions if sufficient number of auxiliary
variables are introduced:

$dX(t)/dt=F(X(t), U(t))$ (2.1)

where $X,$ $U$ and $F$ represent a N-dimensional vector dynamic
variable, a K-dimensional vector external force and a N-dimensional
vector nonlinear function which is called a vector field,
respectively. For example, any Hamilton system can be written in
this form.

Recently, it was shown that any nonlinear function can be
approximated by a finite sum of sigmoid functions $[9,10]$ . Let $G(x)$

be a sigmoid function. Let $\Omega$ be a compact region of a space spanned
by $X$ and $U$ . The vector field $F(X,U)$ is assumed to be continuous in
$\Omega$ . Then, for an arbitrary $\epsilon>0$ , there exists an integer $M$ and real
constant’s $WA_{im},WB_{mi},WC_{mk},$ $WD.(i=1,..,N;m=1,.., M;k=1,.., K)such$
that the following relation is hold:

$ma\kappa|F_{i}(X,U)-H_{i}(X,U)|<\epsilon$
( $X.Uje\Omega$ (2.2)
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,where $H(X,U)$ is defined by

$H_{i}(X,U)= \sum_{m=1}^{M}WA_{m}\cdot G(\sum_{j=1}^{N}WB_{mj}\cdot X_{j}+\sum_{k=1}^{K}WC_{mk}\cdot U_{k}+WD_{t\hslash})$ .
(23)

If the nonlinear dynamic system defined by (2.1) is structurally
stable [61, the vector field $F(X,U)$ can be approximated by the vector
function $H(X,U)$ in the compact region $\Omega$ . Therefore, universal class
of nonlinear dynamic systems described by the equation (2.1) can
be approximated by recurrent neural networks defined by the
following equations of motions:

$dX(t)/dt=WA\cdot Z(t)$ (2.4a)

$Z(t)=G(WBX(t)+WC\cdot U(t)+WD)$ (2.4b)

where the N-dimensional vector $X(t)$ and the M-dimensional vector
$Z(t)$ represent outputs of dynamic units and sigmoid units,

respectively. The dynamic units receive signals from the sigmoid
units through the N X $M$ connection weight matrix $WA$ . The sigmoid
units receive the M-dimensional vector bias $WD$ , signals from the
dynamic units through the M X $N$ connection weight matrix $WB$ and
external inputs through the M X $K$ connection weight matrix $WC$ .
They transform these inputs to outputs through a sigmoid function,
$G$ . In the learning process, some dynamic units receive desired
temporal behavior as teacher signals. They are called visible units
and denoted by $VD$ . The other dynamic units have no teacher signal
and are called hidden dynamic units. They are denoted by $HD$ . The
sigmoid units are all hidden since there is no teacher signal for
them. The structure of the network is shown in fig.1.

3. LEARNING ALGORITHM

In this section, a supervised learning algorithm for the
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recurrent network defined by (2.4) is derived $[1,13]$ . Although we
can derive a learning rule for any error function, here we will use
the teacher forcing error function $[11,12]$ . In the teacher forcing
method, the visible units are clamped to the teacher signal, $Q(t)$ , by
receiving additional external forces,

$J\iota(t)=dQ_{i}(t)/dt-(WA\cdot Z(t))\iota$ for $i\in VD$ .
The magnitude of the external forces can be considered as the
deviation from the desired network. Therefore, an error function is
define by

$E= \int_{t1}^{J2}dt\sum_{i\in\gamma D}J_{i}^{2}(t)$ .
(3.1)

By introducing the Lagrange multipliers, $PX$ and $PZ[13]$ , the error
function can be written as:

$E= \int_{t1}^{t2}dt[\sum_{i\in\nu D}J_{i}^{2}-\sum_{ieHD}PX_{i}(\alpha/dt-WA\cdot Z)$ ;

$- \sum_{m}PZ_{n\prime}(Z_{\hslash}-G((WB\cdot X+WC\cdot U+WD)_{n}))]$.
(3.2)

Let us calculate the variation of the error function in order to get
the expression for the gradient of the error function. The calculation
is straightforward. The equations of motions for Lagrange
multiplier can be.derived from the requirement that the coefficient
of the variations $\delta X$ and $\delta Z$ should be vanish:

$d(PX_{i})/dt=- \sum_{n}PZ_{m}\cdot G’((WB\cdot X+WC\cdot U+WD)_{m})\cdot(WB)_{n\dot{u}}$

(3.3a)

and
$PX\iota(t2)=0$ for $i\in PD$ (3.3b)

where $G’(x)$ represents the gradient of the sigmoid function, and
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$PZ_{m}= \sum_{i}P_{i}\cdot(WA)_{\dot{\nu}m}$ for $m=1,\ldots,M$ ,
(3.3c)

where
$P\iota=- J_{i}$ for $i\in HD$

and
$P\iota=PX_{i}$ for $i\in HD$ .

Then the variation of the error function can be written as

$\delta E=\int_{t1}^{t2}dr[P^{T}\cdot\delta WA\cdot Z+(PZ\cdot G’(WB\cdot X+WC\cdot U+WD))^{T}$

$( \mathscr{N}B\cdot X+\delta WC\cdot U+\delta WD)]+\sum_{i\in HD}PX_{i}(t1)\cdot M_{i}(t1)$ .
(3.4)

where matrix notations are used and the superscript $T$ denotes the
transpose of a vector. The derivatives of error function with respect
to adjustable parameters $WA,$ $WB,$ $WC,$ $WD$ and $X(tl)$ are given by
the coefficients of $\delta WA,$ $\delta WB,$ $\delta WC,$ $\delta WD$ and $\delta X(tl)$ in (3.4),

respectively. The adjustable parameters can be modified by using
the steepest descent method or other method like conjugate-
gradient algorithm so that the error value will decrease.

The leaming schedule is as follows [2]. First, the network is
run forward in time from $T$ to $(T+TB)$ . The outputs of the hidden
units are calculated by clamping the visible units to the teacher
signals. Second, the error response variables, $PX$ and $PZ$ , are
calculated backward in time from $(T+TB)$ to $T$ , following
equation(3.3). Then, the weight values are modified to decrease
the error function. The initial value for hidden dynamic units are
also updated. Finally, the recurrent network with new parameter
values is run forward in time from $T$ to $(T+TF)$, and the current
time, $T$ , is updated to $(T+TF)$ . The above steps are repeated until
the error value becomes sufficiently small. There are some
comments on the initial condition in the above learning scheme.
Although initial condition for the visible units are known, the initial
condition for the hidden units are not known. An improper choice
of the initial condition for the hidden units causes errors of the
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visible units even for the desired weight values. Therefore, the
initial values for the hidden units are considered as learning
parameters in our learning scheme. When the desired trajectory is
chaotic motion, it is impossible to impose a initial condition at a
fixed time because of sensitive dependence on the initial condition
[61. Therefore, the initial condition should be reset for each learning
trial and the learning interval $TB$ should not be large compared
with the time scale corresponding to the largest Lyapunov exponent
[6]. This means that the recurrent network learns different
trajectories in the chaotic attractor for each learning trial. Since
these trajectories are derived from the same time evolution rule,
one can expect that the recurrent network is able to aquire the time
evolution rule of the chaotic dynamics.

4. LEARNING CHAOTIC DYNAMICS

4.1 Lorentz Attractor
In this section, the possibility of learning chaotic dynamics

by the recurrent network is investigated. The Lorentz attractor
(fig.2) is used as an example of the chaotic dynamics. It is defined
by the following differential equations [6].

$d\kappa/dt=Fl(x,y,z)=10\cdot(x-y)$ (4.1a)
$dy/dt=F_{2}(x,y,z)=-y+(28-z)\cdot x$ (4.1b)
$dz/dt=F_{3}(x,y,z)=-(8/3)\cdot z+x\cdot y$ (4.1c)

This is an autonomous system and there is no external input.
The trained network was composed of three dynamic units

and thirty sigmoid units. In the numerical simulation, these
differential equations were approximated by the second order
Runge-Kutta method. The time step was set to 0.01. The initial
weights of the network were chosen randomly. In the learning
phase, the learning internal $TB$ and the free running time $TF$ are set
to 1.0 and 0.5, respectively.
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4.2 All Visible Case
In one simulation, all the dynamic units received the teacher

signals $x(t),$ $y(t)$ and $z(t)$ calculated by the equation (4.1). As
learning proceeded, the network exhibited numerous bifurcations
and the error increased at these points because of instability near
the bifurcation points. Accordingly, we observed considerable
qualitatively different behavior such as fixed points, limit cycles,
etc (fig.3). After 30,000 weight updates, the recurrent network
generated the chaotic attractor shown in fig.4. The structure of the
attractor is very close to the Lorentz attractor. The accuracy of the
approximation for the dynamic evolution rule (4.1) can be
evaluated by the difference between the vector field $F_{i}$ for the
Lorentz dynamics (4.1) and the effective vector field $(WA\cdot Z)\iota$ for the
recurrent network (2.4). The error for the vector field $F\iota(x, y, z)$ in a
2-D section of the phase space is shown in fig.7, where the average
with respect to the remaining axis is taken. One can see that the
error on the attractor is very small. The error inside the attractor is
also small, while the error outside the attractor becomes large. One
should note that the network has never been supplied the teacher
signal in these regions. The error average over the attractor was
0.0002%. The above results show that the Lorentz dynamics (3.1)

are well approximated by the recurrent network in the
neighborhood of the attractor. We also calculated the largest
Liapunov exponent [6] which characterize the degree of the
instability of the chaotic dynamics. The value for the trained
network was 0.85 (the value for the Lorentz attractor was 0.90).

This indicated that the recurrent network was able to learn the
instability of the chaotic trajectories in the Lorentz attractor.

4.3 Learning Hidden Dynamics
Next, we investigated the possibility of learning the hidden

dynamic variables of the chaotic dynamics. Chaotic behavior does
not appear for continuous dynamic systems with less than three
degrees of freedom [6]. When only two dynamic variables, $y$ and $z$ ,
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were used as the teacher signals, the recurrent network should
estimate hidden dynamics in order to produce the chaotic attractor.
However, there is an ambiguity corresponding to the coordinate
transformation of the dynamic variables, since there is no teacher
signal for $x$ . Under the coordinate transformation,

$X=h(x’,y’,z’)$ (4.2a)

$y=y’z=z$
’

$(42c)(4.\cdot 2b)$

,the trajectory of $y$ and $z$ do not change. Then, the hidden unit of
the recurrent network could correspond to the transformed
variable $x’$ . The equations of motion for the transformed variables
are given by

$d\kappa’/dt=[F_{1}(h(x’,y’,z’),y’,z’)-p_{2}(h(x’,y’,z’)_{J}y’,z’)\cdot\partial h/\phi’-$

$F_{J}(h(x’,y’,z’),y’,z’)\cdot\partial h/\partial z’]/(\partial h/\partial x’)$

(4.3a)
$dy’/dt=F_{2}(h(x’,y’,z’),y’,z’)$ (4.3b)
$dz’/dt=F_{J}(h(x’,y’,z’),y’,z’)$ (4.3c)

,and the trained recurrent network may aquire this time evolution
rule. In this case, the vector field of the recurrent network is
different from that of the Lorentz equation (4.1), although the
dynamics of both systems are equivalent.

In the simulation, the recurrent network generated the
chaotic attractor shown in fig.5 after the 50,000 weight updates.
The trajectories for visible variables $y$ and $z$ are very close to that
of the Lorentz attractor, while the hidden variable trajectories are
deviated from those of the Lorentz attractor. The vector field errors
corresponding to the visible variables are very small while that
corresponding to the hidden variable is large (fig.8). The largest
Liapunov exponent calculated by the trained network was 0.75.

The above results seem to indicate that the hidden. unit of
the trained network corresponds to the transformed variable $x’in$

10
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(4.2). An attractor transformed from the Lorentz attractor by the
coordinate transformation

$x=x’- 2y’$ (4.4a)

$yz=z=y$, $(44c)(4.\cdot 4b)$

, is shown in fig.6. The attractor generated by the trained network
(fig.5) is more similar to the transformed attractor (fig.6) than the
Lorentz attractor (fig.2). However, we have not yet find the precise
form of the transformation by which the trained recurrent network
is mapped into the Lorentz attractor. There is another possibility
that there exists different dynamics which generates the same
trajectories for. some of the variables of the Lorentz attractor. We
are still investigating this problem.

5. Conclusion

A recurrent network, which can approximate a universal
class of nonlinear dynamic systems, and its learning algorithm were
presented. The possibility of learning chaotic dynamics was
investigated. The Lorentz attractor was used as an example of the
chaotic dynamics. When the trajectories of all the dynamic
variables were used as the teacher signal, the recurrent network
was able to acquire the time evolution rule of the Lorentz dynamics
and generated a chaotic attractor which was very similar to the
Lorentz attractor. The possibility of learning the hidden chaotic
dynamics is still an open problem and we will study it further in
our future publication. We hope recurrent networks and chaos may
open a new area of active and dynamic information processing.
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Fig.1 The structure of the recurrent network

x-y plane

Fig.2 Lorentz attractor

y-z plane z-x plane
Fig.3 A limit cycle generated by the recurrent net under training
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y-z plane z-x plane
Fig.4 The attractor generated by the all visible recurrent net

z-x plane

Fig.5 The attractor generated by the one hidden recurrent net

x’-y’ plane y’-z’ plane

Fig.6 Transformed Lorentz attractor
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