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SUMMARY
The paper reports multi-folding, a new chaotic attractor formation mechanism in a
driven R-L-Diode circuit. This mechanism is responsible for the alternative appearance
of period-one attractors and chaotic attractors in the bifurcation diagram. After several
simplification of the dynamics, exact bifurcation equations are derived and analyzed. It
turns out that all the period-one attractors of our interest belong to the same family.
Extensive measurements are perfonned to simplify the dynamics to a one-dimentional
mapping without loosing essential features of the observed bifurcation diagrams. The
period-one attractor of this map also belong to the same family. The multi-folding,
when couched in terms of the simplified one-dimensional map is characterized by its
multi-modality.

I. INTRODUCTION
The purpose of this paper is to report a new mechanism, called multi-folding, for

chaotic attractor formation in a driven R-L-Diode circuit. In spite of its simplicity, the
driven R-L-Diode circuit given in Fig. 1 exhibits a very rich variety of interesting
phenomena [1-17], including period doubling, chaotic attractor, intermittency and
crisis. One of the most interesting features of the bifurcation diagram associated with
this is that the large periodic windows and the chaotic bands alternate while the period
increases exactly by one (Fig.2). It has been demonstrated that a “foldmg” mechanism
is responsible for this phenomenon [16]. Several other works [6,9,17] have pointed
out that qualitatively different bifurcations are taking place at the lower ffequency
region of the bifurcation diagram. Figure 3 is the one-parameter bifurcation diagram of
the circuit which motivated the present study. The horizontal axis is the amplitude of
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sinusoidal voltage source while the venical axis is the current of the circuit sampled at a
paricular phase of the sinusoidal voltage source. The circuit parameters aoe;

$R=75\Omega,$ $L=2.5mH$, Diode: $3CC13$ ,

DC bias voltage $E_{b}=- 1.0Vf=25kHz,$ $0\leq E\leq 4.0$ V.

This bifurcation diagram is qualitatively different Rom Fig. 2, in that rather than
increasing the period of each successive periodic windows by one, period-l windows
(e.g., (a), (b) and $(c)$) and chaotic bands appear altematively. Namely, something
qualitatively different is happening at lower frequencies.

Our approach in the present work is (1) to apply exact bifurcation equation to the
simplified dynamics and analyze period-one orbits (not only attractors but also
repellers), (2) and to carefully observe the chaotic attractors and construct a simple
one-dimensional discrete map model which captures the important qualitative features
of the observed bifurcation phenomena. The mechanism of our interest, in terms of the
one-dimensional map model, turns out to be its multi-modality. This, in tum,
$\sigma anslates$ back to a $multi- fold\dot{m}g’’$ mechanism in the original dynamics.

$n$. THE DYNAMICS
A fairly accurate equivalent circuit of a junction diode is given by a parallel

$comec\dot{u}on$ of three nonlinear elements [18]:

(1) nonlinearresistor
$I_{d}=I_{s}(\exp(q’v/kT)- 1)$ (1)

(2)junction capacitor $C_{j}(v)$ due to the depletion region;

$C_{j}(v)=C\mathcal{N}(1- vW_{j0})^{1\Omega}$ (2)

(3) diffusion capacitor $C_{d}(v)$ due to the rearrangement of the niority canier density

$C_{d}(v)=C_{m}\exp(q’v/kT)$ (3)

where $I_{s},$ $q’,$ $k,$ $T,$ $Vj0C_{j0}$ and $C_{d0}$ are the saturation current, electron charge,

Boltzmann constant, the absolute temperature, the potential voltage of the pn junction,
the junction capacitance at zero bias and the diffusion capacitance at zero bias,

respectively.
Note that under reverse bias, the capacitor is dominated by the junction capacitor

(2), whereas under forward bias, the capacitor is dominated by the diffusion capacitor
(3). By measurements the capacitance is found to be 51.4 $nF$ at 0.5 V (a positive bias)

and 235 $pF$ at-1.0 V (a negative bias). Note that the difference in the capacitance
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values is more than two orders of magnitude. The diode exhibits also a rectiflcation
characteristic (1): in the reverse bias region the resistance is almost infmte, whereas in
the forward bias region the resistance is very small. For example at 0.5 V the
resistance is 100 $\Omega$ . By carefully measuring the impedances of the capacitors and the
resistor over a frequency range of more than 25 fflz, it was found that the impedances
of the capacitors are much smaller than that of the resistor. Therefore the diode
characteristic can be simplified and modeled by a 2-segment $piecewise- l\dot{n}$ear capacitor
[10] so that the dynamics of the R-L-Dio& circuit can be accurately described by

$\frac{dq}{dt}=i$

(4)

$L_{\phi}^{p}=- Ri-\{\begin{array}{lll}\frac{1}{C_{d}}q ifq \geq 0\frac{1}{C_{j}}q ifq <0\end{array}\}- E_{d}+E_{b}+Esin(2ffi)$

where $C_{d}$ is the diffusion capacitance at 0.5 V bias, $C_{j}$ is the junction capacitance at

$- 1.0V,$ $E_{d}=0.5V$ is the break point voltage at which the capacitance value changes

between the junction capacitance and the diffusion capacitance, $i$ is the circuit current
and $q$ is the charge of the capacitor.

III. EXACT BIFURCATION EQUATIONS
To observe period-one attractor more clearly, we will derive exact bifurcation

equations of the simplified dynamics (4) of our R-L-Diode circuit, based on th$e$

piecewise-linear normal forn $theorem[19- 20]$ .
In order to apply the normal form theorem, we frst, rescale the dynamics(4) and

convert it into the fourth-order autonomous system as follows;
$\frac{dQ}{d\tau}=I$

$\frac{d\Gamma}{dt}=- kf-$ $\{\begin{array}{lll}\perp c_{j}^{Q} ifQ<1\frac{1}{C_{d}}Q -\frac{1}{C_{d}}+_{c}\perp_{j} ifQ\geq 1\end{array}\}$

(5)

$\frac{dM}{d\tau}=N$
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$\frac{dN}{d\tau}=-M$

where

$Q \equiv C_{j}E\infty\theta_{\iota^{L_{E}}}+1.l\equiv\frac{aL:}{C_{j}E_{b^{-\ )}}}.,$
$\tau\equiv\alpha,$

$k \equiv\frac{R}{aL}.\frac{1}{c_{l}}\equiv\frac{1}{\phi C_{x}L}(x=d.j)$

$M\equiv\sin\tau$ , $N\equiv\cos\tau$ , $M^{2}+N^{2}=1$ .
Next, we recast (5) as follows;

$\frac{dx}{d\tau}=\{\begin{array}{lll}Ax (Q\geq 1)Bx +p (Q<1)\end{array}\}$ (6)

where
$x=(Q, I, M, N)^{T},$ $p=(o_{C}\perp_{d}\frac{1}{C_{j}},0,0)^{T}$ ,

($T$ indicates transpose of a vector.)

A– $\{\begin{array}{llll}0 l 0 0-\frac{1}{C_{j}} -\iota \frac{E}{C_{j}\beta_{b}\cdot E_{d})} 00 0 0 10 0 - 1 0\end{array}\}$ $B=\{\begin{array}{llll}0 1 0 0\frac{1}{Q} l \frac{E}{C_{j}(E_{b}\cdot E_{d}}) 00 0 0 10 0 - l 0\end{array}\}$

Figure 4 shows a schematic picture of an orbit in the $(Q, I)$ space. Consider a point
X lying on the boundary $B_{0}$. Let $Y$ and $Z$ be the points where the trajectory starting

ffom X hits $B_{0}$ again at positive time $s_{1}$ and negative $\dot{u}me- t_{1}$ , respectively. Similarly

let $W$ be the point where the trajectory starting from $Y$ hits $B_{0}$ again at positive tine $u_{1}$ .
Since the system is linear in each region, we have

$Y=e^{Ds1}X$

$Z=e^{-At1}X$

$W=e^{Au1}Y=e^{Au1}e^{Ds1}X$

where
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$D=A^{-1}BA$

Since X,Y and $W$ all lie on the boundary $B_{0}$,

$<a,$ $X>=1$ $<\alpha,$ $e^{Ds1}X>=1,$ $<\alpha,$ $e^{-At1}X>=1$ , $<a,$ $e^{Au1}e^{Ds1}X>=1$

where $<,$ $>denotes$ inner product and $a=(1,0,0,0)^{T}$. Therefore

$X=(e_{1}a^{T}+e_{2}a^{T}e^{Cs1}+e_{3}a^{T}e^{-A\mathfrak{c}1}+e_{4}a^{T}e^{Au1}e^{Ds1})^{-1}(1,1,1,1)=k(s_{1},t_{1},u_{1})h(7)$

where
$e_{1}=(1,0,0,0)^{T},$ $e_{2}=(0,1,0,0)^{T},$ $e_{3}=(0,0,1,0)^{T},$ $e_{4}=(0,0,0,1)^{T}$ .

Now, if th$e$ trajectory starting from $Z$ hits the point V on the boundary $B_{0}$ at a
negative $time- s_{2}$, then V is given by

$V=e^{-Ds2}Y=e^{-Ds2}e^{-At1}X$ .

If this orbit is periodic, then $W=V$ which is equivalent to

$(e^{Au1}e^{Ds1}- e^{-Ds2}e^{-At1})X=0$.

Consequently, a periodic orbit is characterized by

$(e^{Au1}e^{Ds1}- e^{-Ds2}e^{-At1})k(s_{1},t_{1},u_{1})h=0$ (8)

$\{e_{3}k(s_{1},t_{1},u_{1})h\}^{2}+\{e_{4}k(s_{1},t_{1},u_{1})h1^{2}=1$ (9)

Note that there are only three (out of four) independent equations in (8) because the
third and fourth components of $W$ and V are dependent through (9).

It is shown rigorously in Ref.[20] that eigenvalues of the Poincare retum map on $B_{0}$

is given by the eigenvalues of $\Phi=e^{At1}e^{Cs2}e^{Au1}e^{Cs1}$ . One of the four eigenvalues is
always 1 because $(M,N)$ is always periodic (see (7)). If X is a periodic point, one of
the remaining three eigenvalues is also 1. Note that a saddle node bifurcation(resp.
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period doubling bifurcation) is characterized by the fact that one of the remaining two

eigenvalues is l(resp. $- 1$ ). Therefore
$3- Tr+Det=0$ (resp. $- 1- Tr+Det=0$)

$(e^{Au1}e^{\mathbb{C}s1}- e^{-Cs2}e^{-At1})k(s_{1},t_{1},u_{1})h=0$ (10)

$\{e_{3}k(s_{1},t_{1},u_{1})hI^{2}+\{e_{4}k(s_{1},t_{1},u_{1})h1^{2}=1$

where

$T\ulcorner-trace(\Phi),$ $Det4eten\dot{m}nant(\Phi)$ .

As will be pointed out in Section IV, the ratio between the time a trajectory spends in
the $C_{j}$-region and the $\dot{u}me$ the trajectory spends in the $C_{J}$-region plays an important role

in characterizing a $\alpha ajectory$. In order to take this into account let $S$ be the time a
trajectory spends in the $C$ -region (i.e. $Q\geq 1$ ), and let $T$ be the time a trajectory spends

in the $C_{J}$-region $(Q<1)$ , and let us look at the ratio $S[T(S+T=2\pi)$ as $E$ is varied.

Figure 5 shows one-parameter bifuucation $dia_{\Psi^{am}}$ of a period-one attractor which is
calculated by solving the exact equations. The circuit $pmmet\propto s$ are

$R=214\Omega,$ $L=2.5mH,$ $C_{j}=235pF,$ $C_{d}=51.4nF$, $f=30kHzE_{b}=- 1.0V$ .
The horizontal axis is the voltage source amplitude $E$, the vertical axis is $S/T$ . The
bifurcation structures of our interest are clearly captured. In Fig.5, a
solid(resp.broken) line indicates that the period-one attractor is stable(resp. unstable).

As $E$ increases, the following sequence is repeated: period-one saddle-node bifurcation

$arrow stable$ period-one $orbitarrow unstable$ period-one $orbitarrow stable$ period-one $orbitarrow$

period-one saddle-node bifurcation. It is clear that the period-one attractors are all
conected in the $(E,S/T)$-space and belong to the same famuily.

III. OBSERVATION OF THE ATTRACTOR
In order to uncover the attractor fomlation mechanism, various cross sections of the

attractor are measured. Shown in Fig.6 are the cross sections measured at different
phases of the input sinusoidal waveform where $E=2.4V,f=50kHz$. The horizontal
axis is the diode voltage $v_{d}$ and the vertical axis is the current $i$ . Th$e$ phases are
increased in the order of (a), (b),—(f).
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In order to clarify the effects of circuit parameters on the dynamics, let us perform
the following rescaling on (4);

$Qarrow(Lfl/E)q,$ $Iarrow(Lf/E)i$, $\tauarrow fr$ . (11)

The dynamics (4) is rewritten as
$a_{d\tau}^{e}=I$

(12)

$\frac{dI}{d\tau}=\frac{R}{fL}I- f_{2}^{2}L_{LC_{j}}^{LC}arrow_{d}^{1}ifQ\geq 0ifQ<0\}-\frac{(E_{d}- E_{b})}{E}+sin(2\pi\tau)$

The fact that $C_{j}=235pF<<C_{d}=51.4nF$ gives rise to two important features to (12).

(i) The vertical component of the vector field ($Q,$ $D$ on $Q<0$ is much faster than that
on $Q\geq 0$ .
(ii) Since the imaginary part of the eigenvalues on $Q<0$ (resp. $Q\geq 0$),

$\frac{\sqrt{\frac{4L}{C_{j}}- R^{2}}}{2fL}$ $(_{resp}.$ $\frac{\sqrt{\frac{4L}{C_{d}}- R^{2}}}{2\mu})$

the resonant frequency on $Q<0$ is much higher than that on $Q\geq 0$ . This means that,

there is a sffong “twisting“ mechanism on $Q<0$ .
From (11) and (12) $v_{d}$ is given as

$v_{d}=\{\begin{array}{l}f^{2}LC_{d}\infty ifQ\geq 0f^{2}LC\mathbb{R}_{j}ifQ<0\end{array}\}+E_{d}$ (13)

where $C_{j}=235pF<<C_{d}=51.4nF$. Therefore the pan on $v_{d}\geq E_{d}$ is compressed in

the horizontal direction strongly. To help understanding the \alpha ansformarion process,
Fig. 7 gives the geometric structure corresponding to each figure in Fig.6, where the
$smaU$ triangle shows the reference orientation, and the verical line indicates $Q=0(v_{d}=$

$E_{d})$ , i.e., the boundary between the diffusion capacitance region (right) and the junction

capacitance region (left).

(a) The attractor is in the region which is dominated by the diffusion capacitor.
(b) A part of the attractor moves into the region which is dominated by the junction

capacitor. It follows ffom (i) and (ii) above that when the attractor moves R.om the
diffusion capacitor region into the junction capacitor region, it is $s\alpha etched$ because of

7



118

the difference of the vector fields. And then it is twisted in the clockwise direction.
(c) The attractor is further twisted.
(d) The attractor is stretched again and twisted.
(e) The attractor is further twisted (see Fig.8 (a) for a blown up picture).
(f) The attractor is squeezed and fmaUy the attractor remms to the initial region (see

Fig.8 (b) and (c) for two intermediate blown up pictures between (e) and (Q).

Thus $(a)-(f)$ is summarized as: stretching and twisting give rise to a folded object.
It is clear that the atractor is folded twice.

It is, therefore, easy to infer that the attractor could be twisted many times. This can
happen, for instance, when $E$ becomes smaller. This is due to the fact that the bias
term in (12) shifts the dynamics to the left and hence gives rise to a larger time period
on which the attractor spends in the $Q<0(v_{d}<E_{d})$ region. Therefore the attractor

could be twisted more times (”multi-folding” (Fig. 9 $(a)$)).

IV. ONE-DIMENSIONAL MAP
Now our question is how the “multi-folding“‘ generates the altemative appearance

of period-l attractors and chaotic attractors in the bifurcation diagram. To answer the
question, we now propose the one-dimensional map (Fig. 9 $(b)$):

$x_{n+1}=a(1-\cos b(1- x_{n}))$ (14)

as a model capable of reproducing the dynamics in Fig.9 (a).

In order to show that (14) captures all the important features of the observ$ed$

bifurcations, we will discuss the dependencies of $a$ and $b$ on $E$ and$f$ only roughly for
our present purpose. Our analysis is based upon laboratory measurements.

(i) parmeter a
This parameter controls the exffema of the mapping. In other words $a$ controls the

size of the attractor. From the observations of Fig.3 the size of the attractor is
proportional to $E$ . Therefore $a$ should be proportional to $E$ , the amplitude of the
voltage source. Moreover, $a$ is inversely proportional to the circuit dissipation which is
given by $\exp(R/2\mu)[16]$ . Therefore

$a\propto(E+a_{1})\exp(- R/2\mu)$ (15)

would be an appropriate relationship, where $a_{1}$ is a pammeter.

(i1) paranzeter $b$

This parameter controls the number of $e$xtrema of (14) which corresponds to the
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number of twisting in the junction capacitor region. The latter should be proportional to

the imaginary part $a_{j}$
) of the eigenvalue of the junction capacitor region, and the length

$t_{j}$ of the $\dot{0}me$ interval on which the attractor stays in the junction capacitor region;
namely,

$b\propto\Phi_{j}t_{j}+\theta$ (16)

where $\theta$ represents the phase constant. When $E$ is decreased, as mentioned before, the
bias term in (12) shifts the dynamics to the left and hence gives rise to a larger time
period $t_{j}$ . Therefore $t_{j}$ is inversely $propor\dot{u}onal$ to the amplitude $E$ . When $E$ is
increased it has been observed that the change of the number of twisting becomes more

moderate. This factor is represented by $\theta$, and the relationship

$\theta\propto b_{1}(1- b_{2}/(E+b_{2}))$ (17)

seems reasonable, where $b_{1}$ and $b_{2}$ are pmmeters. Therefore we will write (10) as

$b \propto\frac{\sqrt{}\frac{4L}{C_{i}}- R^{2}b_{3}}{2fLE+b_{3}}+b_{1}(1-\frac{b}{E+}L-)b_{2}$

(18)

where $b_{3}$ is another parameter.

Figure 10 shows the bifurcation $dia_{\Psi^{amS}}$ of (14) where the horizontal axis is $E$ and
the vertical axis is $x_{n}$. The pmmeter values $a\infty$ chosen as follow:

$R=214\Omega;C_{2}=235pF;L=2.50mH;a_{1}=0.15;b_{1}=2.4;b_{2}=1.0;b_{3}=0.2$

The frequency of the voltage source is fixed at$f=35kHz$, while the amplitude of the
voltage source is varied from 1.5 V to 0.0 V. Observe that the basic qualitative
features of Fig.3 $aIe$ clearly captured. In particular, period-one windows and chaotic
bands appear altematively. Figure 11 $(a)-(c)$ show the orbits of (14) at the parameter

values indicated as $(a)-(c)$ , respectively in Fig.3 and Fig. 10. It is clear that (14)

undergoes a saddle-node bifurcation when it becomes tangent to the diagonal line.
Since the extremum value of (14) is detemined by the parameter $a$ and since $a$ is
monotonic with respect to $E$ (see (15)), the only possible reason for (14) to undergo
repeated period one saddle-node bifurcations is its multi-modality. Namely, the hills
and vaUeys of (14) become tangent to the diagonal one by one. Therefore it is clear that
these period-one attractors belong to the same family. The qualitative features of Fig.5
are also clearly captured. In terns of the original circuit dynamics, this means that an
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initial rectangle is mapped into a “multi-folded objecttt (see Fig.8,9), i.e. multi-folding.
FinaUy we would like to thank Motomasa Komuro ofNishi-Tokyo University for

many consructive discussions.
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R $L$

Figure 1 A driven R- -Diode Circuit.

Figure 2 One-parameter bifurcation $dia_{\Psi^{R}}$.
SUe source frequency $f=140kHz$ and the dc bias $E_{b}=0$ V. The horizontal axis is the

amplitude of the voltage source $E(0.5V/div)$ and the $v$enical axis is the inductor
cueem $i_{L}(2.0mNdiv)$ .
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(a) (b) $(C)$

Figure 3 One-parameter bifaIIcation diagram
$7he$ source frequency $f=25kHz$ and the dc bias $Eb=- 1.0$ V. The horizontal axis is
the amplitude of the voltage souIce $E(0.5V/div)$ and the venical axis is the inductor

current $i_{L}(2.0mA/div)$.
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Figure 4 Schematic picture of orbit in $(Qj)$-space. The horizontal axis is $I$, and the

vertical axis is Q. $B_{0}$ indicates $b_{ouI1}’dary$ line, $Q=1$ .

Figure 5 One-parameter bifurcation $dia_{\Psi^{am}}$ at$f=30kHz$.
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Figure 6 Observed cross sections of the R-L-Dio& circuit at $E=2.4V$, f-5$ $kHz$.
The horizontal axis is the diode voltage $v_{d}(5.0V/div)$ and the vertical axis is the

inductor current $i_{L}(2.0mA/div)$ . Since the origin is not located at the center of each

figure, the axes aree indicated by anows.
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Figure 7 Geometric model of the attractor formation. Each figure corresponds to th$e$

one in Fig.6.
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$0VV$

$mA$

(b)

$(C)$

Figure 8 Blown up cross sections $\not\subset tE=264$ V,fi–50 $kH\ovalbox{\tt\small REJECT}_{e}$

The horizontal axis is th$e$ diode voltage $v_{d}(0.5V/div)$ and the vertical axis is the

inductor current $i_{L}(0.5n\mathfrak{X}/d_{1\forall)}^{rightarrow}$ . Since the oIigin is not located at the center of each
ffgure, the axes am indicated by arrows.
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(a) (b)
Figure 9 (a) Schematic model of the attractor formation.

(b) One-dimensional map model.
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$E(V)$

Figure 10 One-parameter bifurcation $da_{\Psi^{am}}$ of the one-dimensional map.
$0V\leq E\leq 1.5V,$ $f=35kHz$.

$0$ $x_{n}$ 1
(a)

Figure 11 Orbits of the one-dimensional map.
(a) $E=0.18$ V. (b) $E=0.36$ V. (c) $E=0.85$ V.
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