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ABSTRUCT

A mathematical model of the saltwater oscillator is proposed. The
model is described by the linear ordinary differential equations for the
downward flow mode of the saltwater and the upward flow mode of the
water. The dynamic behavior of the system is analyzed employing the
eigenvalue, and the amplitude of the oscillation and the averaged
increase of the saltwater leVel are estimated. The experimental result is
shown and the period of the oscillation is examined. The switching
factor which can change the flow direction is considered from the
observation.

1. INTRODUCTION.

A saltwater oscillator produces a interesting fluid phenomenon which the flows of
water and saltwater automatically change the upward flow and downward flow altemately
in a tube having the small diameter. $Martin[1]$ observed the phenomena and constructed a
mathematical model with regard to the flow in the tube. His model has two nonlinear
terns. One is proportional to the square of the fluid velocity in the tube. The term comes
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from the fluid resistance caused by the divergent flow at the tube end. Another nonlinear
tern, which is not differentiable at the point of the flow velocity being zero, comes from
the density difference between thc saltwater and water. The state equations of the upward
and downward flow were shown and the period of the oscillation was estimated.
$Yoshikawa[2]$ et al. approximated the nonlinear function of Martin’s model to the
polynomial function of the flow velocity using thc Taylor expansion. And they said that
the state equation of the saltwater oscillator had the same fonn to the Reyleigh’s equation.

In the paper, the piece-wise linear model of the oscillator based upon Martin’s
model is proposed. Although all of the oscillations existing in both the proposed model
and Martin’s model must have the infmite period because of the property ofthe equilibrium
point, the amplitude of the oscillation and the transient of the averaged level of the
saltwater surface in the insidc container are analytically cstimated. Moreover, experimental
results are shown. The switching factor that can change the upward and downward flow
alternately is considered from experimental results. The comparisons between the
experimental results and the analytical results from the model are made.

2. SALTWATER OSCILLATOR

The saltwater oscillator has a very simple structure as illustrated in Fig. 1. The
outside container is filled with the water, and the inside container is filled with the
saltwater. A tube which has a small diameter is attached at the bottom of the inside
container as shown in the figure. The water and saltwater can flow upward and
downward respectively through the tube. In our experimental apparatus, the dimensions
ofthe oscillator are followings.

cross sectional area of the outside container: 600 $cm^{2}$

cross sectional area ofthe inside container : 25 $cm^{2}$

length of the tube : 0.5 -5 cm
inner diameter of the tube : 1-3 mm

density of the saltwater : about 1.2 $\Psi cm^{3}$
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Fig.1 SaltwaterOscillator

In the above specifications of the system, we observe the oscillations of the upward and
downward flow change that have the period from 20[secl to $3[ \min]$ . Note that the
dimension ofthe tube affects the period ofthe oscillation considerably.

In the experiment, we give an adequate height ofthe saltwater surface in the inside
container as an initial condition, for instance as shown in Fig. 1, the surface of the
saltwater is higher than that of the water in the outside container. Then the saltwater starts
to flow downward in the tube and the flow velocity gradually becomes slow. Finally the
flow stops when the pressure balance at the tube end is equilibrium state. Then suddenly,
the water in the outside container start to flow upward and the flow stops by the pressure
balance. In this way, the oscillator continues to change the flow direction altemately.

3. MATHEMATICAL MODEL OF THE SYSTEM

3.1 Fundamental Equation of the Flow in the Narrow Tube
In order to analyze the system, we employ the Navier-Storks equation to the

system. The equation is written as the following.

$p\frac{Du}{\alpha}=- g_{I}adp+\mu\nabla^{2}u+B$ (1)

where, $p$ : density of fluid, $u$ : flow velocity, $p$ : pressure
$\mu$ : coefficient ofviscosity, $B$ : body force, $t$ ; time

$\backslash -\prec_{J}^{:}-$
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$\frac{D}{Dt}$: materiarl derivative, $\nabla^{2}$ : Laplacian

Here, we must decide where we apply the eq.(l) in the system. By the observation
of the phenomena, the main motion of the fluid is limited only in the tube and to the
induced flow by the flow in the tube. The other fluid in the containers stagnates. Therefor,

we apply the equation to the flow in the tube. In the system behavior, the bi-flow mode
occurs under some system conditions as shown in Photo. 1. The photograph was taken by
the Schlieren method. (See Appendix.) The bi-flow mode is that there exists two stream

tubes in the narrow tube and the water and saltwater simultaneously flow upward and.
downward respectively. Such mode occurs in the case of the ratio $K$ being large, where $d$

and $L$ are the imer diameter of the tube and the tube length respectively. In this paper, we
pay our attention to the behavior in case of the ratio $\phi L$ being small, and assume only one
stream tube in the tube and do not consider the bi-flow mode.

In order to analyze the equation to the flow in the tube easily, we assume some
conditions for the system simplification when the system model is constructed. The
following conditions are assumed to the flow in the tube. The coordinate system is shown
in Fig.2 and let $(u_{r},u_{6},u_{z})$ be the component of the flow velocity $u$ .

(1) The flow is axisymmetric.
(2) The flow directed to coordinate $r$ is zero, that is, $u_{r}=0$ .

Photo. 1 Bi-flow Mode Fig.2 Coordinate System
$d=3mm,$ $L=6mm$
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From the above assumption and the equation of continuity for the incompressible

fluid, we easily derive $\partial uflz=0$ . Then the eq.(l) becomes the following with regard to
$U_{Z}\ovalbox{\tt\small REJECT}$

$p\frac{\partial u_{z}}{\partial t}=-\frac{\partial p}{\partial z}+pg+\frac{\mu}{r}\frac{\partial}{\partial r}(r\frac{\partial u_{z}}{\partial r})$ (2)

where, $g$ : gravity acceleration

The averaged flow velocity with regard to the cross sectional area of the narrow tube is
defined as the following.

$u\equiv\frac{1}{A}\int^{\triangleleft a}2\pi ru_{z}dr$ (3)

where,, $A=\pi d^{2}/4$ : cross sectional area of the narrow tube
$d$: inner diameter of the narrow tube

Then integrating eq.(2) over the volume in the narrow tube, we obtain the following
equation.

(4)

Since from experimental results the maximum flow velocity in the pipe is about 1 $[nVs]$

and Reynolds number is less than 3000, the Hagen-Poiseuille flow can be assumed to the
flow. Then the slope of the velocity distribution at $\ulcorner-\mathscr{O}$ is;

$\frac{\partial u_{z}}{\partial r}|_{r=d12}=-\frac{8u}{d}$ (5)

Substituting eq.(5) into eq.(4), we obtain the equation ofmotion ofthe fluid in the narrow
tube as

$\sigma$
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$p\frac{du}{dt}=\frac{p(L)- p(0)}{L}+pg-\frac{32\mu}{d^{2}}u$ . (6)

Martin considered the divergent flow at the tube end and added the pressure loss
tern which proportional to the square ofthe flow velocity to eq.(6). Photograph 2 shows
the moment ofthe change ofthe flow direction. The time interval between each photogIaph
is about $0.35[\sec]$ . Observing the photograph, we obtain that the mushroom shaped flow
indicated by the white arrow in the photograph only occurs at the instant of the flow
change. Hence we neglect the nonlinear tern for the system simplification.

3.2 Modelling ofthe System
Figure 3 shows the proposed model of the saltwater oscillator. In this model, we

assume that the water and saltwater cannot mix each other such as water and oil from the
below observations.

Under the condition that both the length $L$ and the diameter $d$ of the tube are
adequately small such as $d=1$ [mm] and $L=6[mm]$ . (1) the saltwater going to the outside
container downward from the tube gently flows downward without almost spreading and
gathers at the bottom of the outside container. (2) the water going to the inside container
upward from the tube gently flows upward without almost spreading and gathers at the top

of the inside container.

Fig.3 Model ofthe System

6
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Photo. 2 A Moment of the Flow Direction Change
$d=lmm,$ $L=6mm,$ $p_{s}=1.2ycm^{3}$
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Employing the model, the pressure difference $p(L)- p(O)$ in eq.(6) is written as the
following.

$p(L)- p(O)=pg(h+h_{1}+L)- p_{s}gh_{1}$ (7)

where, $p$ : density of water, $p_{s}$ : density of saltwater

Substituting eq.(7) into eq.(6), and note that the downward and upward flow are
respectively the saltwater and water, we obtain the following non-dimensionalized
equation.

$\wedge\wedge^{\wedge\wedge}\wedge\wedge\sim_{a^{\wedge}}p_{a}\frac{du\wedge}{d\tau}=\hat{\phi}_{s}- p)h_{1}- h+(p_{a}- p)- pu$ (8)

where, $\wedge\wedge p_{a}=p_{s},$ $(u\geq 0),p_{a}=p\wedge\wedge\wedge,$ $(u<0)\wedge$

$\sim$

$u\equiv R\iota Vg\wedge,$ $\tau\equiv Rt,$
$\wedge p_{a}\equiv p\swarrow p,$ $\wedge p_{s}\equiv p\swarrow p,$ $\wedge p\equiv p/p=1,$ $h_{1}\equiv h_{1}/L,$ $h\equiv 1\sqrt L$

$R\equiv 32\mu/p_{a}d^{2}$

We consider the low ofthe continuity with regard to the fluid in the containers, we
have the following equation.

$\frac{dh}{d\tau}-K(+)uA_{1}^{\underline{1}}A_{2}^{\underline{1}^{\wedge}}$

(9)

$\frac{dh_{1}}{d\tau}=\wedge\{\begin{array}{l}\wedge- K(1/A_{1})u\wedge 0\end{array}$
$(\hat{u}\geq 0)(u<0)\wedge$ (10)

”

where, $A_{1}\equiv A_{1}/A,$ $A_{2}\equiv A\swarrow A,$ $K\equiv yR^{2}L$

Equations (8), (9) and (10) show the proposed model of the system.

3
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4. ANALYTICAL RESULTS

The proposed model mentioned above $\ddagger s$ a piece-wise linear in the region of
$\hat{u}\geq 0$ and $\wedge u<0$ respectively. Then we easily obtain the equilibrium set and the eigenvalues

ofthe system, and examine the flow ofthe solution in the phase space. The equilibrium set
and the eigenvalue are the followings.

in $\wedge u\geq 0$ , equilibrium set (ES 1) $\hat{u}=0,$ $\wedge h=(p_{s^{-}}1)(h_{1}+1)\wedge$

eigenvalues $\lambda=0$ , $\frac{- 1\pm\sqrt{1- 4K(1/A_{1}+1/^{\wedge^{\wedge}}p_{s}A_{2})\wedge}}{2}$ (11)

in $u\leq 0\wedge$ , equilibrium set (ES2) $\hat{u}=0,$ $\wedge h=(p_{s}- 1)h_{1}\wedge$

eigenvalues $\lambda=0$ , $\frac{- 1\pm\sqrt{1AK(1/A_{1}+1/A_{2})\wedge\wedge}}{2}$ (12)

In the above, one eigenvalue is always zero. This implies lhat the state variables of the
system are two. Actually, eliminating the unnecessary variable from eq.(8), (9) and (10),

we have the following second order ordinary differential equation.

$\frac{d^{Z}\grave{u}}{d\tau^{2}}+\frac{du\wedge}{d\tau}+K(\wedge+\frac{1}{\wedge,pA_{2}^{\wedge}})u=0A_{1}^{\underline{1}^{\wedge}}$

$(u\geq 0)\wedge$

$\frac{d^{\gamma}\grave{u}}{d\tau^{2}}+\frac{du\wedge}{d\tau}+K(+)u=0A_{1}^{\underline{1}}A^{\underline{1_{2}}^{\wedge}}$

$(u<0)\wedge$

“

In eq.(ll) and (12), the diameter of the tube is so small that the ratios $A_{1}$ and $A_{2}$

become more than one thousand. Then the eigenvalues except zero become real and
negative, and one is about-l and the other is very close to zero. Therefore the model is
stiff. From this, we have the flow of the solution in the phase space as illustrated in Fig.4.

The shaded area in the flgure consists of two regions $u\geq 0$ and $u\leq 0$ . The imitial condition in
the shaded area $u\geq 0$ (or $u\leq 0$) contradicts the fact that the upward flow $u<0$ (downward

flow $u>0$) exists when the head of the outside container is much greater (less) than that of
the inside container. Hence whatever imitial conditions we give in the shaded area, the

9
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model takes the flow direction associated to the head difference between the outside and
inside containers. The equilibrium set has the stable nodal type property. Hence all the
solutions started in the region $u\geq 0$ (or $u\leq 0$) except in the shaded area converge the
equilibrium point in $u\geq 0$ (or $u\leq 0$), and go into the region $u<0$ (or $u>0$) (i.e. the flow
direction is changed) after the infinite time passes away. The solutions go and retum
between two region-s repeatedly by spending the etemal time. By the reason the model
only produces the oscillation having the infinite period.

From the above analysis, we can estimate the followings.

(1) The total amplitude with regard to the level difference $h$ maximally becomes;

$\Delta h_{p- p}=L(p_{S^{-}}\wedge 1)$ . (13)

(2) The averaged increase ofthe saltwater surface in the inside container is;

$h_{a}=L\frac{(p_{S}- 1)2\wedge}{\wedge,p_{s}+(\alpha- 1)}-$ (14)

where, $\alpha=^{\underline{A_{\iota_{\wedge}^{+}}A_{2}}}$

$A_{2}$

in one cycle.

$\{0$
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(3) The system is stiff, therefore the time constant determined from the eigenvalue
which absolute value is smaller govems the period ofthe oscillation.

Mentioned above, the period of the oscillation employing the proposed model is
infinite and not actual. However considering the perturbation observed in the actual
system, we can assume that the flow direction change occurs in the neighborhood of the
flow velocity being zero. Under the assumption we consider that the amplitude of the
oscillation and the averaged increase of the surface in the actual system are approximated
by those in the model because of the above (3). In the subsequent section we consider
about the switching factor that can change the upward and downward flow altemately and
the estimation ofthe period of the oscillation in the actual system.

5. EXPERIMENTAL RESULTS

5.1 With Regard to the Oscillation
Figure 5 shows the transition of the height of the saltwater in the inside container.

The area ratio $A\parallel A_{1}$ is about 0.04 in our apparatus, therefore the height change of the
water in the outside container can be neglected and the wave form in the figure can be
considered to indicate the change ofthe level difference $h$ .

The oscillation can be observed more than one hour, however the amplitude
decrease and the period of the oscillation becomes longer as the time passes. The amplitude
of the oscillation is from 50% to 80% of the estimated amplitude by eq.(13). With regard
to the period, the observed period is from four to five times of the time constant
determined by the eigenvalue which absolute value is smaller, except zero eigenvalue,
according to the experiment. Figure 6 shows the estimated wave form by the time
constant. In the figure we describe the time constant as the non-dimensionalized $T_{\lambda}$ and
assume that the period has 4.5 $T_{\lambda}$ from the experimet. The estimated wave form
resembles the experimental wave form, which is also pointed out by Martin.

The other obvious trend of the oscillation is that the averaged saltwater level goes
up as the time passes. Although the averaged saltwater level increase estimated by eq.(14)

is much greater than the averaged level increase observed in the experiment, the
fundamental trend of the increase is qualitatively explained. We consider that it is the
reason for the not good concordance ofthe above level increases that the density of the

$!^{1}$
$|$
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$\ovalbox{\tt\small REJECT}_{T4^{1}T_{\lambda}6^{1}T_{\lambda}}0^{I}2_{\lambda fime}^{I}$

Fig.6 Estimated Wave Form

saltwater in the inside container becomes small because of mixing the water and the
saltwater gIadually.

5.2 With Regard to the Switching Factor
From the experimental results, observing the upward and downward flow, we

notice that the outward flow from the tube exit becomes narrower as the flow velocity
becomes slower, and the flow passage is perturbed by itself. The state is sketched in
Fig.7. We consider that such flow behavior triggers the change of the flow direction. The
model of the above flow switching factor is indispensable for estimating the period in the
actual system by the proposed model. We think that the model of the factor can be
constructed from the two-dimensional flow at the tube exit or in the flow except in the
narrow tube.

In order to construct the model of the switching factor and to estimate the period
and the level increase in the actual system, more experiment and observation must be
carried out.

6. CONCLUSIONS

The dynamic behavior of the saltwater oscillator is examined using the piece-wise
linear model and the experiment. From the result, we have the following.

(3
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Fig.7 Perturbed Flow Passage

(1) The amplitude ofthe oscillation ofsaltwater surface is proportional to the tube
length and the density difference between the water and saltwater.

(2) The increase ofthe avenged saltwater level in the inside container in one cycle
is proportional to the tube length and the square of the density difference.

(3) The system is stiff, therefore the downward(upward) flow in the tube continues
in the long time.

(4) The proposed model can not deternine the period of the oscillation. However,
it is obtained from the experiment that the period is from four to five times of
the time constant deternined by the eigenvalue.

(5) We think that the model ofthe switching factor can be constIucted from the
observation ofthe two-dimensional flow pattem at the tube end.
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APPENDIX

The Schlieren method is one of the flow visualization method using the density

difference among the fluids. The principle in detail is written in the techmical handbook,

for instance Ref.[41. Our optical setup is illustrated in Fig.A. The picture on the screen is
taken using the oemera and video cameIa.

Fig.A Optical Setup
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