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L.S8tatement of the Results

1.1 Definitions. Let /(.’Z)= 7[[:2’“..., x”) be a Lebessque
integrable function defined on the fundame‘ntal cube 7 -(—77',)7‘)”

4
in Euclidean space l? «Consider the multiple Fourier

. .
series of f '

— {n= :

> 4 e (1.1)
’b .

where M= (}11 ) ) I’L,V)é Z ~the set of vectors

ith inteqge 13 -3 mx:%ﬁl’ NN A a
with integer components, 72 vl 7% .‘x‘/’/ and

/ —(217/—M/ /(:r) Tl

To sum the series (1.1) we must define partial sums

of (1.1).0ne can consider different kinds of partial sums
(rectangt.llar,ﬁquare,...).In this paper we shall deal with
partial sums defined by means of elliptic polynomials.

A ({.‘) Z Q %’d be a homogeneous polynomial

Ki=m

on {é R with constant coefficients,where ol —multi-inde:x,
i.e. —-(014, 01 ) O( -nonnegative mLngr‘:. jol| = 0(4'1"
0( +en it o{ and %’“ = %":(" .. {Md/V‘ | Buppose that /4(%’)

is ell:.pt.u: i.e. /4({)>0 for all nonzero %‘ & //?”
Each such polynomial determinens partial sums of the series
(1.1) in the following way
. ) inz
£ ler=Z AT 42
A Alr)< A

In particular,if /"(é‘) = I€/2 then E3 /(‘:z:)
coinsideg with the spherical partial sums of (1.1).

In this paper as in most of the literature on eigen -

2
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function expansions only Riesz means will be considered.Thus

we introduce for all S with Ré S 20 the Riesz meane

of E‘:‘ 78("11) :

. Atrn) 5/ (n=t
Efin = Z (1~ FF) £ 3
A Aln)<2
Note %o/(x) = gf‘(x} . We allbw s »to‘ be complex since

this is required in the interpolation method of Stien [1] but

does not cause any significant difficulties.

1.2.8pectral Resolutions _n_f Elliptic Differential

operators.Let C (7% ) be the set of all infinitly differen—

‘ 4
tiable and ZI- periodic on each argument functions.In L‘,_ (T )
we consider a homogeneous differential operator A(-b)“Z 0,( qu

. lat/=m
with constant coefficjents and domain of definition C“(.T”')’

e 3B L, Bt

The operator A(3B) is said to be elliptic if corresponding

polynomial A(%') is eiliptic.tlhviuualy an elliptic operator

/4 (j) is symmetric and non-negative: .
(Ag) = (u Av] , (Aq,u) >0, 4veC(77)

Therefore,according to Friedrichs theorem the operator ACD)

has a selfadjoint extension A LIt is not hard to see that

this selfadjoint extension is unique and it coinsides with the

closure of A (j) :\

NN
The operator /4 has a complete orthonormal in LZ (7 )
system of eigenfunctions
N 8
-4 n= 4
{(z’ir) ) }) ne 2

3
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corresponding to eigenvalues { /4(’1.); ) VLG/Z Accor-

ding to the spectral theorem of von Neumann we have

A= /ﬂa[

where E) is a resolution of identity.The expression E /??:)
is called the spectral resolution of an element %GZ [T"fand.
2

it can be verified that

' (nhx
£, Lix) = 2 /;i =
Alr)< A
i.e. the spectral resolution coinsides with partial sums of the
multiple Fourier series (1.2). -

We also will have an importent spectral resolution if we
consider an operator A (j) in k et Ca (E -
the class of all infinitly differentiable functions with com-

pact support, be the domain of definition of an elliptic operator

/I (:D) acting in LZ’ (ﬁ”} LAgain the closure of A(.D)
is the unique selfadjoint extension in Z,z(:?/y/ of /4 (j)

and in this case we obtain the following spectral resolution of

an element 7[6 LZ (PA/) H

@) %(x) CZF) / /[g)etr &/{ (71.9)

AGy< A
A

where ?/(g) is the Fourier—Flancherel transfomation of 7/.'

A s -l
foy =@ b [ FeTdx

R—>o0 [x/<®
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We note that (1.4) is, on the other hand,' paftial integrals
of the m'_ultiple Fourier irnteg?al&;.é\s in classical one-dimensional
case the multiple Fourier series are closely connected with the
multiple Fourier integrals. |

i.Z.Localization of the Multiple Fourier Series. We shall

discuss the problem of ccmditicms for localization of the Riesz
S . - : :
MEans. E/\ sthat is,of conditions on a function at points
far from the one under dicussion under which the convergence of
B £ . . :

E;\ depends only on the behaviour of the function in a
small neighbourhood of the point in question.In what follows it
is convenient to use the following defin.ition«s.

. o .

Let U be an arbitrary region of /7. We say that localiz-
ation principle for E;‘ / holds in the class Zlf(7/ if it
follows from the conditions

ffeLP(T”/, Pey=0 for =l (1.5)
that the following equality holds uniformly on every compact subset
of Lf s
by E Fex) =0 ¢.6)
1 —s co o
If for given /D « S and some ’xo (S v there exists a

. s
function 7[ satisfying conditions (1.5) but Em /E;’ %f:z;)/_}&l
A= o
b N £E°
we say that the localization principle for the resolution 3
f.ails in the class Lf, .
In one— dimensional case localization for E/“# holds in

the class L1 ("7/,7/} (the classical theorem of F\'iémann - .Lebesque).

L . L (TA/ .
But for multidimensional case the classes /, are too wide to
hold localization and hence we must consider either a class of smooth
functions or some reqularization methodé, in prticular, the Ries:z

s
means E/‘
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The first results on localization for multiple Fourier series
are due to Bochner,Titchmarsh,Minakshisundaram,Chandrasekharamn,lLe-
vitan,Stein,Ilin,HEﬁrmander‘ and other mathematicians.f detiled survey
of this gquestion can be found in [2],[3].

. " 'S

The question of localization of the Riesz means E}' 7/ in the

v
classes Z.f,(T ) for /o>/2 has been completly soleved,i.e. if
b= AT AlE)
S = = then for any elliptic polynomial ; localization
v 4 V-7
holds in the class . L/o (7— /, Ve =2 [41.1f S< 'E“ » then
. : . : ‘2
localization fails even for the laplace (i.e. A(E’) — ]E‘[ )
aoperator and even in the class C( 7”) 'of_ continuous functions,
. N
hence fortrori in any L [7 /, /oa 7 [5].
. . . Vs . »
Thusvcovergence or divergence of A;‘ / in (1.4) for functions
: V4
7C & /./, ( 7 doss not depend on geometry of the ‘set 'QA =
{{é K)'V. AQ‘}{?/when /7 2 2 si.e. behaviour of all partial sums
s
(1L.2) is similar to spherical ones.
Ky
Unlike this case the precise conditions for localization of €
v
in Lf (7 ) with < 2 depend strongly on the geometry of
, . . .
the surface QQA = {?GR /' A (3;' )=1j .Far example,when
2
AC;) = /?/ (in this case all the principal curvatures of the
surface QQA ara equal to 1) Stein [1]l has proved that the loca-

s N-1
lization pricipal holds for E,l 74 S= — in any Z_/o ('7-4/)} /D}_[

2

"This result holds also for elliptic polynomials A [E-) 2if all the

principal curvatures of the surface QQA are different from zero

at every point [4] (in this case we say that the set QA ig stictly
convex) . .But if A(f) is an arbitrary elliptic polynomial, then , as

K 4
Hormander has shown [4],localization for EJ holds in L/, (7 )'for'
N-1
S > F ) ,f_<_/>s2 (note, that in [4] this result was praved for the

=

spectral resolutions associated with an arbitrary selfadjoint ellip-

6
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tic differential operator on an N-dimansional paracompact manifold).
The first question which arises here is the ‘follcxwing:“ i%s it
possible to improve the condition of localization S > .'1/—:.{ for
P € [1,2) -
To answer this question we consider an elliptic polynomial

( Zm ‘ZA/ 2\
M) =6 - (/=25)

of order 2m (a similar polynomial was first investigated by Feetre

[6]1).The corresponding set QM =g te AD,‘ M/E‘}<1f is convex but not
strictly convex,since all principal curvatures are zero on paints

(£1,0,...,0).For this reason we have the following A statement.

.4’;’/ £
Theorem 1. Let S < Am (/D) = Y id 7= ZM) «Then the
-
localization principle fails for EJS{/‘// in the classes Z/, (7 /,
f .
< - — .
1= P <2 (4 2m

vt Localization IR
(-4

2m

_ s=4, (p)
L\_olcls

holds
‘ or = | ,
Y, , c £ ACe) 1%
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/]

Since Am(lb) — —/'3" ag p = ]e it follows that the

condition S = _&/ for localization is sharp in the class
/9 N

of all elliptic polynomials.

But is there an elliptic polynomial for which the condition

V-1
$> 5

negative answer to this question.

_can not .be improved? The followirig theaorem gives a

Theorem 2. Let /'(é') be an arbitrary elliptic polynomial.

Then there exists a function £A [/o) =0, EA (1)> 0 such that

localization for EJS holds in L/, (7"“/} , /5/:52 when
a M-l w-1
sy Max {414t g o)

f
Note,Theorem 1 shows that inf EA (F> =0 and Theorem 2
A
shows that there is no elliptic polynomial /4 for which

€x(p) =0 i
To understand what is happening on the triangle ABC in
Fig.l we introduce the 'fqllowing classes of elliptic polynomials.
Definition. We shall say that the elliptic polynomial A(é‘)
belongs to the class /4,. , r= 0, '1, -evy /V"1 if at every
point of the surface QQA at least U of the N- 7
sprincipal 'cur‘vatur‘es are different from zero.

Obviously

A C .- C Afczlo

N—1q

and A

The smollest class /4”_1 is the class of all elliptic polynomials

o coinsides with the class of all elliptic polynomials.

2
with a strictly convex set 'QA For ercample, /{/ _ éA/V-f ¢
o ati - A Z_1
We shall use the notation d: (/)) = r {/, .

Theorem 3. Let A (f) & /4,\ , k=0, 1, cer , M-T Then

s
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S
for the Riesz means E/; of order S2 é;(/’) localization holds

in the classes L’, (T”) ) /‘/‘"5 2.
UJé note when ¥ changes from O to /‘/"’1 the lines S:Cs;(f)
fill the triangle ARC in'Fig..l.
When V>0 there is no analogous to Thémr‘em 2 in classes
Av\ Nevertheless we have the fol ltnwi‘r{g statement.
Theorem 4. Let A(t)f‘A,‘, r>0 . and the set QA
is convex.Then there exists a function SA ([.7)>0 such. that locali-

~ S
zation for EA holds in classes L/a (7-4/)) 1<p=2 when

S> hmx{'ﬁ', a:qo)-—EA (p)}

To show that the conditions on S in Theorems 3 and 4 are
optimal ,consider the elliptic polynomial of car'der 2Zm +2
( re7 g.‘ ) )( )
mlr. r) d—l"rZ d
which belongs to the class /4;- when k< A-1 and Lmr %’4;\,,'
’

It is not hard to see that the set f te R”; L, . (g)<’l} is convex.
. !

Theorem 5. Localization holds for the Riess means E;I M,r-)
in the classes L/_, ( VA } . ‘fS/o < 2 (/l— Sm iff

1 r
©5 8, (p) = (Wm0 Cod)E £
Since é:"r -—9'4‘;\

/

ditions of Theorems 2 and 4 are sharp in the class Ar «

AS 1y —> Oe it follows that the con-

Next statement shows the influence of the geometry of the set
s
ng to uniform convergence of E‘A
Theorem &. Let A(}')GA'. ) 'l".:olfl,..//l/'-'fJ S)J;(/D},
- _A/
l€ /.?g_'z and a function 7!&4/0 {7”/ is continugus on VC / .
Then

&m E;%[x) = 7{[76)

oo
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uniformly on any compact subset of (/

lL.4.Localization of Multiple Fourier Integrals. In case of

multiple Fourier integrals one can obtain the precise conditions
for localization in classes of smooth functions.
Here it is convenient to consider the Liouville classes Zr/, AD/J

.a>0 «To give the definition of L/o oowe introdude the operators

Ffe)= @ f fre)e ‘zro/r

F - enr! [, Pre ™y

We Shc\ll say that a function /CZ (lk / helongs

&
to the class L (./? ) 420 if the following norm is bounded

| = I F7Y( I,f /
u,i//a - [l 1+1¢17) / | (5

When Q is an integer then L (ﬁ)y) coinsides with
the usual Sobolev classes W {/?‘/) ~the set of functions
feL/,(R) for which all parual derivatives of order @
serang to L (RY).

We shall also consider the Nikolskii classes /7/4 Q= l+ e
Z is integer, O< @ ¢ 1  -the set of func 1‘u:mf-1 /([ (ﬁ’"j
for which all partial derivatives j"(/( A (//?M/ Jol|= Z and

/3 “Lexel )~ 2 Lexe) +J°‘/fr A)// ‘C‘/'{/?.’e

Theorem 7. Suppose that A(F)éAy\ ) ?‘-OI l,--~/ - /'
Then far the Riesz means G’ 7£ localization holds in the classes
L“ rY) 12 p< 00 hen @rs = maz | !, J;(/,)},

For the partial integrals associated with the elliptic

/o
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polynomials Lmr(?) we have the following assertion.
/

S
Theorem 8.Localization holds for the Riesz means 6/-)‘ (-4,, r)
Q RA/ ’
. H lep<oo ;s W1
in the classes P ( )’ f’ iff Q+S> rmu.f ?’A;,"(F)j'
atg q
By virtue of the imbedding /7;, “-}Zf for any £ >0
(see [7]. § 7.3),it follows from Theorem 8 that the conditions stated
q ‘
in Theorem 7 for localization in L/, are sharp in the class /’\
(since Jm'p *"5; as pm—>oo ).

1.5.Convergence Almost Everywhere .The question of convergence

almost everywhere of onedimensional trigonometric Fourier series has
‘been completely solved in classes L/o('*}';ﬁ) sieedif 7[6 ZP(-};T), /0)7
then its Fourier series converge to /{‘x} almost everywhere on (-;;7)
(Carleson— Hunts theorem) and there exists a function fé L{ (-7/ 7f_)
having Fourier series wr.11(:h diverge almost everywhere on (‘7r/ 7’)
(kic»lmcngorov!s theorem).

In muii:idimensional case there is no convergence almost everywhere
of the partial sums E:, 7{ in classes A/, (7A/) at least when
/g/)<2 (Ni".‘.i'z‘:hin'&’: theorem,see [2]1.,[3]).For that reason we must again
regularizate E:‘ {) by Riesz means. Convergence almost everywhere
of the Riesz means E/‘s was investigated by many authors {(see for

example the survay papers[2],[3F]).Here we only rémind some results.

For the elliptic polynomial /4(%')’— I%‘Iz ' Stein [11]
proved conveé'gence almast everewhere on T of the Riesz means
, EAS | of the order S > ('V"'l) (F4 - -Z/L ‘of functions from
L’f(T”) , 1= /o < 2 .This result holds also for any elliptif:

pol-,;namials; A [;—']é 74”_{ [4]1.1f /4({) 1‘5 an arbitrary ellip—
tic polynomial then the Riesz means of functions 7/6 L/o[TM/' /S/’S2

M .
- gonverge to %[x} almost everywhers on 7 when S >

11
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. ¢
Z(N__,')(..'!. —i) .This result is dus to I-i::)rmandc—:r' Lal.
2

i 2
N-1
it X B

Convergence a.e.

ho lds L l\ Tds

. S
e ’ Ip
F‘\a.:’.

The first impression is that that on the triangle ABC in Fig.2
the precise conditions for convergence almost everewhere of ES )
like localization pricipale,must depend on the number of nonzero
curvatures of the surface BEZA (this was infact proved by N.Maha-
\m'edjanov,!;‘andidetes Dissertation,Moscow State University,1973 ).
The following statement shows that this is not the case.

Theorem 9. Let A’(‘;’) be an arbitrary elliptic polynomial

and Q {Fé E A[€)<-{} be a covex set.Then /4101 C 72(*‘7"74)‘/
A>
for almost every o€ 7_ if S>C/|/’/)(—L ‘[) /_c/?S 2.
The analogouse theorem is true for the multiple Fourier integ-—
.S
ral
We note that convexsity of the set QA Csimplifies the

proof.But, as examples show,this condition is likely not necessary.

/2



64

T2.Froofs of the Theorems

In this chapter we present some main points of the proofs of

the theorems formulated in chapter 1.

s ﬂ
2.1.8pectral Functions. Consider the Riesz means E,| y .

Using the definition of coefficients ]‘{ we have

&'t | 6y 2) L)

where
‘nx
s A0 ) e
s 7- — ‘
@(a*,ﬂ)z(zﬂ‘) va ( A )
| Aln)<2
LS
The partial integrals 63 7€(x) are also an integral opera-—

tors with a kernal

_ s _1px
€ (x,2) = (1) (- 'A,:U) et dp.
AQ’)<;\

In the spectral theory of differential operators the functions
@[fx’ﬂ): @D(:r, /rl} 7 and e[x) ,\):: eo(x’,,\) are called a
spectral function.. ] _

To study c:cn;”\veer'genc:e of %S/(X) (G:\S% (x)) As q —> Oo
we must investigate an asymptotic behaviour of the spectral function
@g('x,/\) ( eg(‘r,,\)) when /\ > 00 .One can investigate the

S
asymptotics of e (’I"/\) by the method of stationary phase since

‘ N e
S - N -3 AT roc s
@A) =mn A f e 0 40))dr (21)
s, ARy <1
and therefore e (I, /\) is an oscillatory integral.Note when s=0

the integral in (2.1) is the Fourier transformation of an indicator

13
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function of the set QA \

A phase function (p(f)gc):l Z-‘x of the integral (2.1) dogs not
have stationary points in the set SZA Therefore it is clear
that the basic contribution to the integral (2.1) for large - ﬂ

is given by a neighbourhood of those critical (stationary) points
oC

—

of the surface 3% where the exterior normal coinsides with &= Ixf

For example, if /4(?) éAM—/ “then for all directions W &

- - : ,
%M (unit sphere in P” ) the phase function of QS('DC,R)
. ‘ V-1
is the Morse type, hence it has a good estimate uniformly on Wes N
| A
: m
s c A
le’(x,2)| = v , (2.2)
L\ L Res
A+ Ix(a™ )=

' 2
what is analogous to the simple case A(f)"" /;/ Since this
estimate the Foisson summation formula allows us to prave the foll-

/?es>'1—2/—1/

owing equality far

Q-S(x‘ﬂ) —_ ZZ// -2 (DC+27?'/2)2). CZ._?)
nhe

Now we can establish the necessary estimates for @S(x; /"}

But if A q’)%AAI—I then the series .’2.3)} in general ,does not .
converge, since the estimate (2.2) is true only for almost all direc-—
tions W& SM.I.Neverthelesss, if we integrate /e'SCI', /\),z on the

-1 :
sphere S then we will have a similar to (2.2) estimate

(j |&itre,a)*de) " < <] ey

1, M!
s,./-, (41" rd /”7/2 ffe:

3\§

(for <=0 this estimate was proved in [8]) .Using the estimate

(2.4) one can prove the following assertion .

I 4
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Let *FGL/, [7_'1//’ /9> 4 - By F[x)= /'_[‘T/J) .2“”)

we denote a function which is 4 periodic in each variabl’e.ﬁ;

: N
and F(x)= {[x) for & T

N-1

VIR
Lemma 1. Let '?e S>'2_' .Then far each Ie‘-T we have the

equality

(4'- A%)).Sfﬁ eixn: j és(gi ﬂ)“F(xy)é . @5)
R |

Aln)< A

Both functions in (2.3) are 27~ periodic in sach Q. and since
4
the estimate (2.4) the right-hand side of (2.5) belongs to L, (7).
Hence to pr'ove lemma 1 it .l.ﬁ enough to show that the Fourier coef-
nxt
ficients by the system {e }' of both functions in (2.3) are equal.
But this can be verified by a simple calculations. Lemma 1 is prq\;‘ed.
. 5‘7{
The equality (2.3) will be our main tool in the study of A '
. - ' . ;
By this Lemma we can reduce the investigation of the Riesz means é 7{
to the investigation of -the inteqgral opertors G’%Z with more Simpi&‘
A

kernals.

2.2 Froof of the Theorpmr on Localization. Az we have seen above

to prove theorems on c:cmvprqenc*e of 57{ we must study an as yfﬁptntic
behaviour of the oscillatoryintegral ‘e (1’ A )

Lemma 2. Let ACF) € ’47‘ ) k """0, 4/ M V-1

Then the estimate

" Mm
s C A (2.6
l e C/x"| 9\) l . V‘fz Res }
: ‘h‘. — é
(4+ 2% 1= )
.holds uniformly with respect ta X & R ' where C is a bositiv

constant.

s
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Froof. Let $=0 .Using the divergent formula we write the

spectral function in the form
¥ . A
& U T & 4

@) e ‘W) de @ @3)
€ (x,1) =) LAT Il Alg)=1 Coz (o) 0,

where VL? is the exterior normal at the point F ’ dG’f is the elemer]l

of erea.By the localization principle in the stationary phase method,

we have

jr&ﬂ zz fﬁ

J= AG)=1

1
tﬂ”xg

Qméq%)Jg&om%-fCWh“j{<?x)

‘wheré I (I) is the integral in (2.7) and f are the truncating
functions of the neighbourhoods of the stdtxonary points {(w) corres-
pcmd:.ng to the vector W = %, MHe note that if the set —QA is
convex then to each direction &) there correspond only two stationary
.points and if it is not convex then there correspond either finite sta-
tionary points or even . ~dimensional surfaces, h = M-Z-

The integrals in the sum (2.8) are estimated in an entirely similar

manner.lLet J:\ (Dc) be one of these integrals.FPerforming a change of

variables in the j.ntegr-al J/-\C‘»’C) we obtain

- { %:x ¢ |
*T,\Cm ol <H5 g ) dy ot
; |

where (‘E,‘ )= ‘g” - \ Q is a neighbouwrhood c?f zero in Rﬁ/ and
% [Z’ ) & CM(Q) We note that V S’ /-\, =0 and T‘anlf (é.?, (O)-‘- r
(since /4 ({) & ;4,. ) «According th a gener‘alizatiﬂn of Morses

~
lemma (see [?],Lemma 3.35.1) there exists a diffeomorphism F = Y/(Z)
( VJ(D) —_ o) such that in a small neighbourhood of the critical
AL

point }’ = 0 we  have

16
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(o) (1) = const + % A sl
aPCo)

where V% (O)‘—"—O, _3" 9?

= O foar all ,/., = Ig ’/f

Using this assertion and estimating first F integrals we aobtain
the estimate (2.6) for S=0 _To obtain (2.6) for an integer s> 0
we must first integrate by parts in (2.1).Applying, for example, a
tauberian theorem of H(‘n'.rmander (see theorem 2.4 of [4]) we establish
(2.6) for general S CWlemma is proved.

£el, (T¥), prd and fix1=0 tor meUc 7Y

If /"29_ s > //“"“é[: then application of Lemmas 1 and 2 to 657{

-give«s’ the uniform on =C & K estimate
s | (2.9)
{ EA—#(x)'{—":\C ’HZIILFCT”) )

where K is an arbitrary compact subset of U
/é [1 (7-”) then the estimate (2.9) holds for S with

Re s > -——-1 To see this we first note that since (2.4) we get

[//‘4-2:%5);_,,1
[ 1€tg, 0%y <2 ek, 1)
T'\U - | S
Now,using an estimate in [’z of the difference @ — es’ estab-
lished by Bergendal [101 we abtain (2.10) for &5, Ke S 20
Hence we have | |
|Ey #ex) [ < c///// (7%) > xeK |, (2.11)
for all § with Re S > 5_ |
Applying to the estimates (2.9) and (2.11) the interpolation

7
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theorem of Stein [11] for linear operators,depending analytically

on a parameter’ we get

{E;f(x)(ﬁc((fl/;‘ CT"’). , xe K (212
F

where 1< P = 2 and S é:([:') Note to use this theorem
we allow S to be complex.

Theorem = follows from the estimate (2.12) since C“( TM)
is dense in Lr CTV ) : and for 7[‘ & C’O(T”) the theorem is
obviously true.

To prove Theorem 2 we use the following estimate

W
ca” £=ECA) >0
@T(’Q\A%‘>4+€ ) y

which is based on the estimate of a oscillatory integral estab-

=) | =

lished in [12].

2.%.0n the Absence of Localization. The proofs of Theorem 1

and the part " and only if" of Theorems 5 «a!"ld 2 are technicaly
complicated to pr‘esent here.For this reason,wes give only the main
ideas of the proofs of these Theorems.

To prove these theorems we actualy construct such a function

7‘/ ('x) from a necessary class that 7/ (:('):-:—0 in a neig-
° 0

hbourhood af the origin and

%w /5:{57{(02/>0.

A —-e0

. 5 4
We note that if € /{x} converges then this is because
. v .
of the oscillation of the spectral function 9 (’1',;]) as /’)‘9 gl

Therefore we first construct a sequence of functions ~/ (:c} which

s -/
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have a support in outside of the origin and the same asymptotic

behaviour as @s(x, ;}/) .Then we consider a function
-T/ (<) = 2 3" 7/1/ (=)
0 J J.

It is obvious that 7{(2}:0 in a neighbourhood of the origin.
1’4 ) Oo
We shall choose sequences of numbers { J;I and ‘;2‘, ;1 such

that the function 7{(.7(} belongs to a necessary class and

e )

éﬂ /E:ys{[O) /—>0.

/l—i'A-

"We obtain this inequality as follows: choosing the numbers /']J

E{(é %7,{( ) ()

(=
s .
E <Z U { )(o) to be much more smoller (since the
~ k:'(-t' h Ak

seldom enough we make quantatives and
oscillation of 9’(’1" ,\d.) ) in compering with 'U; E;_ ‘6(0) . :
The latter does not tend to zero since the ‘asymptotic behaviour
of the functions {;(x) and ‘QC‘»(', ’\J‘) coinsides as /(J, - o,
To do all this we must know the asymptotic behaviour of the
spectral function QS(X‘,/\) as )| > oo v The c—.‘_lliptic
polynomials M(?) and Z:m/‘” C’{} have been chosen such that
one can easily study the asymtotics of the corresponding spectral
functions QS(‘JC,P\) by the stationary phase method.Having this
done we prove the equality (2.3) in this case for Re s >-—A§—’ .
“The equality (2.3) allows us to ebtain the aﬁympﬁptics of the

s
function @ (xl }\) - for large /l .

2.4.0n Localization of Multiple Fourier Integrals. We start

—

with the following very known assertion.

19
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Lemma 3. Let A(?') he an arbitrary ellitic polynomial
of order mM . Then

L)Y ., < I @.19)
, ! < cf? 2.1y
//(’/"f'A(..p)) L,,(/?”}‘ Z;(fn’”) )
where A>0, Ispsoo.
A
In this lemma A(T) is the clasure (selfadijoint operator )
' A(#)=Z a,
of the positive elliptic operator -HPM « with the
domain of definition C:( "?”) For this reason we can define

A
the power (4‘(‘A(:b)) by the spectral theorem.

We note that for F:—-Z. the lemma follows from the obvious
o \2 : 2 Mm
inequality (4 + I% - Agq ;’ ) = (4 “+ ‘%’l ) .

S
Now we return to study the Riesz means G’A f .Note that
A

the operator /4 { and its powers ) is commutable with its
s
resolution of the identity 6))\ . Therefore we can write 6:\ %—'—
Q Q L. =2
A ™S A ™ A r~
(‘4.(. A ) 6/\ (/’-f— A ) : Here the operator (4* A ) is

defined by the spectral theorem and it is not hard to see that

a s
A )‘ m d is an integral operator with the kernal
1+ A A '

A _a
)= | (1+t) T dext).

Hence using the estimates (2.46) and (2.10) one can establish ['oo
and Z"Z estimates for the kernal ei (Z‘,/‘l) swhich cor-
responds to an elliptic polynomial /4 [g’) 6/4,. CHaving done

Qs i)
this we get for a function /é [1 (/ADA/) ywhich is egual to
zero in UC k”)

20
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a X4
/G);/{x) [< ¢l (A +4)""//é4(/‘,/) = & //414(MJ

whare Q4 Le S > /1/—-7—-2r amd i 7{6 A:( KA’) Ll For
N-7

s e e | RO
WEr rpave

Vopteer] s NP o)

whiearae ¢ € K ) / < iz e arkdbrary compmact ofF L .
fpelyimg o tlhe last ftweo estimabszs blhe inbersolatiorn mee

thoed we et

167 ese> | < c WV , =<k
| 4;(%"’)

whaere 1< Vs £2 ard G#rs > é:- (/o D W Trecram 7 OFollows From
this estimabe. zince C:o (RM] iw odarme in L/,q (‘//\3,'/) .

2.5 00 Corverasnce Alimosht Evervwhere, We denote by £,

ar . We denote b x

so~mal lad the masinal operabor

63 /(x) ) 'S‘C/g /EAS%C‘D‘:) /J %@Z;,;(T’V}

A>1

(Lhae maximal operaborn @, : / cafimes Lo bhe same wayd . The
ir;;v»::f-:-;l:.i-gla’r;.i-:m o f SO E T e aimm:—:t gvaEryiers of bhe Riesr mearns
Eﬂs ,‘Z iz lased on estimabes of majorarnts = ’: im Z:/o
o /:7 clozed to 1 and Z’Z and on a subsagquest aeplication
of Steins interpolation Stheocen (zeaeill).

. s . .
Eztimates of E » )Z in Lf’ arae Ffournded o aszymnpbo-

tabklizhed by Ramdol

i

tic esbimates of the Ffurction es( x, A ) &

H
b

[131 (mobe bo use btheoe results we mesd comvessity of the set S22
A4
3

ard bthe Ffollowivng aemeralizabion ofF bhe Hardy-Lithlewood irmsagual -
; =]

ity

o \ }
Let W= — P 6‘ ( W) b @ positive Furction
I {
21/
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Y = [ @(w)é; < co.
L (SY") Sw
CoWe define an operator M g‘ctzir'ag iry Lf,('ﬁ)”// BE

Mycer = sep ™ [ Igtg)]e(5),

E>0 /y/<£

whisr e ;'é L/o (//?M/; />>’/ ~IF - = £ R T Mj iz the

usual maximal Ffunction of Hardy-Littlewood,
Lemma 4. There sxizts comstant C =C (/'O) >0 depending

‘ =Ty /s >/ zo hhat
M, / 2.15,
14 //L/,czi?ff/ <c 1€l (o) Py

Froof. We have

Mj (x)——8¢7> A/ . @[W)/j(x rw)/’~ afm/w

£>0 5/

4
w) S £ . / (=-rw /dralw )
< | Guysep i ¥ )

s -1 E>0

According to the Minkowskik drmauality we goehb

e b
M1, e sf"’ @[w)/ [ e[ jcx—mmz]xz do

£>o0 £

22
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For fixed &) uzimg the one-dimersional Hardy-Lithlewood in-
squality we obtain (Z2.13).
In conclusion we consider the Following elliptic polviomial

of order 4

Lgy)= ;;/;,‘ (117 pyy?) + (4= 35 )IE) 180

-L
2

£ .
whare § &€ F[: 0 < K , 9<€< 2 . We note bhat the seb

. k€
{(F)z)é K i ; L C? ? ) < f'; iz not cormvesx. Furthernore, the
set of stationary points correspondimg o Lhe directiomn e=(0, ..., 0. 1)
of Lhe ta',:" al (2.7),conmected with the polyromial L [g‘, ;) s

ir
k ~dimerzional zphere. Neverthaelezs Tor the Risezz means

£asf€ scorresponclicg Lo l‘éé?y) the Theorem 9 holds.

"
0]

A-lnﬁnlﬂdﬂm:'+n e au+hhr iz deeply aratefull to Profeszsor

v S N ]

Hidermori Fujiwara for discusziorn of these rezalitz.
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