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algebras as subalgebras of Kac-Moody algebras
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Department of Mathematics, Kyoto University

Introduction

In [1], R. Borcherds introduced the notion of generalized
Kac-Moody algebras (= GKM algebras for short), which is a good
generalization of Kac-Moody algebras. The aim of this paper is to
exhibit two kinds of constructions of GKM algebras as subalgebras
of a symmetrizable Kac-Moody algebra.

In the first construction (§2), we get GKM algebras as what
we call regular subalgebras. The regular subalgebra is a natural
infinite dimensional analogue of a regular semi-simple subalgebra
in the sense of Dynkin of a finite dimensional complex semi-
simple Lie algebra. The latter plays an important role in the
classification of semi-simple subalgebras (cf. [2]1).

In the second construction (83), we get GKM algebras as what
we call folding subalgebras. This folding subalgebra is generated
by certain sums, corresponding to a diagram automorbhism, of the
Chevalley generators of the Kac-Moody algebra. In the finite
dimensional case, a folding subalgebra coincides with a fixed
point subalgebra of a certain automorphism (cf. [4]). In the
general case, folding subalgebras are subalgebras of fixed point

subalgebras, but not necessarily coincide with them (cf. [51).
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Folding subalgebras have some good properties:
one is thé inheritance of a standard invariant form, and another
is the complete reducibility when repreSentations are regarded
as those of folding subalgebras (8§3.4 and 3.5). In the affine
case, a certain class of folding subalgebras and their branching

rules are studied in [3].

§1. Generalized Kac-Moody algebras

In this section, we explain the notion of generalized
Kac-Moody algebras for later use. Here we adopt the definition
in [4, Chap. 11] of generalized Kac-Moody algebras, which is a

little different from the original one in [1].

1.1. Definitions and notations.

Definition 1.1 ([4]). A real nxn matrix A = is

n
(@355, 5-1
called a GGCM (= generalized GCM) if it satisfies the following:

(Cl1) either ajy = 2 or ajy

< 0 if i#j, and aj € 7 if aji = 2;

< 0;

(C2) a1j

(C3) aij = 0 implies aji = 0.

Note that when aj4 = 2 for every i, A is a generalized Cartan

matrix (= GCM).

. ey _ n v o v.n
Definition 1.2 ((41). A triple (b, Il = {e;}; ;. 1" = {e;}; ;)
is called a realization of the GGCM A = if it

n
(a;4)4,5=1
satisfies the following:
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(R1) b is a finite dimensional complex vector space, and
dimg b = 2n - rank A;

(R2) n = {az}?=l is a linearly independent subset of b,
and Il = {ui}?=1 is a linearly independent subset of b* (the
algebraic dual of b);

(R3) <aj, a;> = a (1<1i,j<n).

ij

Let 3(A) be a Lie algebra with generators e f, (1<i<n),

i’ 71

and b, and the following defining relations:

v

j] = %13%
(F1) [h, h'] 0 (h, h' € b),

le;, f (1<1, j<n),

[h, ei] <oy, h>e (h, f1] = -<o h>f (1<i<n, he€b).

i’ i’ i
We define g(A):= g(A)/r, where r is a unique maximal ideal among
the ideals of g(A) intersecting bh trivially. This Lie algebra
g(A) is called a generalized Kac-Moody algebra (= GKM algebra)
associated to A. (Especially when A is a GCM, g(A) is called a
Kac-Moody algebra.) The subalgebra h is called the Cartan

subalgebra of g(A), and the elements e fi (1<i<n) are called

i’
the Chevalley generators of g(A). v
It is shown in [4, Chap. 11] that, when the GGCM A is
symmerizable, the GKM algebra g(A) is a Lie algrbra with the
generators ey f1 (1<i<n), and b, and the defining relations

(F1) and the following:
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1—aij l_aij
(ad ei) ej = 0, (ad fi) f, =0, if a i = 2, J=i,
(F2)

] = 0 if a = 0.

[ei, eJ] =0, [fi’ f 13

J
Here the GGCM A is called symmetrizable if there exist an
invertible diagonal matrix D such that DhlA is symmetric. (In

this case, we put B:= p~1

A and call it a symmetirization of A.
And g(A) is called a symmelrizable GKM algebra.)

We often consider the derived Subalgebra [g(A), g(A)] of
g(A) instead of a GKM algebra g(A), and also call it a GKM
algebra. Note that g(A) = [g(A), g(A)] + b, and that
[s(A), g(A)l n b = Z?=l @a!. Further, a GKM algebra [g(A), g(A)]
is a Lie algebra with the generators ey fi' a¥ (1<i<n), and the

defining relations (F2) and the following:

[ey. t41 = aija; (1<i, j<n),
(F'1) loj, a}] = 0 (1<i,j<n),
\4 _ Vv _
[ai, ej] = aijej’ [ai, fj] = aijfj (1<i, j<n).

1.2. Roots and invariant bilinear forms. Let A =
(aij)? j=1 be a GGCM, g(A) be a GKM algebra associated to A, and
b be the Cartan subalgebra of g(A). Then, we have the root space

decomposition of g(A):

®
oxeA So

for all h € b} (ot € b*), and A = {xeb™\{0}; g, * {0}}. We call

g(A) = b & 23

, wWhere Sy {x€g(A); [h, x] = <a, h>x,

8¢ the root space attached to «, and A the root system of g(A).
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Note that gO = b, 8y = ﬁei and 8_q
i i

every root ¢ € A is of the form o

= @fi (1<i<m). Moreover,

St k.«., k, € Z_.. (1<i<n)

, i=1 %1% %1 % =20
7 i = n
or ki € Zyo (1$1$n). So we call I {oci}i=1 c A the simple root

system, and call o« € A positive root (resp. negative root) if
the coefficients of oy in the above expression are all
non-negative (resp. non-positive). Denote by A, (resp. A_) the
set of all positive (resp. negative) roots, and by n, (resp. n_)
the subalgebra of g(A) generated by e 1<i<n (resp. fi’ 1<i<n).

Note that n_ = 2* g

[ Y =
xea, Bq @nd M

)
zo:eA S

+

Now, suppose that A = (aij)? j=1 is a symmetrizable GGCM.
Then, we can take a real diagonal matrix D = diag(el, s, Sn)

and a real symmetric matrix B = (b such that A = DB and

)n
ij'i,j=1
81 > 0 (1<i<n). So, we fix such a decomposition of A and a
complementary subspace bh" to bh':= §?=1 ﬁa; in b. Then, there
exists uniquely a non-degenerate symmetric invariant bilinear

form (-{-) on g(A) such that:

(B1) (aZlh) <o, h>g;, (l<i<n, h € b),

i

(B2) (hlh") 0 (h, h' € b).

This bilinear form is called a standard invariant form on g(A).
Note that the restriction (-I-)lbxb is non-degeneréte. So, we
can define an isomorphism v; b—%h*, determined by <v(h), h'> =
(hlh') (h, h' € b) as well as an induced bilinear form on h". We

know the following equalities (cf. [4]):
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v
(1.2.1) v(ai) = B 0y (1<i<n),

(1.2.2) (ailaj) = b1J = aij/81 (1<1, j<n),
(1.2.3) u! = 2/(aila1)-v_l(ai) (1<i<n),

(1.2.4) (azla}) (1<i,j<n),

= b, 8,8,
(1.2.5) [x, ¥l = (xly)-v '(a) for xe€s , yes_, (o € A).

§2. Regular subalgebras of a symmetrizable Kac-Moody algebra

For the detailed accounts of this section, see [7].

2.1. Construction of regular subalgebras. In this
subsection, we assume that A = (aij)lil’j=1 is a symmetrizable GCM.
Other notations are the same as in §1. For each i (1<i<n), we
define a simple reflection ry of the space b* by ri(A):=
X - <A, ai>ai
(1<i<n) is called the Weyl group of g(A).

(A € b*). The subgroup W of GL(b*) generated by r,
, i

Definition 2.1. A subset Il = {Bl, e, Bp, Bp+1’

of the root system A of g(A) is called fundamerntal if it

p+q

satisfies the following:

(1) 1 = {Bi}gzg is a linearly independent subset of b";
(2) Bi - BJ ¢ AV {0} (1<i=j<p+q);
(3) B, € A" (1<i<p) and By €4, 0 Al (pi1<j<peq).

Here AY€:= W-Il is the set of all real roots of g(A) and Aim:=

re

ANA is the set of all imaginary roots of g(A).
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Remark 2.1. The above definition is a generalization of

that (which is the case q = 0) by Morita [6].

Now, for each imaginary root BJ (p+1<j<p+q), we define B§:=

v_l(B ) € b. For real root 81 = w(ozk ) (wew), 1<i<p, gy .= w(a; )

J i 1 i
€ h has been defined as a dual real root of 81, and we know 8; =

-1
2/(B185)-v " (B)).

Proposition 2.1. Let [l = {Bi}gzg be a fundamental subset of

p+q = - \% -

symmetrizable GGCM. Further, A is a GCM if and only if every Bi

A, and put A = (aij)
is a real root.

Remark 2.2. The symmetrizability of A is shown as follows:

=L p+q 5. e
Put B:= ((BIIBJ))1,1=1 and D:= diag(Z/(Bllﬁl), .

2/(8p|8p), 1, *++, 1). Then we have A = DB, t(t_\) = A, and det D

# 0. Note that the j-th diagonal element is 1, while ajj =
|8

(8 ) < 0 (p+1<j<p+q).

J

Proposition 2.2. There exists a vector subspace ho of b,

such that the triple (b, {Bi|h }g:%, {BI}?:%) is a realization
"0

of the GGCM A.

- We take and fix non-zero vectors E, € g and F, € g such
i Bi i —Bi

M 1<i<p+q). Note that such vectors always

i (
exist (see (1.2.5)). Let g be a subalgebra of g(A) generated by

that [Ei’ Fi] = 8
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Ei’ Fi (1<i<p+q), and a vector subspace bo of b such that the

. P+q vVip+q . x
triple (ho, {Bi|b0}1=1' {Bi}i=1) is a realization of A. We call

this kind of subalgebra a regular subalgebra of g(A).

Theorem 2.1. Any regular subalgebra of g(A) is canonically
isomorphic to a GKM algebra. In fact, the above regular

subalgebra g is isomorphic to a GKM algebra g(A).

2.2. An embedding of GKM algebras into a symmetrizable
Kac-Moody algebra. 1In §2.1, we constructed a regular subalgebra
g of a symmetrizable Kac-Moody algebra g(A), and g is canonically
isomorphic to a GKM algebra g(A). This GGCM A has the following
strong symmetrizability (§§) (cf. Remark 2.2) and integrality (I),
if we normalize a standard invariant form (:-1-) on g(A) in such a

way that (ailaj) € 7 (1<i, j<n).

(SS) There exist an invertible rational diagonal matrix D

(Bij)?+?=l,‘such that A = DB

and D = diag(el, s, Sp, 1, -+, 1),

(I) aij € 7 (1<i,j<p+q).

and a rational symmetric matrix B =

Recall that the j-th diagonal element of D is 1, if ajj < 0.

Conversely, we have the following theorem.

Theorem 2.2. Let A = be a GGCM, such that

p+q
2131, 5=1
(G1) “a44 = 2 (1<i<p),

(G2) —ajj

< 0 (p+l<j<p+q).
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And assume that A satisfies the following strong symmeirizabilitly
condition (SS) and integrality condition (I):

(SS) There exist an invertible rational diagonal matrix D

and a rational symmetric matrix B = (bij)g+g=1’ such that A = DB
and D = diag(el, tee, Sp, 1, -+, 1);

(1) ayj € Z (1<1, j<p+q).
Then, there exists a symmetrizable GCM A = (5ij)§(?:g) such that

the GKM algebra g(A) is canonically isomorphic to a regular

subalgebra g of the Kac-Moody algebra g(A).

PROOF. Note that we can assume that 8i > 0 (1<i<p) without
any loss of generality.

STEP 1. First, we put for j (p+1<j<p+q) as follows:

a (a # 0)
_ JJ JJ e .
uyis { 17 (e = 0 vyiz ~(ayy ¢ 20,
[ -1 2
IR PR R R PR
XJ:= 9 ’
-1 (ajj = 0)
-1
Yj:= ‘ aJJ (ajj # 0).
1 (ajj = 0)
And for i (1<isp), Z,:= —511.

Second, we define 2(p+q)x2(p+q) matrix D and B as follows:

D:= diag(—Zil, —Z_l, -z71

1 , 2Uu

p+1’

2 2

Ups1® 2Upugr 2Up,pe "70e 2Up,g



- (% 2(p+q)
B (bij)i,j=1 , where
Pok-1,2¢-1 P2k-1,2¢ 1.= “wPkt 0| 1sksp, )
B B : 0 0 1<i<p+q, {=k’’
| P2k,2¢-1 2k, 24
[ B b [ 27,z
_2k—1,2k-1 _2k—1,2k . k k (1<k<p)
Pok,2k-1  Pak,2xk ] | %k 2% |
Pok-1,2¢-1 Pok-1,2¢ | _ | "%kt 0 (Pr1<k<pra
5 B : 0 0 1<{<p+q, {=k’°’
| P2k,2¢-1 2k,2¢ |
[ b b, 1 [~ X, |
and _2k-1,2k—1 _2k-1,2k . k K (p+1<k<p+q) .
| Pog,ok-1 Pak,okx | Xy Yy
p+q _ R _ cee e (- p+q
As (bij)i,j=1 =B =D "A = diag(-Z,, , Zp,l, »1) - ( aij)i,j=1‘
we have
Zi ay (1<i<p, 1<j<p+q)
b, = J
ij -ay;  (prl<i<p+q, 1<j<p+q)’

Therefore, B is clearly a symmetric matrix (see also. Figure 1).
2(p+q)

Finally, we put A = DB. Then, A = (z—iij)i jo1 where
f2k-1,20-1 P2k-1,2¢ || TPkt 0| a<kep )
a a 0 0 1<{<p+q, {=k’’
| 22k, 2¢-1 2k, 24
42k-1,2k-1 %2k-1,2¢ [ _ | 2 -1 (1<kep)
| 8ok,2k-1  22k,2k -1 2

...10...
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32k-1,24-1 22k-1,2¢ [._ | "%kt % (p+1sksprq
a a 0 0 1<{<p+q, {=k’’
| 82k, 20-1 ok,2¢ | |

a a
and 2k-1,2k-1 2k-1, 2k . (p+1<k<p+q).

| 82k, 2k-1 89k, 2k

Hence A is clearly a symmetrizable GCM (see also Figure 2).

STEP 2. Let g(A) be a Kac-Moody algebra associated to the
above GCM A, b be the Cartan subalgebra of g(A), and Il =
{ai}?£§+q) c h* be the simple root system of g(A). And let (-1-)
be a standard invariant form on g(A) corresponding to the

decomposition: A = DB. Now, we put By = o + o, (1<k<p+q).

2k-1
Then, Bk € A  since a2k—1,2k < -1 (1<k<p+q). Obviously, Bi - BJ
¢ AV {0} (1<i#j<p+q) and M:= {61}22? c h‘ is linearly

independent. So, [l is a fundamental subset of the root system A
of g(A). Therefore, we see from Theorem 2.1 that there exists a

regular subalgebra g of g(A), which is canonically isomorphic to

a GKM algebra g(A) associated to A:= (<8j, BI>)§+2=1. Theorem
2.2 now follows from the following claim:
CLAIM. A = A.
PROOF of the claim. Since 8, = &, , + o, (1<k<p+q), we
have
(B 184) = boy 9,2¢-1 * Pak-1,2¢ * Pox,2¢-1 * Pok,2¢ =

- 11 -
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Zk'akf (1<k<p, 1<{<p+q)
-akt (p+1<k<p+q, 1<{<p+q)"

Recall that for o € A, o« € A' if and only if (ala) > 0, and « €

Aim if and only if (x¢la) < 0, where (-1-) is a standard invariant

form on g(A). Hence Bk e AT® n A+ (1<k<p) and Bk € Aim n A,
(p+1<k<p+q) from the above equalities. Therefore, for k (1<k<p)
we have akt = <B{, B;> = Z(EKIB{)/(BkIBk) = -a,,. And for k
(p+1<k<p+q), we have Ekt = <B,, BK> = (B 18,) = -a,,. In
conclusion, A = (ak{)ijg=1 = (-ak£)§T%=l = A. Thus, the claim has
been proved. o

2.3. Sufficiént conditions for the strong symmetrizability
of GGCM. Let A = (—aij)§f§=l be a GGCM satisfying the
integrality condition (I), and reordered so that (Gl) and (G2)
hold. Here, we give sufficient conditions for the strong‘
symmetrizability (SS)vof the above GGCM A. Obviously, if A is
symmetric, then A satisfies the condition (SS). For otherr

sufficient conditions, we have the following.

Proposition 2.3. If the above GGCM A is symmetrizable, and
satisfies the following two conditions, then A satisfies (SS).

(a) For every i (1<i<p), there exists j (p+1<j<p+q) such
that a,, = 0. -

1j

. . im; _ _‘ p+q
(b) The principal submatrix A" := ( aij)i,j=P+1 is

indecomposable and symmetric.

- 12 -
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PROOF. Note that if A satisfies (SS), then A'™ is
necessarily symmetric.

For each i (1<i<p), we put Z if a # 0

eo - a1
177 78317845 ij
(p+1<j<p+q). Such a j exists from the condition (a), and Z1 does

not depend on the choice of j from the condition (b). Then, we

e — _l — _1 o o o - -1 * o @ '=
put D:= diag( Zl , 22 , , Zp , 1, 1, , 1) and B:
p+q
(bij)i,j=1’ where
Z,"ay (1<i<p, 1<j<p+q)
b s J
ij- -8y (p+1<i<p+q, 1<j<p+q)’
Then, A = DB, and B is symmetric from the condition (b). Hence A
satisfies (SS). \ o
Corollary 2.1. Let A = (_aij)?+g=1 be a symmetrizable GGCM
with (Gl); (G2), and satisfying the integrality condition (I). If
im, _ _ p+q
a1J # 0 (1<i#j<p+q) and A" := ( aij)i,j=p+1 is symmetric, then A

satisfies the strong symmetrizability condition (SS).
83. Folding subalgebras of a symmetrizable GKM algebra

3.1. Diagram automorphisms of a GGCM. Let A = (aij)?,j=1
be an indecomposable, symmetrizable GGCM, g(Aﬁ be a GKM algebra
associated to A, and b be a Cartan subalgebra of g(A). Fix a
decomposition of A: A = DB, where D = diag(el, e, en) (8i > 0,
1<i<n), B = (b

(b € R, 1<i,j<n). And let (-1-) be

n -
1371,3-1 P15 7 Py
a standard invariant form on g(A) corresponding to the above

- 13 -
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decomposition{of A.

Definition 3.1. A permutation m on I:= {1, 2, ---, n} is
called a diagram automorphism of a GGCM A if

(D1) a = a1j for every i, j (1<i,j<n).

n(i),n(j)

Lemma 3.1. We have Sn(i) = 81 for Fvery i (1<i<n).

PROOF. Since A = DB, we have a;; = €;b;, and a, ., ;)

en(i)bn(i),n(j) (1;1,JSn). So, we have Bibij = Sn(i)bn(i),n(j)

and SJin = en(j)bn(j),n(i) (1<i, j<n) from (D1). Therefore, we

gt 818 (P15 (1) () T BBr()PyiPrey) m(ay (151 J=n) . Note

that if aiJ = an(i),n(j) = 0, then biJ # 0 and bn(i),n(j) # 0.
-1 -1,

Hence, we obtain that eien(j) = sjen(i) or 81 'Sn(i) = SJ sn(J)

if a # 0. Therefore, there exists a positive constant M such

ij
that Sil'en(i) = M for every i (1<i<n), since the GGCM A is
€

indecomposable. So, we have ﬂ?_l —Eéll = M®. on the other hand,
B i
nIil=18n(i)

the left hand side equals to - 1. Therefore, we have
My_q184

Mn = 1, so that M = 1. Thus the assertion has been proved. o

Now, since a diagram automorphism n is a permutation on I,
we can express it uniquely as a commuting product of cyclic
permutations: There exists uniquely a decomposition of I into its

disjoint subsets Ij (1<j<m), such that the restriction nJ:= nlI
: J

of n to Ij is a cyclic permutation (1<j<m).

- 14 -
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Lemma 3.2. For every jl, jz (1sj1,j25m) and 11, 9

a

o

we have 2

‘ker, %k,1, " ket k.1

1 JZ

PROOF. Since nj = nII is a cyclic permutation, it is
1 J
1

enough to assume that i, = n(i;). Then, we have 2 a =

2 k,1i
Jg 2

kel

2keIJ 2k, n(i,) 2keIj 2l g, Y P1)= ZkeIJ %Kk, 1,
2 2 1 2
Now, we set aij:= EkEIiakt for { € Ij (1<i, j<m). From Lemma

3.2, the right hand side does not depend on the choice of { € IJ.

Lemma 3.3. 1If aj = zkeliak,£ (¢t € I,) is a positive real
number, then we have the following two cases:
CASE (A) ape = 0 for every k, { € Ii (k=L), and app = 2 for

every k € Ii’

CASE (B) app = 2 for every k € Ii’ and there exists a
decomposition of I1 into its disjoint subsets Iip) (1£psti) such
that II%p)l = 2 for every p (1$p$ti), a, = 0 for every k €

(p) (a) = = -
Ii , L € I1 (1Sp¢q$ti), and g = 8y = 1 for every k, { €

Iip) (k=) , 1<p<t,. Here |IS| denotes the number of elements of

a set S.

PROOF. First, recall that zkeI ay s ({ € Ii) does not depend

i
on the choice of { € Ii' Therefore, we have the following for

- 15 -
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every { € Ii:

agy = zkEIiakt >0 = a,, > 0 (since a , < 0, for k={)

> By, = 2 (since A = is a GGCM)

n
@151, 51
> a € Zso for k € I1 (k#{) (since A satisfies(C2)).

Therefore, we have a,, = 2 ({ € Ii)’ and ay ¢ € ESO (k=f, k, ¢

€ Ii)' Hence we deduce that zkEIi\{t} ag, = 0 or - 1 (¢ € Ii)

from the assumption. Moreover, 2

GI]'.

kEIi\{t} ap s does not depend on {

since att = 2 (£ € Ii)' Therefore, we have the following two

cases:

<0

one
sinc

8.k

now

the

B

wher

the

CASE (A) zkEIi\{t} a , = 0, for every { € I,
CASE (B) EKEIi\{t} a , = -1, for every L € I.

In case (A), we have ay, = 0 (k= ¢, k, { € Ii)’ since ay e

(k#£). In case (B), for every { € Ii’ there exists exactly

kt € Ii\{i} such that akt’{ = -1 and a, =0 (k € Ii\{t. k£}).v
7

e a., € Z, (k = £, k, £ € Ii)' Therefore, for every { € Ii’

= -1 since akt = 0 implies a(k = 0. Thus the assertion is
¢ .

proved. o

3.2. Construction of folding subalgebras. Notations are

same as in 3.1. We put for j (1<j<m)

1 e - — V . —
Fii= Zper i = Zper Ok and Byi= 20 oy,

j° 2pe1 .k ;

J
e ey, fi (1<i<n) are the Chevalley generators, {oci}?=1 is

set of all simple roots, and {ag}? is the set of all

=1

- 16 -
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simple coroots of the

Proposition 3.1.

(3.2.1) [H], Ej

(3.2.2) [H], F]

(3.2.3) [Ej, F]

PROOF. PROOF for

[ ' - v

(i, Byl = Der ®r 2ger ¢!
21,4 Be®y j
aijEj.

The proof is similar for (3.2.2), and (3.2.3) is obvious. O

Now, we say, for i (1<i<m), "CASE X(i)" if a

511 > 0 and case (A) happens, and "CASE Y(i)" if a

case (B) happens. And

Moreover,

Hy

2H;
i

= Zpe1 (EkEIiak£)e{

GKM algebra g(A).

We have the following equations:

= éijEj (1<i, j<m),
= —éiij (1<i, j<m),
= 6ini (1<i, j<m).
(3.2.1).

\%2 v
;5T 2 gl egl = 2y <oy, wp>e, =
et)

= 2pe1 2930 - 51J(z{elj

J

< 0, or if

ii

11 > 0 and

m

A A
we put A:= (aij)i,j=1' where

if X(1)

if Y(1)

we put for i (1<i<m)

if X(1)

if Y(i)’
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Ej

J2'Ej

if X(1) F if X(1)

1 Y(1) 1f Y(1)

Then, we have the following propositions.
Proposition 3.2. A is a GGCM.

PROOF. We have to check (C1)-(C3) in Definition 1.1.
PROOF for (Cl). In the case X(i), we have

<0 if a,. < 0,

ii

ii

a
11~

[+

2 if a > 0 and in the case (A).

ii
In the case Y(i) (i.e., if 511 > 0 and in the case (B)), we have
A - .
aii = 2aii = 2%x(2 - 1) = 2.

PROOF for (C2). We have aij = zkEIiakt ({.e Ij) < 0 (1<i=j<m),

i1 = 2

then a;; > 0, and so gy = 2 for every k € Ii' Therefore, a4 €

since Ii N Ij = ¢. So, we have aij < 0. Further, if Q

Zso (k € 1 {=k) since A = is a GGCM. Hence, a =

n
1’ (@305, 51 1]

v
zkeIiak{. € Lco-

PROOF for (C3). For i, j (1<i#j<m), we have a ¢ (L€

1j ~ 2kexiak
IJ) and a e <0 (k € Ii)' So, aiJ = 0 if and only if a, =0 for

every k € Ii' Note that szIiakt (¢ € Ij) does not depend on { €

3 Therefore, aij = 0 if and only if ay, = 0 for every k € Ii

| and every { € Ij' Now, recall that ape = 0 implies a{k = 0 (k €

I

I, te IJ) since A is a GGCM. Hence, a,, = 0 implies aji = 0.

ij

n is a GGCM. o

A A
In conclusion, A = (aij)i,j=l

- 18 -
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Remark 3.1. From the proof for (C3), we can deduce that the

GGCM ﬁ is indecomposable.

Remark 3.2. Even if A is a GCM, A is not a GCM except for
the case that for every i (1<i<m), case (A) or case (B) in Lemma

3.3 happens.
Proposition 3.3. The GGCM A is symmetrizable.

PROOF. First, note that (e, ;)ley 3) = byyy 204,
-1 -1

Sn(i)'an(i),n(j) = 81 -aij = bij = (aiiaj) from Lemma 3.1. So, we
get

(3.2.4) (o, 12, -~ o) = (o, 12 o )

il k€¥J2 k 12 kGIj2 k

for every Jl’ jz (1sj1,j2$m) and i

1 12 € Ijl, by the same way as

Lemma 3.2. Now, we put S(J):= 8 (k € I,) for j (1<j<sm) (not

J
depend on the choice of k € Ij by Lemma 3.1). Then, we have
= s _ _ (1), _
a3y = Zkeliakt (L €1y = zkeligkbk{ =6 2keIi(“k'“{) =
(1), _ (1), -1 -
g (zkEIiaklat) =g |Ij| (Zkeliak|2£61ja{) (by (3.2.4)) =

(1) -1 .o -1 -1 m
g IIJI (BiIBJ). We define f:= (llil IIJI (Bi|6j))i,j=1’ and
ﬁ:= diag(él, éz’ cee, ﬁm), where
A S(i)IIil in case X(1)
811= (1)
2g lIil in case Y(i)

Then, A = DB, Y*B)= B, and det D = 0. Hence the GGCM A is

symmetrizable. o
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Let e be a subalgebra of g{A) generated by Ei’ Fi’ and Hi

(1<1i<m).

Definition 3.2. We call the above subalgebra a of g(A)
the folding subalgebra (of g(A)) corresponding to a diagram

automorphism n of A.

3.3. Main result. 1In this subsection, we obtain the

following theorem, which is the main result of §3.

Theorem 3.1. Any folding subalgebra of g(A) is canonically
isomorphic to the derived algebra of a GKM algebra. Let ﬁ be a
subalgebra of g(A) generated by Ei’ Fi’ and Hi (1<i<m). Then,
the canonical isomorphism & of the derived algebra [g(ﬁ),g(ﬁ)]
onto the folding subalgebra 3 is given as:

¢(éi) - E ¢(%i) - F,, and m(éz) = H; (1<i<m).

i’ i’
Here gi’ %i (1<i<m) are the Chevalley generators, and {Q;}T=l

is the set of all simple coroots of the GKM algebra g(ﬁ).

PROOF. We have to check that E F and H

i’ i i
all the defining relations for the symmetrizable GKM algebra

(1<i<m) satisfy

[g(ﬁ), g(ﬁ)]. However, the relations (F'1l) in §1.1 are clear from

Proposition 3.1. So, we have only to check relations (F2).

STEP 1. We first check [Ei' EJ] = 0 and [Fi’ Fj] =0
if Qii < 0 and gij = 0 (1<i#j<m). As shown in the proof of
Proposition 3.2, Qij = 0 1if and oniy if ak{ = 0 for every k € Ii
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and { € Ij' And note that app = 0 implies [ek, e{] = 0 since g(A)

is a GKM algebra (see §1). So, we have

[E!, EJ = [zkEIiek’ Z{GIjetl = zk,t[ek’ et] = 0. Hence, we have
[Ei’ Ej] = 0. The proof is similar for the relation [Fi’ Fj] = 0.
1;Qij
STEP 2. Next, we check that (ad Ei) EJ = 0 and
l_aij A
(ad Fi) Fj =0 if agq = 2 and j#i. We only check the

relation for Ei and EJ, since the proof is similar for Fi and Fj'

Obviously, @Ei + ﬁHi + €Fi is isomorphic to 0{2(£), with

. A
standard basis {Ei’ Hi’ Fi}' Further, we have [Hi’ Ej] = aijEJ
and [Fi’ Ej] = 0, as shown above. Therefore, the relation
A
l1-a

(ad Ei) 1j Ej = 0 follows from the local nilpotency of ad Ei on
g(A) and the following relation in the universal enveloping

algebra of 4£2($) (E QEi + @Hi + QFi):

i

[F E - kEi Hi (k=1).

- —1«:(1<:-1)E11"1

1’

Therefore, we have only to show the local nilpotency of ad Ei on
g(A).

STEP 3. Now, 3 = 2 implies 511 > 0, and so either case (A)

ii

or case (B) happens by Lemma 3.3.

In CASE (A). We have ayp, = 0 for k, { § Ii (k={) and app = 2
for k € I,. In this case, E, = Ej = zkEIiek‘ Note that ad e,
(k € Ii) is locally nilpotent on g{A) since Ay = 2. Further, we

have [ek, e{] =0 (k, { € Ii’ kZ{) since ap, = 0. Therefore,
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ad E

{ = zkEI (ad ek) is locally nilpotent on g(A).
i

'In CASE (B). Also in this case, ad ey (k € Ii) is locally

nilpotent on g(A) since e = 2. Recall that IIip)I = 2, and ap e
=ay, = -1 (k, L€ Iip), k={) for every p (1<p<t,). Say 1§p)

{k, {}, and put z:= [ek. etl. Then, [ek, z] = {ek, [ek, e£]] =
(ad ek)2 e, = 0, since ap, = -1 (see 8§1). Similarly, [et, z] =0

) v
since a0 = -1. On the other hand, rz(ak) = o, - <ak, a£>a£ =

k
ak - aﬁkak = ak + a{. So, ak + a{ is a real root of the GKM

algebra g(A) since apk = 2 2 (see [4, Chap. 11]). Therefore,

ad z = ad([ek, e{]) is locally nilpotent on g(A), since [ek, e£]

€ g (cf. [4, Chap. 3]). Now, we can easily deduce that

Tty

ad(ek + ef) is locally nilpotent on g(A), from the local
nilpotency of ad ey ad €ys and ad z, and the following

commutation relations:

[ek’ Z] = 0’ [e‘t’ Z] =0, [ek, etl = Z.

Hence, if we put egp)1= 2 e, (1<p<t,), then ad eip) is

kelgp)

locally nilpotent on g(A). Further, we have [eép), e§Q)]

[> (p) Kk’ 2 (Q) e{] = zk,t [ek, e{] =0 (1sp¢qsti), since
keIi teli

a = 0 for k € I(p) L € I(Q) Therefore, ad E! = 2 (ad e,)
ki i Y i ’ i kEI1 k

¢ _
= 2 i (ad e§p)) is locally nilpotent on g(A), and so is ad Ei‘
p=1

STEP 4. Thus we have checked all the defining relations for
the GKM algebra [g(ﬁ), g(ﬁ)]. Therefore, we get the surjective
homomorphism ®: [Q(A), g(ﬁ)]—*@, such that m(éi) = Ei' ¢(%i)

F (1<i<m). Because H, (1<i<m) € bh are linearly

AV
and ¢(ai) = H i

i’ i
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independent, we have (Ker ®) n 2T=1 E&; = {0}. On the other hand,
it is easy to see that Ker ® is a graded ideal of [Q(ﬁ), g(ﬁ)] =

m AV ® A A
(Zi.1 ;) @ zdeA 3. where & is the root system of the GKM

algebra g(ﬁ) and 3& is the root space attached to Q € ﬁ. Hence

Ker @ = {0} (see [4, Chap. 1]). This completes the proof of the

Theorem. a

Remark 3.3. From the above theorem, we see that, with
respect to the operation of making folding subalgebras, the
category of Kac-Moody algebras is not closed (see Remark 3.2),

but the category of GKM algebras is closed.

3.4. The inheritance of a standard invariant form. Here we
prove a certain inheritance of a standard invariant form to a
folding subalgebra, as was proved in the case of a regular

subalgebra in [7]. The notations are the same as in §3.1 - 3.3.

Proposition 3.4. Let (-I')1 be a standard invariant form on

g(ﬁ) corresponding to the decomposition of ﬁ: ﬁ = ﬁﬁ in
Proposition 3.3. Then, the restriction of the standard invariant
form (-l-) on g(A) to the folding sdbalgebra @ of g(A) can be

identified with the restriction of (-l-), to the derived algebra

1
[g(ﬁ), g(ﬁ)] of g(ﬁ) through the canonical isomorphism ®:

[a(A), g(A)]—sg, except for the following case:

A is of typé Aé%i (n>2), n is a cyclic permutation on {1, 2,

-, n}, and ﬁ = 0, (1x1 zero-matrix).

1
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PROOF. First, recall that the GGCM ﬁ is indecomposable (see
Remark 3.1). Second, it is easy to check that (HiIHJ) = (&II&;)l
for i, j (1<i,j<m). Then, the proposition follows from the
following fact (see [4, Chap. 2]):

FACT. If the GGCM‘A is indecomposable, any two invariant
bilinear forms on the derived algebra [g(ﬁ), g(ﬁ)] of g(ﬁ) are

proportional. o

)
1

permutation on {1, 2, ---, n}, then ﬁ = 01 and the proportional

Remark 3.4. If A is of type Aé} (n>2) and n is a cyclic

constant is n.

3.5. The complete reducibility. For integrable highest
weight modules of a Kac-Moody élgebra, we have the following
complete reducibility with repect to its folding subalgebra.

Proposition 3.5. Let A = (aij)?,j=1 be an indecomposable,
symmetrizable GCM, A € h* be a dominant integral weight, and
L(A) be an integrable highest weight module with highest weight A
over the Kac-Moody algebra g(A). Assume that A is again a GCM.
Then, as @—modules, L(A) is isomorphic to a direct sum of
[Q(A), g(ﬁ)]—modules L(x) such that x € (ETzl QQ;)*, <, &i
EZO (1<i<m), under the identification: 8 = [g(A), s(A)].

> €

PROOF. We use the Kac’'s complete reducibility theorem (see
[4, Chap. 10]). And we can show the conditions of Kac’s theorem
in exactly the same way as in the step 3 of the proof of Theorem

3.1. : n]
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