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An interfacial approach to regional segregation of
two competing species mediated by a predator
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Abstract. We conslder the coexistence problem of two $compe0ng$ specles medlated by the
presence of predator. We employ areactlon-dlffusion model equauon wlth $\mathfrak{U}$)$tka$-Volterra
lnteracuon, and speculate that the posslbUlty of $co\propto lstencets$ enhanced $by\propto ploltlng$ the
dlfferences ln the dlffuslon rates of the prey and $lts$ predator. In the Umlt where the
dlffuslon rates of the prey tend to zero, anew equauon $1s$ derlved and the dynamics of
spatlal segregauon is dlscussed by uslng the lnterfaclal dynamcs approach. Also, we show
that spatlal $segregatlon\propto hibits$ perlodlc and chaotlc dynamlcs for certaln paraIneter
ranges.

1. Introduction

In some circumstances, predation may have a tendency to increase
species diversity in competitive communities, which Is called predation-
mediated coexistence. This phenomenon can be intuitively understood as
foIlows: Under the situation where there are two competing species and
one would normaUy become extinct due to competition from the other,

coexistence of these species is possible if a predator is present and exerts
higher predatlon pressure on a competitively dominant species. In fact,

such coexistence is shown in experiments and observations (Conell [3],

Paine [19], for instance).

Along this line, numerous theoretical studies have been done by
using Lotka-Volterra models. The simplest model $\ddagger s$ the following ODEs
of two-competing species and one predator:

(1. 1) $\{\begin{array}{l}\frac{du_{1}}{dt}=f_{l}(u_{1},u_{2}.vJu_{J}\frac{du_{2}}{dt}=f_{2}(u_{J},u_{2’}vJu_{2}\frac{dv}{dt}=g(u_{1},u_{2},vJv\end{array}$
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with

$\{\begin{array}{l}f_{J}(u_{1},u_{2},v)=a_{J}-b_{1}u_{J}-c_{1}u_{2}-k_{1}vf_{2}(u_{l},u_{2},v)=a_{2}-c_{2}u_{1}-b_{2}u_{2}-k_{2}vg(u_{1},u_{2},v)=-r+\alpha_{1}k_{1}u_{1}+\alpha_{2}k_{2}u_{2}\end{array}$

where $u_{1}(t),$ $u_{2}lt$) and $v(tJ$ are respectively the spatial averaged densities
of two competing species and its predator at time $t>0$ . Here, $a_{t},$ $b_{\iota}$ and
$c_{\iota}$ are respectively the intrinsic growth rate, the intra- and inter-specific
competition rates of $u_{t},$ $k_{\iota}$ is the predation rate of $v,$ $\alpha_{t}$ is the transforma-
tion rate of predation $(i=1,2)$ , and $r$ is the death rate of $v$ . All of them
are positive constants. Fix the parameters $a_{\iota},$ $b_{t}$ and $c_{l}(i=1,2)$ so that
one of the species becomes always extinct in the absence of the predator
$(v\equiv 0)$ . Then, it is known that predation-mediated coexistence is
possible dependin$g$ on the choice of values of the rest parameters. $’\ddagger he$

asymptotic states of coexistence can be classifed into three types: (i)

equilibrium states, (ii) periodic solutions and (iii) chaotic behavior. The
last two patterns show temporal segregation between two competing
species (Fujii [5], Takeuchi and Adachi [20], Mimura and Kan-on [13], for
instance).

On the other hand, recently the migrating effect of species on such
coexistence has also been investigated. Suppose that all migration occurs
solely by usual diffusion. The resulting model Is represented by the
following reaction-diffusion system:

(1.2) $\{\begin{array}{l}\frac{\partial u_{l}}{\partial t}=a_{1}\Delta_{u_{l}+f_{1}(u_{1}.u_{2},v)u_{1}}\frac{\partial u_{2}}{\partial t}=a_{2}\Delta_{u_{2}+f_{2}(u_{1}.u_{2},v)u_{2}}\frac{\partial v}{\partial t}=D\Delta_{v+g(u_{l},u_{2}.v)v}\end{array}$ $t>0$ . $x\in\Omega$
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where $d_{\iota}$ and $D$ are respectively the diffusion rates of $u_{\iota}$ and $v(i=l,2)$ ,

and $\Delta$ is the Laplace operator in $R^{n}$ . The habitat $\Omega$ is a bounded domain
with smooth boundary $\partial\Omega$ . The boundary condition is assumed to be the
zero flux one:

(1.3) $\frac{\partial\iota A}{\partial n}=0$ $(i=1,2)$, $\frac{\partial v}{\partial n}=0$, $t>0,$ $x\in\partial\Omega_{*}$

where $\frac{\partial}{\partial n}$ is the outward normal derivative on $\partial\Omega$ . For the problem (1.2)

with (1.3), if the diffusion rates $d_{l}$ . $d_{2}$ and $D$ are $aU$ large, then $u_{1}$ . $u_{2}$ and
$v$ become spatially homogeneous for large time, that is, the dynamics of
solutions can be completely analyzed by solving (1.1). Suppose that two
competing species can never coexist even in the presence of predator, if
all of the diffusion rates are large. We now address the following question:
Is there any possibility of coexistence for two competin$g$ species if $aU$ of
the diffusion rates are not necessarily lar$ge$ ? Under thIs situation,

Mimura and Kan-on [13] and Mimura et al. [14] have shown that
predation-mediated coexistence is possible by exploiting the differences
in the diffusion rates of the prey and its predator. this implies that the
possibility of coexistence for two competing species exhibitin$g$ spatially
segregatin$g$ patterns is enhanced by the interaction of predation pressure
and diffusion effect. The asymptotic states are classified into three cases:
(i) stationary patterns exhibiting spatial segregatlon (Figure 1.1), (ii)

time-periodic patterns exhibiting spatio-temporal segregation (Figure
1.2) and (iii) non periodic-osciUatin$g$ patterns exhibitin$g$ spatio-temporal
segregation (Figure 1.3).

Especially when both $d_{1}$ and $d_{2}$ are sufficiently small compared with
$D$ , singular perturbation analysis is applied to show that there is $stHklng$

spatial segregation in the two competing species. As shown in Figures 1. 1
- 1.3, we can see that time-dependent internal layers appear which
separate two different regions where one of the species is dominant due
to strong competition. From segregating pattern view point, we are
interested in studyin$g$ the dynamics of such internal layer. To do $\ddagger t$ , a
new system, which is called the segregating interface equation of
competing species, can be derived from the RD system (1.2) in the limits
when $d_{l}$ and $d_{2}$ tend to zero.
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The purpose of this paper is to study spatial segregation of
competing species by usin$g$ the above interface equation.
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2. Models and assumptions

We use the following non-dlmensional variables and parameters:

$\overline{t}=\frac{t}{\delta}$

$t \delta=\frac{c_{l}}{a_{1}\alpha_{2}k_{2}})_{l}$ $\overline{u}_{1}=\frac{c_{2}}{a_{2}}u_{l}$ . $\overline{u}_{2}=\frac{c_{1}}{a_{J}}u_{2}$ , $\overline{v}=\frac{k_{2}}{a_{2}}v$,

$\alpha=\frac{a_{2}b_{1}}{\alpha_{1}c_{2}}$ , $\beta=\frac{a_{l}b_{2}}{a_{2}c_{1}}$ . $k= \frac{a_{2}k_{l}}{a_{l}k_{2}}$ . $\gamma=\frac{\alpha_{1}c_{l}}{\alpha_{2}c_{2}}$ ,

$\overline{a}_{1}=\delta a_{1}$ , $\overline{a}_{2}=\delta a_{2}$ , $\overline{r}=\delta r$. $\epsilon=\delta d_{l}$ ,
$d=^{\underline{d_{2}}}$

, $\overline{D}=\delta D$.
$d_{1}$

Then, (1.2) becomes

(2. 1) $\{\begin{array}{l}\frac{\partial u_{J}}{\partial t}=\epsilon\Delta_{u_{1}+a_{l}f_{1}(u_{l}.u_{2},v)u_{1}}\frac{\partial u_{2}}{\partial t}=\epsilon d\Delta_{u_{2}}+a_{2}f_{2}(u_{1}.u_{2}.v)u_{2}\frac{\partial v}{\partial t}=D\Delta_{v+\mathcal{G}^{(u_{1}.u_{2},v)v}}\end{array}$

with

$\{\begin{array}{l}f_{1}(u_{1}.u_{2}.v)=1-\alpha u_{l}-u_{2}-kvf_{2}(u_{1},u_{2}.v)=1-u_{1}-\beta u_{2}-vg(u_{1},u_{2}.v)=-r+k\mu_{l}+u_{2}\end{array}$

where we drop the overbars of all variables and parameters.

Assume that

(A-1) $k>l$ ,

which indicates that the predator prefers to eat $u_{1}$ -species rather than
$u_{2}$ -species.
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We first consider a simple case of (2.1) when $v$ is fixed to be a
constant $satls\Psi Ing0<v<\frac{l}{k}$ :

(2.2) $\{\frac{\partial u_{1}}{\frac{\partial^{\partial}u^{t_{2}}}{\partial t}}=\epsilon\Delta_{u}=\epsilon a\Delta_{u^{+_{2}}}^{1}:_{a_{2}((1-v)-u-\beta u_{2}^{2})u_{2}^{1}}^{((1-kv)-\alpha u_{1^{1}}-u)u}$

.

Under the zero flux boundary conditions, it has been already shown in de
Mottoni [4] and Hsu [7] that

(a) $1 f\frac{l}{\beta},\alpha<\frac{l-kv}{1-v}$ , then $E_{+0}(v)=( \frac{l-kv}{\alpha},0)$ Is globally stable,

(b) if $\frac{1-kv}{l-v}<\frac{1}{\beta},\alpha$ , then $E_{o+}(v)=( 0,\frac{l-v}{\beta})$ is globally stable,

(c) If $\frac{1}{\beta}<\frac{1-kv}{1-v}<\alpha$ . then $E_{++}(v)=( \frac{l1-kv)\beta-(1-v)}{\alpha\beta-1},\frac{\alpha(1-v)-(1-kv)}{\alpha\beta-1}1$ is

globaUy stable,

(d) if $\alpha<\frac{l-kv}{1-v}<\frac{1}{\beta}$ , then $E_{\star O}(v)$ and $E_{o+}(v)$ are both locaUy stable.

$\prime Ihe$ case (d) is more precisely investigated. When $\Omega$ is convex, any non-
constant equthbrium solutions are unstable even if they exist, that is,

$E_{*0}lv)$ and $E_{o+}(vl$ are only stable equilibria of (2.2) (Kishimoto and
Weinberger [10]). On the other hand, when $\Omega$ is suitably non-convex,

there are stable non-constant equilibrium solutions in addition to the
aboves (Matano and Mimura [12]). This indicates that coexistence of two
competin$g$ species is possible due to the domain-shape of $\Omega$ .

In this paper, we take $\Omega$ to be convex for simplicity, and we assume
that

(A-2) $\alpha<1<\beta$ ,

(A-3) $\alpha\beta<1$ .
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Under the assumptions (A-1) $\sim$ (A-3), the lines of $(l-kv)-au_{J}-u_{2}=0$ and
$(1-v)-u_{1}-\beta u_{2}=0$ are classified into the above three cases (a), (b) and (d)

depending on the value of $v$ as in Figure 2.1. The coexistence equilibrium
(Case $1c$)) does not occur for any $v$ . For $smaUv,$ $u_{2}$ -species becomes

1always extinct due to competition (Case ta)). For lar$gev$ but less than –

$\dagger c$

’

the predation pressure on $u_{1}$ -species is so strong that $u_{1}$ -species
becomes always extinct due to competition (Case $1b$)). For middle $v$ ,

$E_{*0}(v)$ and $E_{o+}(v)$ are locaUy stable (Case tdll.

Come back to the original system (2.1). If $\epsilon$ and $D$ are both very
large, then $(u_{1},u_{2},v)$ becomes spatially homogeneous and the asymptotic
behavior of solutions is determined by that of the following ODEs:

(2.3) $\{\begin{array}{l}\frac{\partial u_{J}}{\partial t}=a_{1}(l-\alpha u_{1}-u_{2}-kv)u_{1}\frac{\partial u_{2}}{\partial t}=a_{2}l1-u_{1}-\beta u_{2}-v)u_{2}\frac{\partial v}{\partial t}=(-r+knl_{1}+u_{2})v\end{array}$

Fix $k,$ $\alpha$ and $\beta$ to satisfy (A-1) $\sim$ (A-3). We denote by $E_{\infty 0},$ $E_{+\infty}$ and $E_{o+0}$

the equilibrium points (0,0,0), $( \frac{l}{\alpha},0,0)$ and $( 0,\frac{1}{\beta}.0)$ of (2.3), respectively.

Other equilibrium points are also suitably denoted by $E_{+0+},$ $E_{0rightarrow}$ and $E_{+rightarrow}$ .
When 7 and $r$ are adjustable parameters, the existence region of the
positive equilibrium $E_{\mapsto+}$ in $(\gamma,r)$ -space is given by the shaded triangular

regions in Figure 2.2, where $r’= \frac{k-1}{\beta k-1}$ and $\gamma’=\frac{k-\alpha}{klk\beta-1)}$ ([13] and [14]).

The region when $\gamma>\gamma’$ corresponds to $|A|<0$ while the region when

$\gamma<\gamma’$ does to $|A|>0$ . where $A=(1\alpha\beta 11kO1)$ . For any fixed 7, the global

pictures of equilibria of (2.3) with respect to $r$ are drawn in Figure 2.3.
We are concerned with the case $|A|<0$ , where $E_{rightarrow+}$ is unstable

(Figure 2.3 $tb$)). In the ecological terms, this case is interpreted as
follows, depending on the death rate of the predator:
(i) there are no stable positive equthbria for any $r$ ;
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(ii) when $r$ Is small ($r< r_{o}=r_{0}(\gamma l=\frac{k(k-1)}{k-\alpha}\gamma)$ , the predation pressure of $v$

on $u_{1}$ is so strong that $u_{J}$ -species becomes extinct and only $(u_{2},v)$ -species
coexists;
(iii) when $r$ is middle $(r_{o}<r<r’)$ . where either $(u_{1},v)$ -species or $(u_{2},v)-$

species coexists;

(iv) when $r$ is large ($r’<r< \overline{r}=\overline{r}(\gamma)=\frac{k\gamma}{\alpha}l$ . the predation pressure of $v$ on $u_{1}$

is so weak that $u_{2}$ -species becomes extinct while $u_{1}$ -species and the
predator $v$ exist;
(v) when $r$ becomes larger $(\overline{r}<r)$ , the predator $v$ becomes extinct and
only $u_{\iota}$ -species exists.

Consequently, under the assumptions (A-1) – (A-3), if the diffusion rates
of all species are very large, they become spatially homogeneous so that
predation-mediated coexistence never occurs except for the shaded
region above $r$ . Now, the following problem arises: whether coexistence
of three species is possible or not by taking spatIai pattem if some of the
diffusion rates are not lar$ge$ ? Mimura et al. [13], [14] suggest that
coexistence of two competing species Is possible when the diffusion rates
of the two species $\epsilon$ and $\epsilon d$ are small compared with that of the predator
$D$ . Especially, when $\epsilon$ is sufficiently $smaU$ . there appear internd layers
with width of the $0$rder $O(\sqrt{\epsilon})$ in the solutions $u_{1}$ and $u_{2}$ , by which spatial
segregation is clearly observed as shown in Figures $1.1\sim 1.3$ .

In the next section, to understand the dynamics of such layers, we
take the limit $\epsilon\downarrow 0$ in the system (2.1), by which these layers can be
regarded as interfaces, and derive a segre$g$ating interface equation for
competing species from (2.1).
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3. Interface equation

For simplicity only, we assume that the habitat $\Omega$ is a 2-dimensional
bounded domain. Assume first that $v$ is a constant to satisfy

(3. 1) $\frac{\beta-1}{k\beta-l}<v<\frac{1-\alpha}{k-\alpha}$ .

We consider the system (2.2) for $(u_{2},u_{2})$ . Then, the dynanics in (2.2)

implies Case (d), that is, $E_{+0}(v)$ and $E_{+}(v)$ are both locally stable. In
addition to the above, we assume that the competitive dynamics Is so
strong compared with the migration of the species in the sense that
$\alpha_{\iota}=\frac{\theta_{f}}{\epsilon}(i=l.2)$ with some constants $\theta_{\iota}$ and sufficiently small $\epsilon$ . Under this

situation, one could intuitively understand that the evolution process of
the dynamics consists of two stages. The first one is the occurrence of
competitive exclusion in a short time period. We observe that for smooth
initial distributions $(u_{1}(0,x),u_{2}l0,x))=(\phi_{1}(x),\phi_{2}(x)),$ the diffusion terms
$\epsilon\Delta u_{1}$ and $\epsilon d\Delta_{u_{2}}$ may be negligible, so that (2.2) is approximated by

(3.2) $\{\begin{array}{l}\frac{\partial u_{l}}{\partial t}=\frac{\theta_{l}}{\epsilon}((l-kv)-\alpha u_{1}-u_{2})u_{I}\frac{\partial u_{2}}{\partial t}=\frac{\theta_{2}}{\epsilon}((l-v)-u_{1}-\beta u_{2})u_{2}\end{array}$

Therefore the habitat $\Omega$ is decomposed into two disjoint regions, namely
a $u_{1}$ -dominant region $\Omega_{1}(t)$ where $(u_{l},u_{2})\approx E_{*O}(v)$ and a $u_{2}$ -dominant
region $\Omega_{2}(t)$ where $(u_{l},u_{2})\approx E_{o+}(v)$ . This indicates the occurrence of
segregating interface $\Gamma(t)$ between two competing species. How is the
dynamics of $\Gamma(t)$ ? This is the second stage. We note that $\epsilon\Delta_{u_{l}}$ and
$\epsilon d\Delta u_{2}$ can no longer be neglected in a neighborhood of interfaces, so
that (3.2) is not valid there. To study it, the lmiting equation as $\epsilon\downarrow 0$ can
be derived. (For the derivation, we refer to the papers by Kuramoto [11]

and Ohta [17].) It is described by

(3.3) $\frac{\partial\Gamma}{\partial t}=(c(v)-\epsilon v(v)\kappa)\mathfrak{n}$ ,
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where $\kappa$ is the mean curvature of $\Gamma(t)$ and $n$ is the nornal vector of $\Gamma(t)$

pointing from $\Omega_{1}(t)$ to $\Omega_{2}(t)$ (Figure 3.1), and $c(v)$ and $v(v)$ are defined as
follows: Let $(U_{1}(z;vl,U_{2}lz;v))(z=x-ct)$ be the l-dimensional traveling
wave solution with the velocity $c$ which satisfies the problem

(3.4)
$\{\begin{array}{l}O=\frac{d^{2}u_{1}}{dz^{2}}+c\frac{du_{1}}{dz}+\theta_{1}((1-kv)-\alpha u_{1}-u_{2})u_{J}0=d\frac{d^{z_{\mu_{2}}}}{dz^{2}}+c\frac{du_{2}}{dz}+\theta_{2}((l-v)-u_{1}-\beta u_{2})u_{2}\end{array}$ $\mathfrak{t}>0,$ $z\in R$

(3.4)
$\{\begin{array}{l}\lim_{z\downarrow--}(u_{J},u_{2}J=E_{+O}\lim_{z\uparrow+\sim}(u_{1},u_{2}J=E_{O+}\end{array}$

The existence of travelin$g$ wave solutions is shown in Conley and Gardner
[2], but as far as we know, the stability and uniqueness problems have not
been yet completely solved. However, our numerical simulations confirm
that (3.4) has a stable traveling wave solution which is unique except for
spatial translation, that is, the velocity $c=c(v)$ is uniquely deternined
(Figure 3.2), and it is strictly monotone decreasin$g$ with $v$ and $c(v’)=0$

with some $v’satls\Psi lng(3.1)$ (Figure 3.3). Let $L$ be the linearized
operator of (3.4) around the travelin$g$ wave solution $(U_{1}(z;v).U_{2}(z;v))$ of
(3.4) in the moving coordinate, that is,

$L=D_{d} \frac{d^{2}}{dz^{2}}+vI\frac{d}{dz}+F’(U_{J},U_{2})$,

where $D_{d}=(\begin{array}{l}lOdO\end{array})$ and $F’= \{\theta_{\iota}\frac{\partial(f_{\iota}\cdot u_{\iota})}{\partial u_{J}}\}_{\iota./\overline{-}12}$ We note that $L$ has the zero

eigenvalue $\lambda_{o}=0$ since any spatial translation of $(U_{J}(z;v).U_{2}(z;v))$ is also a
solution of (3.4). Let $\xi_{o}$ be the eigenfUnction of $L$ associated with $\lambda_{o}$ . Let
$L^{l}$ be the adjoint operator of $L$ and $\xi_{0}$

“ be the eigenfunction of $L^{l}$

associated with $\lambda_{o}$ which is nornalized such that $<\xi_{0’}.\xi_{0}>=l$ . Now, $v(v)$

is deflned by

$v(v)=<\xi_{0^{\prime_{*}}}D_{d}\xi_{0}>$ .
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Generally, $v(v)$ depends on the value of $v$ , however, it should be noted
that $v\equiv l$ in the special case $d=l$ . We $caU(3.3)$ the segregatin$g$ interface
equation for two competin$g$ species for given $v$ .

In particular, the l-dimensional version of (3.3) is simply reduced to

$\frac{\partial\Gamma}{\partial t}=c(v)$ .

It turns out that $\Gamma(t)$ is either monotone decreasing or monotone
increasing with $t$ depending on the value of $v(\neq v’)$ . However, for higher
dimensional cases, the geometrIcal effect is taken into account in the
dynamics of $\Gamma(t)$ so that the dynamics seems to be rather complex.
Recently, for the case when $v$ is constant, the study of (3.3) has been
investigated by numerous authors from both theoretical and numerical
view points (Grayson [6], Osher and Sethian [18], for instance).

We now come back to the original problem for $(u_{1}.u_{2},v)$ :

(3.5) $\{\begin{array}{l}\frac{\partial u_{l}}{\partial t}=\epsilon\Delta_{u_{1}+\frac{\theta_{l}}{\epsilon}f_{l}(u_{l}.u_{2},v)\mu_{l}}\frac{\partial u_{2}}{\partial t}=\epsilon d\Delta_{u_{2}}+\frac{\theta_{2}}{\epsilon}f_{2}(u_{1},u_{2},v)\mu_{2}\frac{\partial v}{\partial t}=D\Delta_{v+g(u_{1}.\alpha_{2},v)v}\end{array}$ $t>0,$ $x\in\Omega$

Since $\epsilon$ is sufficiently small, the first and second equations are
approximated by

(3.6) $\{\begin{array}{l}1-\alpha u_{J}-kv=0u_{2}=O\end{array}$ in $\Omega_{1}(t)$

and

(3.6)
$\{\begin{array}{l}u_{l}=0l-\beta u_{2}-v=O\end{array}$ in $\Omega_{2}(tl$
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respectively, where $\Omega=\Omega_{1}(tl\cup\Omega_{2}ltl\cdot$ Thus, by substituting (3.6) into the
third equation for $v$ in (3.5), it is simply represented as

$\frac{\partial v}{\partial t}=D\Delta_{v+g_{t}(v)v}$ $\ln\Omega_{l}ltlli=1,21$ .
where

$g_{\iota}(v)=\{\begin{array}{l}\theta_{1}l-r+\frac{k\gamma}{\alpha}(1-kvl)\theta_{2}(-r+\frac{1}{\beta}(l-v))\end{array}$

$li=1$)

$(i=2)$.

Thus, the limiting system of (3.5) as $\epsilon\downarrow 0$ is proposed as the following
system for $(\Gamma,v)$ :

(3.7) $\{\begin{array}{l}\frac{\partial\Gamma}{\partial t}=(c(v_{\iota}J-\epsilon v(v_{\iota}l\kappa)n\frac{\partial v}{\partial t}=D\Delta_{U}+g_{[}(v)v\end{array}$ $in\Omega(p)on\Gamma_{t}(p)(i=1,2)$

with the smoothness of $v$ on interfaces

(3.8) $v(t,\cdot l\in C^{1}$

(Chen [1]), where $v_{\iota}$ is the value of $v$ on the interface $\Gamma(t)$ . With the zero
flux boundary condition for $v$ on $\partial\Omega$ , we can formulate the ffee boundary
problem (3.7) and (3.8) for $(\Gamma,v)$ . If this problem can be solved, $F(t)$ gives
the geometrical shape of regional segregation of two competing species
and $v(t,x)$ gives the spatial profiles of $u_{l}$ and $u_{2}$ by (3.6).

12
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Figure 2.1. Isoclmes of $(l-kv)-\alpha u_{1}-u_{2}=0$

and $(l-v)-u_{1}-\beta u_{2}=0$
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Figure 2.2. Existence region of $E_{+rightarrow}$ in $(\gamma,r)$ -space
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Figure 2.3. Schematic global bifUrcation dIagrams

of equlibria with respect to $r$
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Figure 3.1. $u_{1}$ -dominant region $\Omega_{1},$ $u_{2}$ -dominant region $\Omega_{2}$

and segregatin$g$ interface $\Gamma$
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Figure 3.3. Velocity of travellng wave solutions
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