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Fractal natures of brain wave, that is of $elecffoencepha$]$0_{\Psi^{am}}$ (EBG), are investigated, made
use of some fractal dimensionalities of it. Especially as for $\alpha$-wave, those of frontal and
occipital region are compared with respect of the fractal dimension. Significant difference of
the dimension gives such a conjecture that those a-wave are independently created. It is
indicated that EEG can be modelled by a deterministic dynamical system with a chaotic
nature.

1. Introduction

Recently numbers of papers are published on the fractal dimensionality of
turbulent time-series of data. One of those time-series data is of brain
wave, that is of electroencephalogram (EEG). Although, depending on the
method of the fractal analysis on the time-series data and on the
experimentla condition under which the data are sampled, the obtained
ffactal dimensions are more or less different ffom each other , EEG has been
an attractive object to be investigated with respect of the fractal nature
(Babloyantz, et al., 1985; Mayer-Kress and Layne, 1987; Watt and
Hameroff, 1988; Xu-Nan and Xu-Jinghua, 1988; Arle and Simon, 1990).

In this paper, EEG, mainly $\alpha$-wave, is investigated with respect of

its fractal dimensionality. We have been sampled EEG data through a
series of experiments following the intemational 10-20 system placement
(Reilly, 1982). We shall apply three different approach to analyze the data
with respect of the Ractal dimensionality: a) correlation dimension; b)

dimensionality of $\theta equency$ distnibution; c) ffactal dimension of graph. The
approach of correlation dimension has been applied to estimate the fractal
nature of a variety of turbulent time-series data (Kariniemi and Ammala,

1981; Mondanlou and Freeman, 1982; Goldberger, et al., 1984; Cohen and
Procaccia, 1985; Pickover and Khorasani, 1986; Liebovitch, et al., 1987;

Mpitsos, et al., 1988). Although the dimensionality of fiequency distribution
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of time-variable is in general difficult to be satisfied for the data obtained
from the natural system, we shall investigate if the dimensionality is
applicable for EEG or not. The third fractal dimensionality we choose, the
fractal dimension of graph will be shown to be useful to estimate the fractal
nature of EEG. It corresponds to the dimension analysis on the fractal
nature of coastal line (Mandelbrot, 1982; Higuchi, 1988). Making use of
these three approaches, we shall consider the fractal nature of EEG and try
to discuss some aspects of cerebral system creating EEG.

2. Analysis

We analyze time-series of EEG data, making use of three different
approaches to pull out the ffactal nature of EEG (as for the concrete
calculating method, see Appendix:

Correlation Dimension: For a time-series of data $(x_{0}, x_{1}, \ldots, x_{M})$ , where $x;(i$

$=0,$ 1, $M$) is the $i$ th data of EEG amplitude and $M$ is the total number of
data obtained with the time interval $\Delta t$ , we can calculate the following
correlation integral:

$C(r)= \frac{1}{N^{2}}\sum_{i}^{N}\{\sum_{i}^{N}I4r-\Vert x_{i}-x_{i}arrowarrow\Vert)-1\}$

,

where the function $H(z)$ is the step function which is 1 for non-negative $z$

and $0$ for negative $z$ . $||\cdot 11$ is a proper norm for the d-dimensional space. $N$

is the total number of d-dimensional vectors $x_{i}arrow(i=1, 2, M-d+1)$ which
are constructed from $(x0, x_{1}, \ldots, x_{M})$ as $x_{i}arrow=(x;, x_{i+1}, x_{i+2}, \ldots, x_{i+d-1})(l=$

$1,$ 2, $M-d+1$ ) (Takens, 1980). If the correlation integral $C(r)$ satisfies

$C(r)\sim r^{D}$ ,
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Table 1. Correlation dimension of EEG. The number in the bracket shows that
of subjects in the experiment. The $mean\pm standard$ deviation is shown
for the fractal dimension of a-wave and $\beta$-wave. In the case of mixed
wave, sufficient data could not be sampled.

then the power $D$ can be regarded as a ffactal dimension, say ‘correlation
dimension’, and it can saturate for a sufficiently large embedded dimension $d$

(Grassberger and Procaccia, 1983). It implies the dimension of attractor in
the d-dimensional phase space, which is created by a dynamical system
goveming the time-series. Thus, if we can estimate the correlation
dimension $D$ for EEG, it gives such a possibility that the EEG may be
govemed by a dynamical system and further may be a low dimensional
chaos.

In Table 1, the result for $\alpha$-wave, $\beta$-wave, and wave mixed both are
shown. The mixed wave seems to have an intermediate correlation
dimension, compared with those of $\alpha$-wave and $\beta$-wave, though we could

not sample satisfactory data for the case of mixed wave.

Dimensionality of Frequency Distribution: If the cumulative Requency
distribution $P(X)$ for an amplitude $X$ of EEG follows the following geometric
law:

$P(X) \equiv\int_{X^{\infty}}p(y)dy=X^{-\gamma}$

then the power $\gamma$ can be regarded as a ffactal dimension derived from the

frequency distribution (Mandelbrot, 1982). Although it has not yet been
given any satisfactory explanation why there are some distributions
following such a geometric law for natural phenomena, the dimensionality
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Figure. An example of sampled cumulative frequency distribution of a-wave amplitude.
(a) log-log axis; (b) normal-log axis; (c) normal-normal axis. Maximum
amplitude is normalized to 1.

can be regarded as one of strong characteristics of the time-series data, if it
can be appropriately estimated.

Although obtained ffequency distribution of EEG for some data sets
is partially linear with the log-log axis, it generally seem not to follow any
geometric law. Instead, as shown in Figure, the distribution for some data
seems to be altematively exponential rather than geometric. Therefore, as
our result, it is shown that EEG does not have the fractal nature in terms of
the ffequency distribution.

Fractal Dimension of Graph: Since the temporal variation of EEG is
expressed as a 2-dimensional graph, the fractal dimension of the graph can
be estimated. We shall apply the estimating method making use of the
cumulative length of EEG oscillation. In detail, we deal with the following
quantity (Higuchi, 1988):

ルM–l

$L_{\Delta t} \cong\sum_{i=1}|x-x|$
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Table 2. Fractal dimension of graph and spectral fluctuation of $\alpha$-wave. $\alpha$-waves
of the kontal and the occipital regions are independently investigated. The
mean $\pm$ standard deviation is shown for the fractal dimension. Correlation
coefficient between the data for two regions is calculated, too. 16 sets of
data are used.

which corresponds to the cumulative length of EEG oscillation, measured in
$-\beta$a time unit $\Delta t$. If $L_{\Delta t}\propto\Delta t$ , then the power $\beta$ can be regarded as the

fractal dimension of EEG graph. If $\beta$ can be appropriately determined, it
indicates a ffactal nature of EEG.

The result for a-wave is shown in Table 2. The dimension is
estimated respectively for $\alpha$-waves of ffontal region and of occipital one.
The dimension is significantly higher in the occipital region than in the
ffontal. The conelation coefficient between the ffontal and the occipital $\alpha-$

waves is estimated by the data for each subject. The fractal dimensions of
graph for those a-waves have a low correlation coefficient. This result
indicates that those a-waves of the frontal and the occipital regions can be

regarded independent each other. In contrast, as shown in Table 2, the
spectral fluctuation of a-wave amplitude shows high correlation between
those two regions.

3. Conclusion

Fractal nature of EEG is investigated to show such possibility that
EEG may be able to be described as a chaotic oscillation driven by a
dynamical system.

Our results shows that EEG has a clear fractal nature and thus can
be described or at least can be modelled by a deterministic dynamical
system with a fmite number of variables.

By our ffactal analysis on $\alpha$-wave, it is concluded that a-wave of the

frontal region is correlated little with that of the occipital one. This implies
that there may be two systems driving $\alpha$-wave, which have a weak
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connectivity between them. Contrarily since the spectral fluctuation results
in a high correlation between the ffontal and the occipital regions, it is
probable that the spectral fluctuation may be originated either to a system
different from the system driving $\alpha$-wave or to a part common between
those two systems driving $\alpha$-wave.

Although the data are sampled not sufficient up to now, the fractal
analysis on $\beta$-wave and on $(a, \beta)$-mixed wave indicates such possibility
that $\beta$-wave may be driven by the system same with that driving a-wave.

The quantitative results by our analysis will be possibly different
more or less from those in past and future. This may be because the ffactal
dimension strongly depends on the method to calculate it by data and is
influenced by the quality of data very much, and because EEG is very
sensitive to the condition in and out of the subject in the experiment (Xu-

Nan and Xu-Jinghua, 1988). However, the accumulation of researches on
EEG will lastly clarify the fractal nature of it. We hope that our work will
contribute at least to the promotion of such research.

Appendix

In this appendix, it is shown how the calculation is carried out for each of
three methods applied to EEG data in order to estimated the ffactd
dimensionality.

Correlation Dimension: For d-dimensional embedded vectors constructed
ffom EEG data as mentioned in the main text, we calculate the number
$\#_{r}(x_{k_{j}})arrow$ of vectors in a distance $r$ from a randomly selected vector $x_{k_{j}}arrow$

determined by a randomly selected integer $k_{j}(f=1, 2, L)$ less than $N+$

1. $L$ is the number of randomly selected vectors which are used to calculate
this value. $L$ should be sufficiently large. Then the correlation integral $C(r)$

corresponds to
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Therefore if $C(r)\sim l^{D}$ , we can estimate the correlation dimension $D$ from the

linear relation, that is the slope of graph, between $\log r$ and $\log\sum_{f=1}^{L}\#_{r}(x_{k_{j}})arrow$ .

Dimensionality of Frequency Distribution: It is necessary only to count the
number of data of EEG amplitude more than $X$ in order to obtain the
cumulative ffequency distnibution $P(X)$ for an amplitude $X$ from the data.
Actually,

レ

$H(X-x_{i})$

$P(X) \approx\frac{i=1}{M}$

where the $fi nctionH(z)$ is 1 for non-negative $z$ and $0$ otherwise. $M$ is the

total number of data. If the relation $P(X)\propto X^{-\gamma}$ is satisfied, the power $\gamma$ is

deteImined from the slope of graph between $\log X$ and $\log\sum_{i=1}^{M}H(X-x_{j})$ .

Fractal Dimension of Graph: The value $L_{\Delta}$, can be easily calculated ffom the
data for a time-interval $\Delta t$ . Then, with the same data set for $\Delta t$ , we can
calculate $L_{2\Delta t},$ $L_{3\Delta t}$ , and so on, making use of the following correspondence:
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$\Delta$ $rightarrow\{x_{1}, x_{2}, x_{3}, ..., x_{M}\}$

$2\Delta\iotarightarrow\{x_{1}, x_{3}, x_{5}, \ldots\}$

$\{xx, x_{6}, \ldots\}$

$3\Delta\iotarightarrow\{1,3,7,$ $\ldots\{$

$\{x_{2}, x_{5}, x_{8}, \ldots\}$

$\{x_{3}, x_{6}, x_{9}, \ldots\}$

Therefore, if $L_{\Delta t}\propto\Delta t^{-\beta}$ , the power $\beta$ can be estimated from the slope of
graph between $\log n$ and $\log\Sigma L_{n\Delta t}$, where the sum $\Sigma$ is carried over $n$

corresponding sets for an given $n$ as shown above.
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