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Ab st ract. The purpo se of thi $s$ pape $r$ $\tilde{1}s$ to $s$ tudy $s$ pe $ci$ al $g$ ene $ric$

maps $i$ nt $0$
$n^{3}$ . We $pr$ ov6 the $c$ ongru$ence$ $fo$ rmu 1 a and equal $i$ t.y wh $i$ ch $s$ how

re lat $i$ ons be tw een the sour ce man $i$ fo 1 $d$ an $d$ $si$ ngu 1 ar po $i$ nt $s$ et. As

co $ro11$ ar $ies$ . we de $t$ a rmine the home omo $r$ ph $i$ sm $ty$ pe of the so $ur$ ce man 1 $fo1d$

in $f$ ou r–dimens $i$ onal cas $e$ and $give$ an unlcn $0$ tt $i$ ng re su 1 $t$ fo $r$ a $s$ pe $ci$ al

generic map $S^{*}$ into $n^{3}$ .

1. Introduction

Let $f$ be a smooth map from n-dimensional manifold $\#f^{n}$ into p-dimensional

manifold $N^{p}(n\geqq p)$ . Homological properties of the singular point set of $f$ are one

of the $mos$ { interesting problems in singularity {heory. IIowever, most of known

results are in $mod 2(e.g$ . the real Thom polynomial [14]. Whitney-Thom-Levine‘ $s$

resul $\{$ on the number of cusp points [7]. [14]. [15] $)$ . We want to know their homo-

logical properties in finer forms( $i$ . $e$ . modulo 4,8, etc) and to evaluate the num-

ber of connected components of the singular point set. We restrict ourselves to

special generic maps. Since we see that the singular point set consists of only

2-spheres (lemma 6.1), we have the following

Theorem A

Let $M^{4}$ be a closed, simply connected 4-dimensional manifold and $f:M^{4}\dashv \mathbb{R}^{3}$ be

a special generic map. Then we have
$\sigma(111^{4})\equiv$ $S(f)\cdot S(f)$ $(mod 16)$ ,

where $S(f)$ is the singular point set of $f$ and $\sigma(M^{4})$ denotes {he signature of M.

And $S(f)\cdot S(f)$ stands for the self-intersection number of $S(f)$ in $M^{4}$ .
$-/7-$
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Theorem $B$

Let $M$ be a closed, simply connected $2n$ -dimensiOnal manifold $(n\geqq 2)$ . For a

spcial generic map $f:Marrow \mathbb{R}^{3}$ , we have

$\chi(AI)=2\#S(f)$ ,

where $\#S(f)$ denotes the number of connected components of $S(f)$ and $\chi(M)$ is the

Eulercharacteristic of M.

As corollaries, we determine the homeomorphism type of the source manifold

in 4-dimensiOnal case and show in section 6 that the set of singular points of

special generic maps over $S^{4}$ into $\mathbb{I}\mathfrak{i}^{3}$ is unknotted.

In a more generalized setting, we have the folloving congruence formula for

a stab le map

Theorem $C$

Let $M^{4}$ be a closed, Oriented 4-dimensiOnal manifold vith $H_{1}(M^{4};Z)=0$ and
$f:M^{4}\dashv \mathbb{I}i^{3}$ be a stable map. Then we have

$\sigma(M^{4})----S(f)\cdot S(f)$ $(mod 4)$ ,
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2. Euler characteristics of the source $\mathbb{R}ifold$ and singular point sets

In this section we recall Fukuda’s results on the relations between the sour

cemanifold and set of singular points when the map has only fold singulari $ty$ . At

the end of this section we will study {he unorientability of the singular point

set $S(f)$ of a map which has only folds. Let $f:M^{n}\dashv$ IR $p(n\geqq p)$ be such a smooth

map. If $p\in S(f)$ , then ve can choose local coordinates $(x_{1}, X2, ..., x_{n})$ centered

at $p$ and $(y_{1}, y_{2}, \ldots, y_{p})$ centered at $f(p)$ so that $f$ has the following nomal forms

$y_{i}=x_{i}$ $(1\leqq i\leqq p-1)$

$y_{p}=\pm x_{p}^{2}\ldots\pm x_{n}^{2}$.
Then {he Jacobian matrix at $p$ is

$–$
$0$

$\pm 2x_{p}\ldots\ldots.\pm 2x_{n}$

Hence $S(f)=\{x_{p}=\ldots=x_{n}=0\}$ , and rank $J_{f}(p)$ -p-l and $S(f)$ ia a p-l dimensiOnal

manifold. Furthermore, the restricted map $f|S(f)$ is a smooth immersiOn.

If a smooth map $f:Marrow \mathbb{R}^{p}(n\geqq p)$ admits only defini $te$ fold points, such a map

is called special generic (This {erminology is Originally due to [2] $)$ .

Now we recall Fukuda’s results in $[4|$ . Let $A_{k}(f)$ be the set of $A_{k}$-type

singularity $(1\leqq k\leqq p)$ for a smooth map $f:M^{n}\dashv \mathbb{I}l^{p}($ See [9], in which $A_{k}$ -type

singularities are referred as $\Sigma^{n-p+1.1\ldots 1.O}$ in the language of the Thom-

Boardman symbols).

$-2_{-1-}$
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Lemma 2.1 ([4])

Let $f:M^{n}arrow \mathbb{I}\mathfrak{i}^{p}(n\geqq p)$ be a smooth map which has only $A_{k}$ -type singularities

$(1\leqq k\leqq p-1)$ . Then ws have
$\chi(M^{n})_{\overline{\overline{-}}}\Sigma\chi(\overline{A_{k}(f)})$ $(mod 2)$ ,

where $\overline{A_{k}(f)}$ is the {opological closure of $A_{k}(f)$ .
In $par$ {icullar, if $f$ has only folds ($A_{1}$ -type), {hen {he Euler characteristic

of $M^{n}$ has the same parity a that of the singular point set $S(f)$ .

DefinitiOn 2.2
Suppose $tha\{n-p+1$ is even. For a smooth map $f:M^{n}\dashv \mathbb{R}^{p}(n\geqq p)$ vhich admits

only fold singularity, such a point $p$ is called a fold point with index $\lambda(mod 2)$

if $f$ has the following normal form using local coordinates at $p$ and $f(p)$

$y_{i}=x_{i}$ $(1\leqq i\leqq p-1)$

$y_{p}=-x_{p}^{z..z_{+\ldots+X_{n}^{2}}}-x_{p+1-1}+x_{p\star\lambda}$ .
We set

$S^{+}(f)=$ { $p\in S(f)$ ; index $\lambda$ is even}
$S-(f)=$ { $p\in S(f)$ ; index $\lambda$ is odd}.

These {wo sets are clearly well-defined for being $n-p+1$ being even.

Lemma 2.3 $([4|)$

Let $f:M^{n}arrow \mathbb{R}^{p}(n\geqq p,n-p+1;even)$ be a smooth map vhich has only folds. Then we

have

$\chi(M^{n})=\chi(S^{+}(f))-\chi(S^{-}(f))$ .

Remark 2.4

When $f:M^{n}arrow \mathbb{R}^{3}$ has only folds, lemma 2.1 says if the Euler characteristic of
$M^{n}$ is odd, then {he singularpoint set $S(f)$ contains unorientable surfaces with

odd genus.

Lemma 2.3 plays a fundamental role in proof of Theorem $B$ stated in sectionB.

$-\lambda 2-$
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We end this section by generalizing this remark.

Proposition 2.5

Let $f:M^{n}arrow \mathbb{R}^{p}(n\geqq p\geqq 3)$ be a $smoo\{h$ map which admibs only folds. If $\chi(M^{n})$ is

odd, then $S(f)$ is unorientab le.

proof. As usual we define {he normal bundle of the immersiOn $f|S(f)$ by {he

exactness of

$0arrow$ $\iota/(f)arrow$ $\tau(S(f))arrow$ $f^{*}\tau(\mathbb{R}^{p})arrow$ $0$ ,

where $\tau(S(f))$ is the {angent bundle of $S(f)$ and $f^{*}\tau(\mathbb{I}i^{p})$ {he induced bundle.

Since $S(f)$ is a p-l dimensiOnal manifold, the normal bundle 11 (f) is a line

bundle over $S(f)$ . Then we $se\{w(\nu(f))=1+\hat{\alpha}$, where $w(\nu(f))$ is the total

Stiefel-Whitney class and $\alpha\wedge\in H^{1}(S(f);\mathbb{Z}/2)$ . We then have
$\tau(S(f))\oplus\nu(f)-\backslash -f^{*}\tau(\mathbb{I}t^{p})$ .

$-5-$

Note {hat $f^{*}\tau(\mathbb{R}^{p})$ is trivial. This implies

$w(S(f))w(\nu(f))=w(f^{*}\tau(\mathbb{R}^{p}))=1$ .
Thus we have

$w(S(f))-1+\hat{a}+\hat{\alpha}^{2}+\cdots+a^{p-1}\wedge$ ,

where the powers are cup products.

Hence we have $w_{1}(\iota/(f))=\hat{a}=$ Wl $(S(f))$ . Using Poincare-Hopf theorem modulo 2 and

applying lemma 2.1, we have

$\chi(M^{n})---\chi(S(f))$ $(mod 2)$ (lemma 2.1)

$-<w_{p-1}(S(f))$ , $[S(f)|_{2}>$ $(mod 2)$

$—<\alpha^{p-1}$ , $[S(f)]_{2}>$ $(mod 2)$

$—<(w_{1}(S(f)))^{p-1}$ , $[S(f)|_{2}>$ $(mod 2)$ .
The assumption that $\chi(M^{n})$ be odd implies Wl $(S(f))$ is $non-trivial$ , which means

that $S(f)$ is unorientab le. This completes {he proof.

$arrow\iota-$
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3. Proof of Theore$\bullet$
$C$

Let $M$ be a closed n-dimensional manifold and $f:M\dashv \mathbb{R}^{3}$ be a stable map. If

$p\in S(f)$ , then there exist local coordinates $(x, y, z_{1}, \cdots, z_{n-2})$ and $(y_{1}, y_{2}, y_{3})$

centered at $p$ and $f(p)$ respectively such that $f$ has the following normal forms:

1 $)$ $(x,$ $y,$ $z_{1},$
$\cdots$ , Zn-2 $)$ $arrow$ $(x, y, \pm z_{1^{2}}\ldots\pm z_{n-2^{2}})$ , fold

2 $)$ $(x, y, z_{1}, \cdots, z_{n-2})arrow$ $(x, y, z_{1^{3}}+xy\pm z_{2^{2}}\ldots\pm z_{n-2^{2}})$ , cusp

3 $)$ $(x,$ $y,$ $z_{1},$
$\cdots$ , Zn-2$)$ $arrow$ $(x, y, z_{1^{4}}+xy^{2}+xy\pm z_{2^{2}}\ldots\pm z_{n-2^{2}})$ , swallow tai l

In what follows, we will investigate the relation between the self-intersec-

tion number of $S(f)$ in $M^{4}$ and signature of $M^{4}$ .

In this section we prove the following Theorem C.

Theorem $C$

Let $M^{4}$ be a closed. Oriented 4-dimensiOnal manifold with $H_{1}(M^{4};Z)=0$ and
$f:M^{4}arrow \mathbb{R}^{3}$ be a stable map. Then ve have

$\sigma(M^{4})----S(f)\cdot S(f)$ $(mod 4)$ ,

Lemma 3. 1

For a stab le map $f:M^{4}arrow \mathbb{R}^{3}$ as above, we have

$\chi(M^{4})---\chi(S(f))$ $(mod 2)$ .
proof. By lemma 2.1 we have

$\chi(M^{4})---\chi(\overline{A_{1}(f)})+\chi(\overline{A_{2}(f)})+\#A_{3}(f)$ $(mod 2)$ , $(*)$

wherc $\#A_{3}(f)$ dcnotes the number of $\Lambda_{3}$ -type (swallow tail) singular points. Since
$\overline{A_{2}(f)}$ is a union of circles, ve have

$\chi(\overline{A_{2}(f)})=0$ . $(**)$

According to Ando [1]. the Thom polynomial of $\overline{A_{3}(f)}$ is $w_{1^{4}}+w_{1}w_{3}$ . Hence we have

$\#A_{3}(f)---<w_{1^{4}}+w_{1}w_{3}$ , $[M^{4}|_{2}>$ $(mod 2)$ $(***)$

Since $M^{4}$ is oriented, Wl $=0$ . Therefore $\#A_{3}(f)---0(mod 2)$ . Since $\overline{A_{1}(f)}$ is $S(f)$ ,

the conclusion follows from $(*),$ $(**)$ and $(***)$ .

$-xr-$
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Definition 3.2

A closed 2-dimensiOnal submanif01d $F$ of $M$ is called a $characteris\{ic$ surface

of $M$ if the $mod 2$ cycle $[F]_{2}\in H_{2}(M;71\lrcorner/2)$ is Poincare dual to {he $2-ndStiefel-$

Whitney class $w_{2}(M)\in H^{2}(M;Z/2)$ .

The following lemma was first given by Rochlin [13] and fully proved in a

generalized form by Guillou and Marin [5].

Lemma 3.3 ([5], $[13|)$

Let $M$ be a closed, Oriented 4-dimensiOnal manifold with $H_{1}(M;Z)=0$ and $F$ be

a characteristic surface of M. Then we have
$\sigma(M)---$ FF $+2\chi(F)$ $(mod 4)$ .

Lemma 3.4 ([14])

Let $f:M^{4}arrow E^{3}$ be a stable map. Then $S(f)$ is a $mod 2$ cycle of $M^{4}$ and its

Poincare dual class $[S(f)|_{2^{*}}\in H^{2}(M^{4};Z/2)$ coincides with {he $2-nd$ Stiefel-Whitney

class $w_{2}(bt^{4})$ .

(proof of Theorem C)

Let $f:M^{4}arrow \mathbb{R}^{3}$ be a $s\{able$ map. From lemma 3.4 $S(f)$ is a characteristic

surface of $M^{4}$ . Then from lemma 3.3 we have

$\sigma(M^{4})---S(f)S(f)+2\chi(S(f))$ $(mod 4)$ . (1)

As we will see later, we have

$\sigma(M^{4})---\chi(S(f))$ $(mod 2)$ . (2)

Hence
$2\sigma(M^{4})---2\chi(S(f))(mod 4)$ . (3)

Combining (1) and (3), ve obtain the required result

$\sigma(M^{4})----S(f)S(f)$ $(mod 4)$ .

$-z\angle^{\wedge}-$
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We have the above congruence (2) as follows.

We decompose $H^{2}(M^{4};\mathbb{Q})$ into {he positive eigen space $H^{+}$ and the negative eigen

space $H^{-}$ of the $s$ymmetric bilinear form defining the signature of $M^{4}$ :
$H^{2}(b!^{4};\mathbb{Q})=II^{+}\oplus H^{-}$ .

Then we have
$\sigma(M^{4})=dimH^{+}-dimH^{-}---dimH^{+}+dimII^{-}$ $(mod 2)$

$=2-nd$ betti number of $M^{4}$

$—\chi(\#I^{4})$ $(mod 2)$

$—\chi(S(f))(mod 2)$ ,

where the last congruence foll $ows$ from lemma 3.1. This completes the proof of

Theorem C.

The above congruence (2) implies

Corollar$y3.5$

Let $M^{4}$ be an oriented 4-dimensiOnal manifold an\’a $f:M^{4}arrow \mathbb{R}^{3}$ be a stable map.

If the signature of $M^{4}$ is odd, then $S(f)$ contains unorientable surface with odd

genus.

4. Proof of $Theore\blacksquare$ A

In {his section we prove the following

Theorem 4. 1
$Le\{M^{4}$ be a closed, Oriented 4-manifOld and $N^{3}$ be an Oriented 3-manifOld. If

$f:M^{4}arrow N^{3}$ is a stable map whose singular point set is a union of 2-spheres, then

we have
$\sigma(M^{4})---S(f)\cdot S(f)$ $(mod 16)$ .

– $2_{-\angle-}$
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As we will see later in section 6, for a special generic map over simply

$connec\{ed$ 4-manifOld $M^{4}$ into $\mathbb{R}^{3}$ {he singular point set is a disjoint union of

2-spheres. Therefore Theorem 4.1 implies Theorem B.

Lemma 4.2 $([14|)$

Let $M^{4}$ be a closed, Oriented 4-manifOld and $N^{3}$ be an oriented 3-manifOld. For

a stable map $f:M^{4}arrow N^{3}$ , {he dual class $[S(f)|_{2^{*}}$ coincides wih the $2-nd$ Stiefel-

Whitney class $w_{2}(M^{4})$ .
proof) Since any Oriented $3manifold$ is parallelizable, $w_{j}(N^{3})=0(1\leqq i\leqq 3)$ .

$c$ Hence $f^{*}w_{i}(N^{3})$ do not appear in the Thom polynomial $P(\overline{\Sigma^{2.O}})=P(w_{i}(M^{4}, f^{*}w_{j}(N^{3}))$

Therefore {he same conclusion as in lemma 3.4 follows.

(pioof of Theorem B)

The method of the proof is similar to [61. First fix an OrientatiOn of $M^{4}$ .
We assume that $S(f)$ has $k$ connected components and set $S(f)=S_{1}\cup\cdots\cup S_{k}.$ AIoreover

we set
$n_{i}=S_{i}\cdot S_{i}\geqq 0$ $(1\leqq i\leqq p)$

$m_{j}=S_{j}\cdot S_{i}<0$ $(p+1\underline{\leq}j\leqq k)$ ,

where $S_{x}\cdot S_{x}$ is the $self-intersection$ number of $S_{x}$ for $1\leqq x\lrcorner \mathfrak{c}$ in $M^{4}$ .
We construct a spin manifold $M_{k}$ by surgering the singular point set out and by

inductiOn on $i$ ad $i$ .
As the first step we construct a manifold $\tilde{M}_{1}$ such that $w_{2}(\tilde{M}_{1})=[S_{2}\cup\cdots S_{k}|_{2^{*}}\in$

$H^{2}(\tilde{M}_{1};Z/2)$ and {hat $\sigma(\tilde{M}_{1})--\sigma(M^{4})-S_{1}\cdot S_{1}$ . Let $\mathbb{C}P^{2}$ and $\overline{\mathbb{C}P^{2}}$ be the complex

proiective plane and the one with {he opposite orientation, respectively. Then
$\mathbb{C}P_{i}^{1}\underline{\subseteq}\overline{\mathbb{C}P_{i}^{2}}(1\leqq i\leqq n_{1}+1)$ and $[GP_{i}^{1}]=$ W2 $(\overline{\mathbb{C}P_{i}^{2}})$ . Se{ $M_{1}=M^{4}\#\overline{\mathbb{C}P_{1}^{2}}\#\cdots\#\overline{\mathbb{C}P_{\overline{n}_{t}+1}}$ We
$construc\{\tilde{M}_{1}$ from $M_{1}$ as follows.

–2, 7 –
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Consider the connected sum $S_{1}\#\mathbb{C}P_{1}^{1}\#\cdots\#\mathbb{C}P_{n+1}$ in $M_{1}.$ Set $\tilde{S}_{1}=S_{1}\#GP_{1}^{1}\#\cdots$

$\#GP_{n,+1}$ . Then $S_{1}$ is a smoothly embedded 2-sphere in $M_{1}.$ Let $\xi\in H_{2}(M^{4};Z)$ be the

homology class represented by $S_{1}$ and $\eta_{i}\in H_{2}(\overline{\mathbb{C}P_{i}^{2}}:\triangle 7)(1\leqq i\leqq n_{i}+1)$ the homology

class represented by $\mathbb{C}P_{i}^{1}$ , respectively. Then {he homology class $\zeta=\xi+\Sigma\eta_{i}\in$

$H_{2}(M_{1};Z)$ can be represented by $\tilde{S}_{1}$ , using the natural isomorphism

$H$2 $(M^{4};Z)\oplus H_{2}(\mathbb{C}P_{1}= ; Z)\oplus\cdots\oplus H_{2}(\overline{\mathbb{C}P_{n_{1}+1}^{2}};Z)--\sim H_{2}(M_{1};2)$ .
The $self-intersection$ number of $S_{1}$ in $M_{1}$ is

$\tilde{S}_{1}\cdot\tilde{S}_{1}=\xi\cdot\xi+\Sigma\eta_{i}\cdot\eta_{i}--n_{i}-(n_{i}+1)=-1$ .
Hence the tubular neighborhood of $\tilde{S}_{1}$ in $M_{1}$ is the $D^{2}$ -bundle ovei $\tilde{S}_{1}$ with Euler

number-l $\in\pi_{1}(SO(2))$ , which is denoted by $N(\dot{\tilde{S}}_{1})$ . Then $\partial N(\tilde{S}_{1})$ is the (-l)-HOpf

bundle and diffeomorphic 00 $S^{3}$ . We now set $\tilde{M}_{1}=(M_{1}-IntN(\tilde{S}_{1}))\bigcup_{\partial}D^{4}.$ Note that
$\tilde{M}_{1}\#\ovalbox{\tt\small REJECT} P=(\tilde{M}_{1}-IntD^{4})\bigcup_{\partial}(\overline{\mathbb{C}P^{2}}-IntD^{4})$

$=( M_{1}-IntN(\tilde{S}_{1}))\bigcup_{id}N(\tilde{S_{1}})=M_{1}$ $(*)$

$=M^{4}\#\overline{\mathbb{C}P_{1}^{2}}\#\cdots\#\overline{\mathbb{C}P_{n+1}^{A}}$.
From the above construction we see

Lemma 4.2
$S_{1}\cup CP_{1}^{1}\cup\cdots UCP_{n\star 1}(\subset M_{1})$ lies in $N(\tilde{S_{1}})=\overline{\mathbb{C}P^{\prime z_{-}}}IntD4$ of the decompositiOn $(*)$

of $M_{1}=\tilde{M}_{1}\#\overline{\mathbb{C}P^{2}}$ .
This lemma will be used at the end of this section.

The additivity of the $signa\{ure$ implies

$\sigma(\tilde{M}_{1})-1=\sigma(M^{lI})-(n_{1}+1)$ .
Hence we have

$\sigma(\tilde{M_{1}})=\sigma(M^{4})-S_{1}\cdot S_{1}$ . (X)

Moieover, as we vill sse later, ve have

$W$2
$(\tilde{M_{1}})=[S_{2}\cup\cdots US_{k}]_{2^{*}}\in H^{2}(\tilde{M}_{1};Z/2)$ . (W)

This completes {he first step of our inductiOn.

$-\lrcorner- k-$
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Next for $i=2,$ $\cdots,$ $p$ we can construct $\sim M_{i}$ and $M_{i}$ from $\tilde{M}_{i-1}$ inductively in the

same way such that
$\sigma(\tilde{M}_{i})=\sigma(\tilde{M}_{i-1})-n_{i}=\sigma(M^{4})-\Sigma S_{t}\cdot S_{t}$ . $(X_{i})$

$w_{2}(\tilde{M}_{i})=[S_{i+1}\cup\cdots US_{k}]_{2^{*}}\in H^{2}(\tilde{M}_{i};Z/2)$ . $(1Y_{i})$

Hence ve have
$\sigma(\tilde{M}_{p})=\sigma(M^{4})-(n_{1}+\cdots+n_{p})=\sigma(AI^{\iota})-\Sigma S_{i}\cdot S_{i}$ . $(X_{p})$

$w_{2}(\tilde{M}_{p})=[S_{p\star 1}\cup\cdots US_{k}]_{2^{*}}\in H^{2}(\tilde{M}_{p};Z/2)$ . $(W_{p})$

$Nex\{$ for $j=p+1,$ $\cdots,$
$k$ we will make similar process $s$ above.

Let $M_{p+1}=M_{p}\#\mathbb{C}P_{1}^{2}\#\cdots\#\mathbb{C}P_{m}^{2}$ , where $m_{1}=|m_{p+1}|+1$ and consider {he connected sum
$\tilde{S}_{p\star 1}=S_{p\star 1}\#GP_{1}^{1}\#\cdots\#GP_{m_{1}}^{1}$ . Then $\tilde{S}_{p+1}$ is also a smoothly embedded 2-sphere vith self

intersection number $+1$ in $M_{p+1}$ . Then we set
$\tilde{M}_{p+1}=$ ($M_{p\star 1}$ -IntN $(\tilde{S_{p\star 1}})$ ) $\bigcup_{\partial}D^{4}$ .

We see
$\sim M_{p\star 1}$ #$CP$2$=M_{p+1}=\overline{A1}_{p}\#\mathbb{C}P_{1}^{2}\#\cdots\#\mathbb{C}P_{m_{t}}^{2}$ .

$Mo$ reover, we see in the same way as $(X_{i})$

$\sigma(\tilde{M}_{p\star 1})=\sigma(\tilde{M}_{p})+|m_{p+1}|=\sigma(\tilde{M}_{p})-\Sigma S_{p+1}\cdot S_{p+1}$ . $(X_{p\star 1})$

$w_{2}(\tilde{M}_{p+1})=[S_{p+2}\cup\cdots US_{k}]_{2^{*}}\in H^{2}(\tilde{M_{p+1}};Z/2)$ . $(W_{p\star 1})$

${\rm Re}$ peating the same constructions until surgering out all {he 2-spheres as an

ObstructiOn of a spin structure, ve have
$\sigma(\tilde{M}_{k})=\sigma(\overline{M}_{k-1})-m_{k}=\cdots$ $=\sigma(M^{4})-2n_{i}-2m_{i}$

$=\sigma(M^{4})$ - $S$ ( $f$ ) $\cdot S(f)$ , $(X_{k})$

$w_{2}(\tilde{M}_{k})=0$ . $(W_{k})$

Hence $M_{k}$ is spin. From {he clasical Rochlin’s theorem [11]. $\sigma(\tilde{M}_{k})_{-}^{-}-O(mod 16)$ .
Thus from $(X_{k})$ we have {he required resul{.

$–>?-$
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(proof of $(W_{i})$ )

First we prove $(W_{1})$ . According to Wu’s formula([10]. p. 136). on a closed,

orientsd smooth 4-manifOld, W2 is characterized by $w_{2}\Downarrow Y--v\cup v$ for any $v\in H^{2}(A1;Z/2)$

So it is sufficient to show that $[S_{2}\cup\cdots\cup S_{k}|_{2^{*}}\cup v=vUv$ for all $v\in H^{2}(M;Z/2)$ .
Equivalently, by the Poincare duality, it suffices to show $[S_{2}\cup\cdots\cup S_{k}|_{2}\cup y--y\cup y$

$(mod 2)$ for all $y\in H_{2}(M;Z/2)$ . From lemma 4.2 we have
$[S(f)|_{2}\cdot x=x\cdot x(mod 2)$ for all $x\in H_{2}(\tilde{M}_{1};Z/2)$ .

We set [F] $=[S_{2}\cup\cdots\cup S_{k}]_{2}$ . We have the follwing isomorphism.

$H_{2}(\tilde{M}_{1})\oplus H_{2}(\overline{GP^{2}})\approx\sim$ $H$2 $(M^{4})\oplus H_{2}(\mathbb{C}P_{1}^{2})\oplus\cdots aH_{2}(\mathbb{C}P_{n+1})$ .
Then every element $y\in H_{2}(\tilde{M}_{1})$ has the form

$y$
–
- $x$ $+a_{1}v_{1}+\cdots+a_{m}v_{m}$ $(mod 2)$ ,

where $x\in H_{2}(M^{4}),$ $v_{i}\in H_{2}(\overline{\mathbb{C}P_{i}^{2}})$ and $m=n_{1}+1$ .
Since $(S_{2}\cup\cdots US_{k})\cap(CP_{1}^{1}\cup\cdots UCP_{m}^{1})=\phi$ , we see that [F] $\cdot v_{1}=0$ for $i=1,$ $\cdots,$ $m$ .
Hence we have

$[F|\cdot y=[F|\cdot x=[S(f)|_{2}\cdot x-x\cdot x$ (1)

On the other hand,

$[S_{1}|\cdot x+a_{1}+\cdots+a_{m}=[S_{1}|\cdot x+a_{1}v_{1}\cdot$ Vl $+$ $+a_{m}v_{m}\cdot v_{m}$

$=[S_{1}|\cdot x+v_{1}\cdot a_{1}v_{1}+\cdots+v_{m}\cdot a_{m}v_{m}$

$=([S_{1}]+v_{1}+\cdots+v_{m})\cdot y$

$=0$ , (2)

where note that $v_{i}\cdot x=0$ and $v_{i}\cdot v_{j}=0(i\neq j)$ , since $S_{1}\cap \mathbb{C}P_{i}^{1}=\phi$ and $GP_{i}^{1}\cap \mathbb{C}P_{j}^{1}=$

$\emptyset$ for $i\neq i$ .
The last equality in (2) can be seen as follows: From lemma 4.3 ve see

$([S_{1}]+v_{1}+\cdots+v_{m})\in H_{2}(\overline{\mathbb{C}P}^{2};Z/2)\subset$ H2 $(\tilde{M}_{1};Z/2)\oplus H_{2}(\overline{\mathbb{C}P}^{2};Z/2)\underline{\approx}$ H2 $(M_{1};Z/2)$ .
On the other hand, $y\in H_{2}(\tilde{M}_{1};Z/2)\subset$ H2 $(\tilde{M}_{1};Z/2)\oplus$ H2 $(\overline{\mathbb{C}P^{\prime z}};Z/2)\sim\simeq H_{2}(M_{1};Z/2)$ .
Thus $([S_{1}|+v_{1}+\cdots+v_{m})\cdot y=0$ .
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Moreover, ve get

$a_{1^{2}}+\cdots+a_{m}^{2}=a_{1}+\cdots+a_{m}+a_{1}(a_{1}-1)+\cdots+a_{m}(a_{m}-1)$

$—a_{1}+\cdots+a_{m}$ $(mod 2)$ . (3)

Therefore, from (1), (2) and (3) we have

[$F$ ] $\cdot y---[S(f)]_{2}\cdot x+a_{1^{2}}+\cdots+a_{m}^{2}$

$—x\cdot x+a_{1}v_{1}\cdot a_{1}v_{1}+\cdots+a_{m}v_{m}\cdot a_{m}v_{m}$

— $y\cdot$ $y(mod 2)$ .
Thus from {he haracterization of W2, ve have $[F|^{*}=[S_{2}\cup\cdots\cup S_{k}]_{2^{*}}=w_{2}(\tilde{M}_{1})$ . This

completes the $proof$ of $(W_{1})$ .
In {he same way we can prove $(W_{i})$ for $i=2$ , $k$ .
This completes the proof of Theorem B.

5. Special generic $\bullet aps$ and their Stein factorization

Let $f:Marrow \mathbb{R}^{p}$ be a stable map. It induces on $M$ an equivalence relation. that

is: $x\sim x$

’ if and only if $f(x)=f(x’)=y$ and $x,$ $x$

’ belong to the same connected

component of $f^{-1}(y)$ . We denote the natural proiection by $q:M\dashv M/\sim=W_{f}$ and let
$q’:W_{f}arrow \mathbb{R}^{p}$ be the map defined by $q’ oq$ . Th $is$ factorization of $f$ is knovn in

algebraic geometry as the Stein $fac\{orization$ .

In what follows, we restrict ourselves to the special generic map into $R^{3}$ .

Lemma 5. 1

For a special generic map $f:Marrow \mathbb{R}^{3},$ $W_{f}$ is a compact 3-manifOld with

boundary such that $\partial W_{f}$ is homeomorphic to $S(f)$ and $q$

’ ia an immersiOn, hence $S(f)$

is orientab le.
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proof) Recall that if $p\in S(f)$ , {hen {heie exist local coordinates $(x_{1}, \cdots, x_{n})$

and $(y_{1}, y_{2}, y_{3})$ centered at $p$ and $f(p)$ respectively, such that $f$ is given by the

folloving normal form

$y_{i}=x_{i}$ $(i=1,2)$

$y_{3}=x_{3^{2}}+$ $+x_{n}^{2}$ .
Then we choose open e-ball neighborhood $tI$ centered at $p$ of $S(f)$ in $M$,

$U=\{x_{3^{2}}+\cdots+x_{n}^{2}<\iota^{2}\}$ . Then $f$ sends to $V=\{y_{1}^{2}+y_{2^{2}}+y_{3}<\epsilon^{2}, y_{3}\geqq 0\}$ .
In particullar, the open 2-disk $\{X3=\cdots=x_{n}=0\}$ , which is coordinate nighborhood of

$p$ in S(f)corresponds homeoorphically to $\{y_{1^{2}}+y_{2^{2}}<\epsilon^{2}\}$ . From the definition of the

Stein factorization, $q(U)$ is homeomorphic to V. We denote this homeomorphism by

$\psi_{u}$ . Then $\{q(U), \psi_{U}\}$ is a chart of $W_{f}$ and hence $W_{f}$ ia a 3-manifOld with boundary.

Evidently, $q(S(f))$ is hOmeomorphic to $\partial W_{f}$ and $q$

’ is an immersiOn.

Remark 5.2

It is easy to see from the normal $folm$ that the quotient map $q:M\dashv W_{f}$

induces the suriective homomorphism $q_{*}:\pi_{1}(M)arrow\pi_{1}(W_{f})$ .

6. $Proof$ of $Te$ore$\bullet$ $B$

In {his section we prove {he following equality

Theorem $B$

Let Mb a closed, simply connected $2n$-dimensiOnal manifold $(I\llcorner>2)$ . For a

special generic map $f:M\dashv \mathbb{R}^{3}$ , we have

$\chi(M)=2\#S(f)$ ,

vhere $\#S(f)$ denotes {he number of connected components of $S(f)$ .

This theorem is an immediate concluion combining the following lemma 6.1 and

lemma 2.3.
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Lemma 6. 1

Let Mb a closed, simply connected $2n$ -dimensiOnal manifold $(n\geqq 2)$ . For a

special generic map $f:Marrow \mathbb{R}^{3},$ $S(f)$ consists of only 2-spheres.

(proof of Theorem C)

From lemma 2.3 we have the following equality for a special generic map

$f:M\dashv \mathbb{R}^{3}$ , since $S^{+}(f)=S(f)$ and $S^{-}(f)=\emptyset$ .
$\chi(M)=\chi(S(f))$ .

Then by the above lemma, we have

$\chi(S(f))=2\#S(f)$ .
This completes {he proof.

(proof of lemma B. 1)

Since $q^{*}:\pi_{1}(M)arrow\pi_{1}(W_{f})$ is suiiective and $M$ is simply connected, $\Uparrow f$ is

also simply connected. Hence $H_{1}(W_{f};Z)=0$ and $H^{1}(W_{f};Z)=0$ . Consider the

homology exact sequence of the pair $(W_{f}, \partial W_{f})$

$arrow H_{2}(W_{f}, \partial W_{f};Z)arrow H_{1}(\partial W_{f};Z)arrow H_{1}(W_{f};Z)arrow\cdots$

From the Poncare-Lefschetz duality,

$H$2 $(W_{f}, \partial W_{f};Z)\sim H_{1}(W_{f};Z)=0$ .
Therefore ve have

$H_{1}(\partial W_{f};Z)=0$ .
$Dy$ the classification of 2-manifolds, $\partial W_{f}$ consists of only 2-spheies.

Hence by lemma 6.1 $S(f)$ is a union of 2-spheres. This completes the proof.

As $s\{ated$ in the $introduc\{ion$ , we obtain the following corollary.
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Corollary 6.3

Let $M^{4}$ be a closed, Oriented, simply connecte44-manifOld. If $N^{4}$ admits a

special genei$\cdot$ ic map $f:M^{4}arrow \mathbb{R}^{3}$ such that $S(f)$ is connected, {hen $M^{4}$ is

homeomorphic to 4-sphere.

proof) By Theorem $B$ we have $\chi(M^{4})=2$ . Since $M^{4}$ is simply connected, $N^{4}$ is a

homotopy 4-sphere. The conclusiOn follows from [3].

Corollary 6.4

Let $M$ be a closed, simply connected $2n$-manifold $(n\geqq 2)$ . If the Euler charac-

teristic of $N$ is odd, then there exist no special generic maps over $M$ into $\mathbb{R}^{3}$ .
For example, $GP^{2}$ admi $ts$ no special generic maps into $\mathbb{R}^{3}$ .

Corollar$y6.5$

For a special generic map $f:S^{4}\dashv \mathbb{R}^{3},$ $S(f)$ is unknot.

proof) tInder the assumptiOn $S(f)$ is a 2-sphere smoothly embedded in $S^{4}$ . I $fW_{f}$

is diffeomorphic to $D^{3}$ , we define the composite map

$(S^{4}, S(f))L(W_{f}, \partial W_{f})$ $A$ $(D^{3}, S^{2})arrow h\mathbb{I}l$ ,

where th is a diffemorphism and $h$ is a height function. We set $p=ho\# 0q$ . Then
$\mathfrak{p}|S(f)$ has only {wo critical points. On {he other hand, the Poincare coniecture
is still open. Hovever, by Poenaru [161 (p. 484)

$S^{2}=\partial\Delta^{3}arrow\partial(\Delta^{3}XD^{2})=S^{4}$

is smoothly unknottcd. This completes the proof.
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