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On special generic maps of simply

connected 2n-manifolds into RS3

Kazuhiro SAKUMA

Abstract. The purpose of this paper is to study special generic

maps into f « We prove the congruence formula and equality which show
relations between the source manifold and singular point set. As
corollaries, we determine the homeomorphism type of the source manifold
in four-dimensional case and give an unknotting result for a special

generic map S%* into Ra.

1. Introduction

Let f be a smooth map from n-dimensional manifold M into p-dimensional
manifold N° (n2p). Homological properties of the singular point set of f are one
of the most interesting problems in singularity theory. However, most of known
results are in mod 2 (e.g.the real Thom polynomial [14], Whitney-Thom-Levine’s
result on the number of cusp points [7], [14], [15]). We want to know their homo-
logical properties in finer forms(i.e. modulo 4,8, etc) and to evaluate the num-
ber of connected components of the singular point set. We restrict ourselves to
special generic maps. Since we see that the singular point set consists of only
2-spheres (lemma 6.1), we have the following

Theorem A
Let M* be a closed, simply connected 4-dimensional manifold and f:M*~+ R 2 be
a special generic map. Then we have
oM*) = S(f)-S(f) (mod 16),
where S(f) is the singular point set of f and o (M*) denotes the signature of M.
And S(f)-S(f) stands for the self-intersection number of S(f) in M".
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Theorem B
Let M be a closed, simply connected 2n-dimensional manifold (n22). For a
spcial generic map f:M - R 3, ve have
x M) = 2#S(f),
where #S(f) denotes the number of connected components of S(f) and x (M) is the

Eulercharacteristic of M.

As corollaries, we determine the homeomorphism type of the source manifold
in 4-dimensional case and show in section 6 that the set of singular points of
special generic maps over S* into R® is unknotted.

In a more generalized setting, we have the following congruence formula for

a stable map

Theorem C
Let M* be a closed, oriented 4-dimensional manifold with H, (M*;Z)=0 and

f:M*> R 3 be a stable map. Then we have
oM*) = =S()-S(f) (mod 4),
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2. Euler characteristics of the source manifold and singular point sets

In this section we recall Fukuda’s results on the relations between the sour
cemanifold and set of singular points when the map has only fold singularity. At
the end of this section we will study the unorientability of the singular point
set S(f) of a map which has only folds. Let f:M"- R™ (n2p) be such a smooth
map. If p € S(f), then we can choose local coordinates (xi,Xz,...,X%.) centered
at p and (y1,¥2,...,¥o) centered at f(p) so that f has the following nomal forms

Vi = Xi (1£igp-1)
Yo = IpZ. . 02
~Then the Jacobian matrix at p is
1

Jf(P) = - . 0

Hence S(f) = {Xo=...=X,=0}, and rank J¢(p) =p-1 and S(f) ia a p-1 dimensional
manifold. Furthermore, the restricted map f|S(f) is a smooth immersion.
If a smooth map f:M - R® (n2p) admits only definite fold points, such a map

is called special generic (This terminology is originally due to [2]).

Now we recall Fukuda’s results in [4]. Let Ax(f) be the set of A.-type
singularity (1sk<p) for a smooth map f: M - R *®( See [9], in which Ax-type

1.0

singularities are referred as X~ "' 1--- in the language of the Thom-

Boardman symbols).

—2/—
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Lemma 2.1 ([4])
Let f: ¥ - R °(n2p) be a smooth map which has only Ax-type singularities
(18kSp-1). Then we have
x W)= = x (h(f)) (mod 2),
vhere A.(f) is the topological closure of Aw(f).
In particullar, if f has only folds (A,-type), then the Euler characteristic
of M has the same parity a that of the singular point set S(f).

Definition 2.2

Suppose that n-p+! is even. Fof a smooth map f: M® - R*”(n2p) which admits
only fold singularity, such a point p is called a fold point with index % (mod 2)
if f has the following normal form using local coordinates at p and f(p)

yi = X (18igp-1)

2 2

Yo = “XpZu .. “Xpea-1+XpsaZt. .. +XnZ.
Ye set
S*(f)= {peS(f); index X is even }
S-(f)= {p€S(f); index 1 is odd }.

These two sets are clearly well-defined for being n-p+! being even.

Lemma 2.3 ([4])
Let f: M - R *°(n2p,n-p+l:even) be a smooth map which has only folds. Then we

have

x (M) = x(S°(f))—x (57 (f)).

Remark 2.4
When f:M™-R ® has only folds, lemma 2.1 says if the Euler characteristic of
M~ is odd, then the singularpoint set S(f) contains unorientable surfaces with
odd genus.
Lemma 2.3 plays a fundamental role in proof of Theorem B stated in sectionb.

— 2D —
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We end this section by generalizing this remark.

Proposition 2.5
Let f:M~~R® (n2p23) be a smooth map which admits only folds. If x (M) is
odd, then S(f) is unorientable.

proof. As usual ve define the normal bundle of the immersion f|S(f) by the
exactness of
0— v() = T6MH) - T([R" — O,
wvhere T (S(f)) is the tangent bundle of S(f) and f*7 (R*®) the induced bundle.
Since S(f) is a p-1 dimensional manifold, the normal bundle v (f) is a line
bundle over S(f). Then we set w(v (f))= 1 + @, where w(v (f)) is the total
Stiefel-Whitney class and @ € H'(S(f);Z/2). We then have
T(§E)Ddrv ) = T (RP).
-5—

Note that f*z (R®) is trivial. This implies

v(S(1) w(v(f)) =w(f*T(R®) = L
Thus we have

W(S(F)) =1+ &+ 42 +o4 g° 71,
vhere the powers are cup products.
Hence we have w.(v (f)) = @ = w.(S(f)). Using Poincare-Hopf theorem modulo 2 and
applying lemma 2.1, we have |

x M) = x(S(f))  (mod 2) (lemma 2.1)
< Wp-1(S(D)), [S(D)]2> (mod 2)
<o”h, [S(f)]2 > (mod 2)
<(w. (SN, Sz > (mod 2).

The assumption that x (M®) be odd implies w.(S(f)) is non-trivial, which means

that S(f) is unorientable. This completes the proof.

—_23
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Let M be a closed n-dimensional manifold and f:M - R 3 be a stable map.‘lf

p € S(f), then there exist local coordinates (x,y,z1,***, Za-2) and (y.,ye,¥3)

centered at p and f(p) respectively such that f has the following normal forms:

].) (X,y, 211"'9 Zn-2) - (xyy,izlz cee iZn—ZZ), fOld

2) (X,¥,21,", Zn-2) = (X,¥,2:%+xy%12% -+ *2,-2%), cusp

3) (x,¥,21,°* Zn-2) = (X, ¥, 21" +xy%+xyrz2% -+ *2,.0%), swallow tail

In what follows, we will investigate the relation between the self-intersec-

tion number of S(f) in M* and signature of M*.

In this section we prove the following Theorem C.

Theorem C

Let M* be a closed, oriented 4-dimensional manifold with Hl(M4;Z)=0 and

f:M*+ R > be a stable map. Then we have
o (M*) = =S(f)-S(f) (mod 4),
Lemma 3.1
For a stable map f: M* » R ® as above, we have
xM*) = x(S()) (mod 2).
proof. By lemma 2.1 we have

x M) = x (A (£))+x (A=(f)) +#As(f)  (mod 2),

(¥)

where #A;(f) denotes the number of As-type (swallow tail) singular peints. Since

A=(f) is a union of circles, we have

x (A=(F)) = 0.

()

According to Ando [1], the Thom polynomial of As(f) is w.*+w,ws. Hence we have

A3 (f) = < wi'+waws, [M*12 > (mod 2)

(k)

Since M* is oriented, w. = 0. Therefore #As(f) = 0 (mod 2). Since A, (f) is S(f),

the conclusion follows from (%), (¥%) and (%kx).
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Definition 3.2

A closed 2-dimensional submanifold F of M is called a charécteristic surface
of M if the mod 2 cycle [F]=€ Ho(M;Z/2) is Poincare dual to the 2-nd Stiefel-
Whitney class we (M)€ HZ(M;Z/2).

The following lemma was first given by Rochlin [13] and fully proved in a

generalized form by Guillou and Marin [5].

Lemma 3.3 ([5], [13])
Let M be a closed, oriented 4-dimensional manifold with H:(M;Z) =0 and F be

a characteristic surface of M. Then we have

oM =FF+2x(F) (mod 4).

Lemma 3.4 ([14])
Let f:M* - R® be a stable map. Then S(f) is a mod 2 cycle of M* and its
Poincare dual class [S(f)]=*€ H2(M*:Z/2) coincides with the 2-nd Stiefel-¥hitney

class wo (M*).

(proof of Theorem ()
Let f: M* = B3 be a stable map. From lemma 3.4 S(f) is a characteristic

surface of M*. Then from lemma 3.3 we have

o M*) = S(f) S(f) +2x (S(f))  (mod 4). (1
As we vwill see later, we have

oM*) = x(S(f)) (mod 2). (2)
Hence

20 (M) = 2x(S(f)) (mod 4). (3)

Combining (1) and (3), we obtain the required result

o M*) = =S(f) S(f) (mod 4).

— 2 —
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We have the above congruence (2) as follows.
¥e decompose H2(M*;@) into the positive eigen space H* and the negative eigen
space H™ of the symmetric bilinear form defining the signature of M*:
BZM*;Q@ = B*@H.
Then we have
o M*)= dimH*—dimA~ = dimH*+dind~ (mod 2)
2-nd betti number of M*
x M) (mod 2)
x (S(f)) (mod 2),

vhere the last congruence follows from lemma 3.1. This completes the proof of

n

Theorem C.

The above congruence (2) implies

Corollary 3.5

Let M* be an orienfed 4-dimensional manifold and f:M* - R 3 be a stable map.
If the signature of M* is odd, then S(f) contains unorientable surface with odd

genus.

4. Proof of Theorem A

In this section we prove the following

Theorem 4.1
Let M* be a closed, oriented 4-manifold and N® be an oriented 3-manifold. If
f:M* - N® is a stable map whose singular point set is a union of 2-spheres, then

ve have

o(M*) = S(f)- S(f) (mod 1B).

— 24—
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As we will see later in section 6, for a special generic map over simply
connected 4-manifold M* into R ® the singular point set is a disjoint union of

2-spheres. Therefore Theorem 4.1 implies Theorem B.

Lemma 4.2 ([14])

Let M* be a closed, oriented 4-manifold and N® be an oriented 3-manifold. For
a stable map f:M* - N3, the dual class [S(f)]=* coincides wih the 2-nd Stiefel-
Whitney class w=(M*). |
proof) Since any oriented 3manifold is parallelizable, w;(N®) = 0 (1£j£3).
Hence f*w;(N®) do not appear in the Thom polynomial P(ZZ-%) = P(w: (M*, f*v; (N?))

Therefore the same conclusion as in lemma 3.4 follows.

(proof of Theorem B)

The method of the proof is similar to [B]. First fix an orientation of M*.
¥e assume that S(f) has k connected components and set S(f) = S,U--USk. Moreover
ve set

mo=Si- 5: 20 (1£i<p)

mj =S+ S; <0 (p+12j2k),
vhere Sx+ Sx is the self-intersection number of S. for 15xgk in M.
We construct a spin manifold Mx by surgering the singular point set out and by
induction on i ad J.

As the first step we construct a manifold My such that wa(Hy)=[S2U-Si2™ €
B2 (M,;2/2) and that o () = o (4*) —=S.-Ss. Let CP? and CPZ be the complex
projective plane and the one with the opposite orientation, respectively. Then

CP:? ¢TP:® (1sisn,+1) and [CP:'] = w2(CP:®). Set My = M*#CP,® # - #OPi +, . We

construct EL from M, as follows.
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Consider the connected sum S.#CPy'# -+ #TPn .. in Mi. Set Sy = S.#CP,’ g
#CP., .1. Then S, is a smoothly embedded 2-sphere in M. Let € € Ha(M*;Z) be the
homology class represented by S: and 7: € Ho(CP:2;Z) (ISiSni+1) the homology
class represented by CP;', respectively. Then the homology class { = § +2q; €
H.(M1;Z) can be represented by Sy, using the natural isomorphism

He (4*;2)@ He (TP22;2)@ - @ Ho (BPZ, +1:2) < Ha(Mas2).
The self-intersection number of S; in My is
Sie Sy = &8 + D1y = mi— (0itl) = -1,
Hence the tubular neighborhood of Sy in Mi is the DZ-bundle over Sy with Fuler
number -1 € 7.(S0(2)), which is denoted by N(S:). Then aN(Sy) is the (-1)-Hopf
bundle and diffeomorphic to S®. We now set My =(M,-IntN(S.))UsD*. Note that
¥ P2 = (My-IntD*) U, (EP2-IntD*)
= (Ma-IntNS))U:aN(S1) = M (%)
= M*4CP.%§ - #CPZ, ..

From the above construction ve see

Lemma 4.2
SyUCP1 U - UCPn «1 (CMy) lies in N(S:)=BP2-IntD* of the decomposition (¥)
of Ma= N 4TP2.
This lemma will be used at the end of this section.
The additivity of the signature implies
o (M)-1= o (M) -(n+D).

Hence we have

O'(H;) = O'(M4) - S1+5,). (X1)
Moreover, as we will see later, we have
vo ()= [S2U - USW]o™ € H2(i;2/2). (V1)

This completes the first step of our induction.

—28 —



Next for i= 2,---,p we can construct ﬁi and M; from ﬁ}_l inducfively in the

same way such that

o) = o@ioa) - ni = 0 () -ZS.-S.. (X:)

vo @)= [Sieal - USTo* € B2 (/). )
Hence we have

o (M) = o () ~(m*+np) = o ) -=8;-S:. (X,)

W (o) = [Spwrl -+ USW] 2™ € B2 (Ho32/2). (¥,)

Next for j = p+l,---,k we will make similar process s above.
Let Mp+1 = Mo#CP.2f---#CPn2, where my = [mp.:/+1 and consider the connected sum
\ §;+1=Sp+1#GP1‘#"~#GPm}. Then §;+1 is also a smoothly embedded 2-sphere with self
intersection number +! in Mp+:. Then we set
Mper= (hpes-I0EN(Sper)) Us D%,
We see
Mpws $0P2= My = NHEP 2--HOP2,

Moreover, ve see in the same way as (Xi)

0 Mper) = 0 () + IMperl= 0 (M) - Sper-Sper. (Xper)
Wz(i{’pﬂ): [Sp*zU USk] 2" € Hz(m+1;Z/2). (wpﬂ)

Repeating the same constructions until surgering out all the 2-spheres as an
obstruction of a spin structure, we have
0 ()= 0 Qhe-r)-me = = = o M) - Ini- Im
o (H) - S(£)-5(D), | (X0
v ()= 0. ()

Hence My 1s spin. From the clasical Rochlin’s theorem [11], O’dﬁk)E 0(mod 16).

Thus from (Xi) we have the required result.

— :L? —_—
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(proof of (¥:))

First we prove (W.). According to Wu's formula([10],p.136), on a closed,
oriented smooth 4-manifold, w= is characterized by wzUv =vUv for any veHZ(M;Z/2)
So it is sufficient to show that [SzU---US«]2*Uv =vUv for all v €H®(M;Z/2).
Equivalently, by the Poincare duality, it suffices to show [S2U---USi]2Uy = yUy
(mod 2) for all y €H2(M;Z/2). From lemma 4.2 we have

[S(E)]2-x = x-x (mod 2) for all x € Ha(My;2/2).
We set [F] = [SzU---USi]=. We have the follwing isomorphism.

o (1)@ B2 (6F) = o (4)® o (€P1?) @0 Hz (CPa -,
Then every element y € Hz(M:) has the form

I X+ aVy +t 2mVm  (mod 2),

vhere x € Bz (M*), vi€ Ho(CP:®) and m=n,+l.
Since (S2U -== USk) N(CPy'J --- UCPa') = ¢, vwe see that [F]-v: =0 for i= 1,---,m.
Hence ve have

[Fl-y = [Fl-x = [S(D)]=-x - x-x . (D
On the other hand,

[Sa] X + a1# < +am = [Si] X + a1VyieVyi + o + 2uVm' Ve

il

[Si] X + vica1vy + = + Vo' QmVm

([S:] + viteer +vm )0y
= 0, (2)
vhere note that vi-x = 0 and vi-v; =0 (i#j), since S:NCP:'= ¢ and CP;*NCP;! =
¢ for i#j.
The last equality in (2) can be seen as follows: From lemma 4.3 we see
([S1] + va#r +va )EH2 (BP2;2/2)C Hz(ix;Z/z)&’Hz(@Fé;Z/Z) = B2 (M1;52/2).
On the other hand, yelo(M,;2/2)C Hz(Ni;2/2)@ Mo (BP%;2/2) = Ha(Mi:2/2).

he

1}

Thus ([S.] + vit+=ss +vm )y = 0.

___»30/’
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Moreover, we get
1%+ o+ an® = At o 42w tap (a1 o +an(ae-1)
‘ z a,+ > +a, (mod 2). (3)
Therefore, from (1), (2) and (3) we have
[Fl-y = [S(f)]2-x + a1%+ -+ + a.®

XX + 4V @iV1 + o + 3nVm'3nVm
z y-y (mod 2).
Thus from the haracterization of wa, we have [F]*= [SzU--USi]2*=w2(.). This
completes the proof of (¥.).
In the same vway we can prove (W;) for i=2, - ,k.

This completes the proof of Theorem B.

5. Special generic maps and their Stein factorization

Let f:M - R™ be a stable map. It induces on M an equivalence relation, that
is: x~x’ if and only if f(x) = f(x’) = y-and x,x’ belong to the same connected
component of f~'(y). ¥e denote the natural projection by q:M - M/~ = W, and let
¢’ :¥e » R® be the map defined by q’oq. This factorization of f is known in

algebraic geometry as the Stein factorization.
In what follows, we restrict ourselves to the special generic map into R 3.
Lemma 5.1
For a special generic map f:M - R3, W¢ is a compact 3-manifold with

boundary such that a¥. is homeomorphic to S(f) and q’ ia an immersion, hence S(f)

is orientable.
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proof) Recall that if p€ S(f), then there exist local coordinates (xi,:*,Xn)
and (yi,y2,y3) centered at p and f(p) respectively, such that f is given by the
following normal form

Vi = Xi (i=1,2)

X32+ ces +xn2_

ya
Then we choose open e¢-ball neighborhood U centered at p of S(f) in N,
U= {x32+ -+ +Xn2< ¢2}. Then f sends to V={y.2+y>2+ys<e?, ya20}.
In particullar, the open 2-disk {xa=---=x,=0}, which is coordinate nighborhood of
p in S(f)corresponds homeoorphically to {y.%+y=2<e®}. From the definition of the
Stein factorization, q(U) is homeomorphic to V. ¥e denote this homeomorphism by
Yu. Then {q(U), Yy} is a chart of ¥¢ and hence We ia a 3-manifold with boundary.

Evidently, q(S(f)) is homeomorphic to d¥¢ and q’ is an immersion.

Remark 5.2
It is easy to see from the normal form that the quotient map q:M - ¥e

induces the surjective homomorphism qu:7: (M) = 7. (¥¢).

6. Proof of Teorem B
In this section we prove the following equality
Theorem B
Let M b a closed, simply connected 2n-dimensional manifold (n22). For a
special generic map f:M - R 3, we have
x (M) = 2#5(D),

vhere #S(f) denotes the number of connected components of S(f).

This theorem is an immediate concluion combining the following lemma 6.1 and

lemma 2.3.
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Lemma 6.1
Let M b a closed, simply connected 2n-dimensional manifeld (n22). For a

‘special generic map f:M - R3, S(f) consists of only 2-spheres.

(proof of Theorem C)
From lemma 2.3 we have the following equality for a special generic map
f:M - R3, since S*(f) = S(f) and S™(f) = &.
x M) = x(S(f)).
Then by the above lemma, we have
x (S(£)) = 2#S(f).
This completes the proof.

(proof of lemma B.1)

Since q*:7, (M) - m.(W¢) is surjective and M is simply connected , W¢ is
also simply connected. Hence Hi(We;Z) = 0 and H'(¥¢;Z) = 0. Consider the
homology exact sequence of the pair (We, dWe)

o = B (e, MWesZ) = B (WesD) = B (WD) — -
From the Poncare-Lefschetz duality,
Ho(We, iWe;Z) ~ Hi(WesZ) = 0.
Therefore ve have
Hi (3¥,;2) = 0.
By the classification of 2-manifolds, d¥, consists of only 2-spheres.

Hence by lemma 6.1 S(f) is a union of 2-spheres. This completes the proof.

As stated in the introduction, we obtain the following corollary.

— ) —
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Corollary 6.3

Let M* be a closed, oriented, simply connected 4-manifold. If M* admits a
special generic map f:M* - R® such that S(f) is connected, then M* is
homeomorphic to 4-sphere.
proof) By Theorem B we have x (M*)= 2. Since M* is simply connected, M* is a

homotopy 4-sphere. The conclusion follows from [3].

Corollary 6.4

Let M be a closed, simply connected 2n-manifold (n22). If the Fuler charac-
teristic of M is odd, then there exist no special generic maps over M into R 3.

For example, CP? admits no special generic maps into R 3.

Corollary 6.5

For a special generic map f:S* - R3, S(f) is unknot.

proof) Under the assumption S(f) is a 2-sphere smoothly embedded in S*. If W,
is diffeomorphic to D>, we define the composite map

(54,5(0)) L (e, b L (07,52 b R,
vhere ¢ is a diffemorphism and h is a height function. We set p =hegeq. Then
p|S(f) has only two criticalypoints. On the other hand, the Poincare conjecture
is still open. However, by Poenaru [16] (p.484)

§2=0A% — §(A3XD®)= §*

is smoothly unknotted. This completes the proof.

— 3¢
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