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Developablé of a Curve and

Determinacy Relative to Osculation-Type
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Introduction

‘The ruled surface by tangent lines to a space curve is called the developable surface of the
curve. More generally, the developable of a curve in (n + 1)-dimensional projective space
is defined as the hypersurface “ruled” by osculating (n — 1)-subspaces to the curve.
Consider a C® curve v : M — RP™t1 where M is a vi—dimensiona.l manifold. We
call the germ v, at a point p € M of finite osculation-type (or simply, of finite type)
a = (a1,a2,...,an41) if there exist a C® coordinate ¢ of (M, p) and an affine coordinate

(%1y--.y2n41) of RP™*! centered at v(p) such that v is represented by
z1 =1" +o(t*), ..., @41 =12+ 4 o(tn1),

where each a; is a natural number and 1 < a; < :-- < ap4i.

A point p € M is called an ordinary point if 4, is of type (1,2,...,n,n + 1), and,
otherwise, it is called a special point.

For each p € M where v, is of finite type and for each ¢, (0 < < n+1), there exists
the most osculating linear subspace to v at pin T,,(,,)]i.P""'1 of dimension i. We call it the
osculating i-subspace and denote by O;(v,p). The corresponding projective subspace of
R P"*1 through p of dimension i is also denoted by O;(7, p). The type of a curve therefore
describles the order of tangency to each osculating subspace, and it is the simplest local
projective invariant of the curve.

We can define the osculating i-bundle O;(7) in the pullback y~ TR P**!, The natural
parametrization

dev(y) : Op_1(y) — RP™*!
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defined by (p,q) — g, where g € O,,_1(7,p)(C RP™*1), is called also a developable of 7.

There are several results on the classification of developables of curves under the C*®
right-left equivalence.

For a space curve v, at each ordinary point p, the developable has cuspidal singularities
along v and dev(y), is equivalent to (z,t) — (z,t2,t3).

Cleave [C], Gaffney-du Plessis [GP] and Shcherbak [S1] prove that, at a point p of
type (1,2,4), dev(7), is equivalent to (z,t) — (z,t2,2t%). |

Mond [M1][M2] gives C* normal forms of developable of curves of type (1,2,2 + »),
r < 5, and of type (1, 3,4).

In the case of arbitrary dimension, Shcherbak, in [S1], shows the the developable of a
curve of type (2,3,...,2+1,n+2) is equivalent to the (parametrization of) n-dimensional
swallowtail, generarizing the observation of Arnol’d [A] for a curve of type (2, 3,4) based
on the Legendre singularity theory.

In the connection with the study of projections of wave front sets, Shcherbak, further
in [S2], gives the C™ normal form of the union of the developable of a curve-germ +, of
type (1,2,...,7,n + 2) and the osculating hyperplane O, (v, p). See also [K].

We can notice that the type of a curve determines the local C™ class of the developable
of the curve in the above mentioned cases.

Inspired with these previous results, we are led to the natural problem that whether
a type of a curve-germ 7, determines the C* class of map-germ dev(7y), or not.

If such determinacy for a type a is established once, then to have the normal form
of developables of curves of type a is reduced to just a calculation of an example. The

purpose of this paper is to announce the complete solution of this determinacy problem.

THEOREM 1. A type a of a curve-germ in RP™*! determines C™ class of developable if
and only if a is one of following types:

(Dn,r a= (1;2,...,n,n+r), r=12,...,

(IDa; a=(1,2,...,4,i4+2,...,n+1,n+2), 0<i<n-1,

(III), a=(3,4,...,n+2,n+3),

(IVv)a=(3,5), (V)a=(1,3,5).



133

Further, in this case, for any v, of type a, the map-germ dev(vy), is C* right left
~ equivalent to (2',U(2',t),U,(2',t)) : R*,0 — R™*1,0, where (2',t) = (21,...,2n_1,) is
a coordinate of (R™,0),

{8n—a1 10n—Gn-1

te»
U(z',t)=;-7+z1 A ok

(@n — ay)! @ — an_1)"

? = Qnp41 — G, and

Yt U
' — S S—
U,(z,t)—/o L.

Notice that the developable apears as a component of the envelope of one-parameter
family of osculating hyperplanes to a curve-germ 4,. In the case a,;1 — a, > 1, the
envelope also has a component O, (7, p) itself. In this case therefore it is natural to classify
developables by diffeomorphisms preserving O, (7, p). Then we have

THEOREM 2. A type a of a curve-germ in RP™*! determines C® class of envelope of
osculating hyperplanes if and only if a is one of types (I)n,,,r = 1,2,...,(II),; and
(III)n,n > 2, in Theorem 1.

THEOREM 3. A type a of a curve-germ 7, in RP™1 determines C* class of the union of

developable and O,(v,p) if and only if a is one of types (I), , and (II),; in Theorem 1.

These results unifies and generalizes the results of [C], [G-P] on (I);,2, the results of
[A], [S1], [S2], on (I)a,2 and (II),,0, and the results of [M1] [M2] on (I);,,(» < 5), and

(ID)2,1.
The proofs of Theorems 1,2 and 3 will be given in a forthcoming paper.
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Mond’s theorem

Based on Theorem 1, we reprove the following result due to Mond [M1], [M2, Corollary
0.2):

CoROLLARY. Let v: R,0 — RP® be a curve-germ of type (1,2,2 + r). Then dev(y) :
R?,0 — RP3 is a topological embedding if » is odd, and dev(y) has a single curve of

selfintersection if » is even.

- ProOF: By Theorem 1, dev(y) is C*® equivalent to the germ at 0 of
t? ‘o 2 3
fet) = (e, 5 +ot, [ So+2)is) B2 — B

Now, assume f(z1,t1) = f(z2,%2),(z:i,t;) € R2,i = 1,2. Then we see 2; = 23,21 =

—(1/2)(t1 + t2) and f:: 8" (8 + z1)ds = 0. Thus, setting o = s + z;, we have

a(a—cl)"ado'=0 eee (%),

-a
where a = (1/2)(¢2 — t1)-

If r is odd, then the left hand side of (*) is equal to an integral from —a to a with almost
everywhere positive integrand. Hence we have a = 0. This means that (z1,%;) = (22,t2)
and that f is injective. \

By a similar argument, if » is eveﬁ, then we have z; = 0 or (21,%1) = (22,%2).

Since f is a finite mapping and f|{z = 0} = (0,#?/2,(r + 1){t7*?/(r + 2)!}), we see f

is an embedding in the complement of a double point curve {z = 0}.
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