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Congruences for M and (M — 1)-curves

with odd branches on a hyperboloid

o~

Sacuiko MATSUOKA
(32 B ¥ 5 WEEHFR JEER)

1. Introduction.

In [2], Gudkov completed the isotopic classification of nonsingular irreducible real
algebraic curves of order 8 on a hyperboloid and conjectured two congruences concerning
M and (M — 1)-curves of order 4n with odd branches, where n is a positive integer. In
this paper we partially prove his conjecture (see Corollary 1 and Remark 2) as a corollary
of our main theorem. Although the main theorem needs some conditions in its statement,
it treats curves of general even order. As an appendix, we give the complete isotopic
classification of curves of bidegree (4,4) on a hyperboloid (see Remark 4 and the table in
§5). Since curves of bidegree (4,4) are necessarily of order 8, restrictions for curves of order
8 are also applicable to curves of bidegree (4,4). However, the existence problem should

be studied separately. Therefore the author thinks that the table is worthy of notice.

2. Formulation of the main theorem.

Let H be a nonsingular quadric sﬁrfa.ce defined by a real polynomial in the com-
plex projective 3-space P3. It is well-known that the real part RH(= H N RP3) of H is
homeomorphic to a 2-sphere S? or a 2-torus T2. In this paper we restrict ourselves to the
latter case. Such a quadric surface is called a hyperboloid. By an appropriate real linear
automorphism of P3, H is transformed into the quadric surface {Xo X3 — X1 X; = 0}. As
is well known, there is a biholomorphic map between this surface and P! x P!, which is

given by some real polynomials. Hence, in what follows, we often identify H with P! x P!,
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Let A(C H) be a nonsingular irreducible algebraic curve defined by real polynomials.

Then the divisor class [A] is written as
dfoo x PY] + #[P! x oo

in Pic(P! x P!) for some non-negative integers d and r. We call (d,#) the bidegree of A.
Then there exists a real bihomogeneous polynomial F(Xy,X1;Yy,Y1) of bidegree (d,r)
such that A is the zero locus of F in P! x P1. We may think of Pic(P! x P!) as a subgroup
of H2(P! x P';Z). The order of A is the intersection number

[4] - ([oo x P+ [P x 0]) =d + .

Now we set RA = ANRH. We say RA is an (M — i)-curve of bidegree (d,r) if the

number of branches, i.e., connected components of that is
d-=D(r-1)+1-1i.

We note that Gudkov (see [2]) defines (M — i)-curves of a fized even order 2m to be curves
with
(m—-1)2+1-i

branches. For a branch C of R A, the homology class [C] is written as
s[co x RP +¢[RP! x 0]

in H;(RP! x RP';Z), where s and ¢ are some integers. Following [2], we call (s,t) the

torsion of the branch C. We say the branch C is odd (or even) if the intersection number
[C]- ([0 x RPY] + [RP' x 0]) =t — s

is odd (or even). We say C is an oval (or non-oval) if (s,t) = (0,0) (or otherwise). We
note that the torsions are equal to the same fixed value for all non-ovals of RA if we give
them appropriate orientations.

Now suppose that both d and » are even. We note that if R4 is of even order and

has odd branches, then the number of odd branches is even, and hence, both d and » are
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even (cf. Theorem below). Then we can define Bt (resp. B™) to be the set {F > 0}(resp.
{F < 0}) in RP! x RP. Moreover, we can take a double covering ¥ — P* x P! branched
along A. Let Tt and T~ be the two lifts of the complex conjugation of P! x P1, and let
RY*+ and RY ™ be their fixed point sets. Then the restrictions of the covering map make
RY™* and RY ™ be double coverings of B* and B~ branched along R A respectively.

REMARK 1 (see [5,Remark 3.2]). For RA with non-ovals of torsion (s,t), RY* can be
regarded as the doubles of B* through the covering map if and only if £t + Ls is even.

There are several articles (for instance, [2], [7], [5], [6], and [1]) on real algebraic
curves on a hyperboloid.

Our new results are as follows.

TreoREM. Let A be a nonsingular irreducible real algebraic curve of bidegree (d,r) and
of even order on a hyperboloid. Suppose that RA has odd branches of torsion (s,t) with
s odd and t even, and » = 0 (mod 4). '

(i) I RA is an M-curve of bidegree (d,7), then we have x(B¥) = £ (mod 8).

(ii) If R A is an (M —1)-curve of bidegree (d,r), then we have x(B*) = £ +1 (mod 8).

CoROLLARY 1 (related to Gudkov's conjecture (see [2])). Let A be a nonsingular irre-
ducible real algebraic curve of order 8n on a hyperboloid. Suppose that RA has odd
branches.

(i) If RA is an M-curve of order 8n, then we have x(B*) =0 (mod 8).

(ii) If RA is an (M — 1)-curve of order 8n, then we have x(B%) = 1 (mod 8).

REMARK 2. In general, M and (M — 1)-curves of order 4n are also that of bidegree
(2n,2n). By (4) in the proof of Lemma 1 below, for an M-curve (resp. (M — 1)-curve)
of bidegree (2n,2n) with non-ovals, we automatically have dim H,(B*;Z;) = (2n — 1)? +
1 (resp. (2n — 1)?). Hence, we do not need to assume this equality (cf. [2]). Gudkov’s

conjecture is just unproved in the case n is odd.
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We will apply Corollary 1 to curves of bidegree (4,4) in §5.

3. Some basic results.

In this section we only assume that both d and » are even and R A has non-ovals that
are not necessarily odd and show some properties of the double covering  : Y — P! x P?
and the involutions T*. In what follows, we treat only T+. For T~, we have only to replace
‘4’ by ‘-’ for the reason that the hyperboloid is divided into some annuli by non-ovals.

We first note that Y is a simply connected compact nonsingular complex algebraic
surface. Hence, in particular, we see that H;(Y;Z) = 0 and H?(Y;Z) is free. Moreover,
we can regard the divisor class group Pic(Y) as a subgroup of H3(Y;Z). We set

By ={z € B} (V;Z)|(T*) (=) = =}

and

E-1 = {z € B}(Y;Z)[(T*)"(z) = —2}.

We note that E; and EF_; are orthogonal each other with respect to the intersection form.
Let Q41 denote the restrictions of the form to EF4;, and o4, their signature.

We consider the second Wu class v; (€ H?(Y;Z;)) of Y (for instance, see [8]). This
class has the property that z - v; = 2? for every z in H%(Y;Z,). Since w; = 0, we have

v = wy by Wu’s formula, where w; is the i—th Stiefel-Whitney class of Y. Hence we have

(1) V2 = (cl)mod 2= ("[KY])mod 2

where c; is the first Chern class of Y and Ky is the canonical divisor of Y. We note that
d r

(2 [Ky] = (5 = 2k + (5~ Db,

where we set by = 7*[co x P!] and hy = #*[P! x 0o]. We note that ky and h;, are contained

in F_;. Since c; is contained in E_;, we see that F, is always an even lattice. We set

E = {z € Hy(Y; Z,)|T} (z) = =},
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and let
az: Ho(Y/TH,RYY;Z,) © Hy(RY H;Z2) — Ha(Y;2Z,)

be the homomorphism in the Smith exact sequence for the involution 't : Y — Y. Since

H,(Y;Z) =0, as in the proof of [4, Lemma 3.7], we have
(3) Ima; = E.

LEMMA 1 (cf. [5, Remark3.1]). A curve RA with non-ovals is an (M — i)-curve if and
only if the pair (Y,T%) is an (M — (i + 2))-manifold in the sense of [8], i.e.,

dimH,(RY*; Z;) = dimH,(Y; Z;) — 2(: + 2).

ProoF: For a curve with non-ovals, it is easy (cf. [5, §3]) to verify that
(4) dimH,(B*;Z;) = | {branches of RA}

and

dimH,(RY*;Z,) = 2 - {branches of RA}.

We note that we must add 2 to the right-hand side of (4) if the curve has only ovals and
Bt contains the exterior of all the ovals. Here, however, we assume that the curve has

some non-ovals. On the other hand, we have (see also [5, §3])
dimH,(Y;2Z;) = x(Y) =6 +2(d - 1)(r — 1).

Thus we have the required result. &

By Lemma 1 and [4, Lemma 3.7], we have
(5) |detQy| = |detQ_,| = 2+

for an (M — i)-curve with non-ovals.
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According to (2.4) of [8], we have
oy —o_1=—x(RY™).
Since the signature o(Y') of Y is equal to ¢y + 03, we have
oY)+ x(RY ) = 20_;.

On the other hand, we have o(Y) = —dr (see [5, §3]) and x(RY*) = 2x(B*). Thus we

have

(6) : X(B+)— %1: =0-1.

LEMMA 2. Let A be a nonsingular irreducible real algebraic carve of bidegree (d,r) on a
hyperboloid. Suppose that RA has odd branches of torsion (s,t) with s odd and t even,

and » = 0 (mod 4). Then h, - z is even for every z in E_;.

ProOF: We note that ¢ is the intersection number [C] - [oo x RP?] for each odd branch C
of RA. We may think that co x P! intersects the curve A transversely in P! x P!, Since
0o x P! and A are real curves, i.e., invariant under the complex conjugation, co x R P!
intersects R A transversely in RP! x R P!, The inverse image #~1(oco x P!) is a nonsingular
real curve in Y and represents the cohomology class ;. We set K = RY* N#x~1(co x P1).

Then we have
K =x"Y(B*)n7" (oo x P!) = x~(B* N oo x RPY).

By the assumption, we see that %t + Z3s is even. Hence, RY ™" can be regarded as the
double of Bt through the covering map = (recall Remark 1), and K is also regarded as
the double of B¥ Noo x RPL.

We will show that the cycle K is a Z;-boundary in RY *. To prove this, it suffices
to prove that, for every connected component B,"" of B*, 7r_1(B,:" Noo x RPY) is a Z;,-
boundary in RY *.

We first consider the case when the boundary OB;" of B :’ consists of two odd branches,

denoted by C; and C,, and some ovals. C; and C, divide the hyperboloid into two annuli.
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B is obtained from one of them (say R) by removing the interiors of some ovals. Since
[C1] - [co x RP] is even, co x RP! meets R in an even number of intervals joining C;
to C; together with some arcs each joining C; (or C;) to itself. Such a union of intervals
and arcs always bounds, dividing R into regions R, and R_. Then =~ (B} Noo x RPY)
bounds x~}(BF N Ry).

In the case when the boundary 8B; consists of only some ovals, By is indeed the
interior of an oval by removing the interiors of some nested ovals since we assume that RA
has some non-ovals (odd branches). Hence we obtain the same fact as above by a similar
(but simpler) argument.

Thus we see that

[K] =0 in Hy(RY*;Z,).

Since K is a disjoint union of S, the total Stiefel-Whitney class w(K) is equal to 1.
Hence, RY* and K satisfy the conditions a) and b) of {3, Remark 2.2]. By this remark,
[3, Lemma 2.3] is applicable to the involution T* : ¥ — Y and #~!(co x P!). By this
lemma, (R1),,.4 2 (€ H2(Y;Z3)) is orthogonal to Ima;. By (3), (k1)

E. Hence, hy - z is even for every zin E_;. §

, is orthogonal to

mod

LEMMA 3 (cf. [3, Lemma3.1]). Let G be a free abelian group of finite rank, and Q :
G x G — Z be an even symmetric bilinear form. Suppose that there exists a primitive
element u in G such that Q(u,z) =0 (fnod 8) and Q(u,z) is even for every z in G.

(i) If |detQ| = 4, then SignQ = 0 (mod 8).

(ii) If |detQ| = 8, then SignQ = +1 (mod 8).

ProoF: (i) has already appeared in [3, Lemma 3.1]. As in the proof of this lemma,
we define an even integral symmetric bilinear form Q by using Q. If |detQ| = 8, then
|detQ| = 2. Hence, SignQ = SignQ = 1 (mod 8). §

4. Proof of theorem.
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Now we prove the theorem. By Lemma 2, h; -z is even for every zin E_;.  is assumed
to be even. If £ is also even, then, by (1) and (2), H*(Y; Z) is an even lattice, and hence, so
is E_;.If  is odd, then, by (1) and (2), v2 = (h1),,,4 ;- Therefore, 22 = ky -z = 0 (mod 2)
for every z in E_,, that is, £_, is an even lattice. It is easy to check that h; is primitive
in H?(Y;Z), hence in E_;, and h} = 0. H RA is an M-curve (resp. (M — 1)-curve), then,
by (5), we have IaetQ_1| = 4 (resp. 8). Thus, by Lemma 3 and the formula (6), we have

the required results. B

5. Isotopic classification of curves of bidegree (4,4).
We say two real algebraic curves RA and R A’ on a hyperboloid RH are isotopic if

there exists a continuous map
$:RH x[0,1] - RH

such that ¢ := &( ,t) are homeomorphisms, g is the identity map, and ¢;(RA) =RA'.

For a curve of bidegree (4,4), the number of non-ovals is 0, 2, or 4. If it is 4, then
we have |s| <1 and |t| < 1, where (s,t) is the torsion of the non-ovals, and the curve has
no more branches (Notation: 4(s,t)). If we have (|s], |¢t]) = (1,2) or (2,1), then the curve
has no more branches (Notation: 2(s,t)). If the number of non-ovals is 2 and |s| < 1 and
|t| < 1, then the non-ovals divide RP! x RP! into two annuli and the interior of each oval
does not contain any other ovals (Notation: 2(s,f;m,n), where m and n (m > n) denote
the numbers of ovals contained the two annuli respectively.)

For curves of bidegree (4,4) with non-ovals, the notations defined above describe the

isotopy classes.
CoNVENTION: We regard two isotopy classes 2(s,¢;m,n) and 2(s',t';m,n) as equivalent
if

(sl 1¢D) = (18], [£'1) o (I¢'} ]¢']).

As for 4(s,t) and 2(s,t), we define the equivalence relation in the same way.
Let - denote the equivalence class which contains 2(1,0;m,n) and /m/n the class

which contains 2(1,1; m,n).
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From Corollary 1, we obtain the following.

CoROLLARY 2 ([2,THEOREM D1]). Let RA be a nonsingular real algebraic curve of bide-

gree (4,4) in RP! x RP!. Suppose that RA has non-ovals of torsion (+1,0) or (0, %1).
(i) If RA is an M-curve, then its isotopy type is % or —?
(ii) If RA is an (M — 1)-curve, then its isotopy type is % or %.

ReEMARK 3. The author confesses that the existence of curves of type -% asserted in [5]

is an error.

REMARK 4. Corollary 2 is the last restrictions for isotopy types of curves of bidegree (4,4).
In fact, we can realize all the isotopy types listed in [5, Table 1.1] that satisfy this corollary.
The existence of some isotopy types is announced in [5] and [6]. We can show the existence
of the others by checking that the corresponding curves of order 8 constructed in [2] and
[7] are just of bidegree (4,4). The following table gives all the isotopy types, which actually
exist, of nonsingular real algebraic curves of bidegree (4,4) in RP! x R P!, where we use

the well-known notations for the curves which have only ovals (see [2] and [5]).

(Table is inserted here.)
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Curves without non-ovals (46 types)

: 1 s
g 23 24 L7 9
oo B 8 M B 18
1 il 12 i3 i 15 7
5 1 22 13 14 6
2 31 22 13 5
S R R i
SRR
2 2
1
¢
Curves with two non-ovals of torsion (1,0) (20 types)
T3
- 5
- (m>n>0and m+n<6)

Curves with two non-ovals of torsion (1,1) (25 types)

/m/an (m>n>0andm+n<8)

Otherwise (3 types)

4(1,0) 4(1,1) 2(2,1)

TABLE. All the isotopy types of curves of bidegree (4,4) (94 types)
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