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On the Extended Affine Root System

Kyoji Saito (R.I.M.S.)
Ikuo Satake (R.I.M.S.)

§1. Intrtoduction.

Coxeter transformation plays an important role in the finite reflexion group theory.
A new class of reflexion groups ( which are not of finite ones ) was defined and studied in
[S -3],[S-4]. These groups also have the Coxeter transformations.

In this note, we define the e);iended affine foot system and state the Coxeter trans-
formation for the extended affine root system ([S-3]) . Also we define the flat invariants
as an application of the Coxeter transformation theory ([S-4]) . Moreover we define the
automorphism group of the extended affine root system and study its action on the flat
invariants ([Sa]). The action of the aﬁtomorphism group gives the modular property for
the flat invariants ( some theta functions ).

The authors gave three lectures in the meeting. This note based on the lectures is

written by the second author.

§2. Review of notations of extended affine root system.

We prepare some notations from Saito [S-3],[S-4]. For details, one is refered to [S-3],[S-4].
(2.1) Definition of extended affine root system.

Let F bg a real vector space of rank [ + 2 with a positive semi-definite symmetric
bilinear form I : F x F — R, whose radical: rad(I):= {z € F : I(z,y) = 0 for "y € F},
is a vector space of rank 2. For a non-isotropic element a € F(i.e.I (a,a) # 0), put
a¥ := 2a/I(a,a) € F. The reflection w, with respect to a is an element of O(F,I) :=
{9 € GL(F) : I(z,y) = I(g(x),9(y))} given by,

wa(u) :=u— I(u,a")a (Yu € F)

Then oVV = « and w? = identity.



Definition 2.1.
1. A set R of non-isotropic elements of F' is an extended affine root systém belonging to(
F,I), if it satisfies t‘he‘ axioms 1)-4:
1) Thé additive éroup generated by R in F, denoted by Q(R), is a full sub-lattice
of F. I.e.,the embedding Q(R) C F induces the isomorphism: Q(R) ®z R ~ F.
2) I(a,¥) € Z forVa,B€R.
3) wa(R) = R for Ya € R.
4) If R= R, U R, with Ry 1 R, then either Ry or R, is void.
2. A marking G for the extended affine root system is a rank 1 subspace of rad(I) such
that GN Q(R) ~ Z.

The pair (R,G) will be called a marked extended affine root system. Two marked
extended affine root systems are isomorphic, if there exists a linear isomorphism of the
ambient vector spaces, inducing the bijection of the sets of roots and the markings. A

generator of G N Q(R) ~ Z, which is unique up to a sign, is denoted by a.
GNQ(R) = Za and G = Ra.

remark 1. For a root system R belonging to (F,I), there exists a real number ¢ > 0 such
that the bilinear form cI defines an even lattice structure on Q(R) ( ie. cI (z,z) € 2Z for
z € Q(R)). The smallest such c is denoted by (Ig : I) and the bilinear form (Ig : I)I is

denoted by Ig.

- remark 2. wy(a) = —a. Thus the multiplication of —1 is an automorphism of the ex-

tended affine root system.

remark 3. If u € rad(I), then wo(u) = u — I(u,a¥)a = u. Thus the Weyl group is

identity on the rad(I).

remark 4. If R is a root system belonging to (F,I), then RV := {a¥ : « € R} is also a

root system belonging to (F,I).



remark 5. For a root system R belonging to (F,I), there exists a positive integer t(R)
such that

In® Inv = {R)I ®I.
t(R) is called the tier number of R.
(2.2) The basis ay,...,q for (R,G).

The image of R by the projection F' — F/rad(I) (resp. F — F/G) is a finite (
resp.affine ) root system,which we shall denote by Ry (resp. Ra) In this paper, we assume
that the affine root system R, is reduced. (I.e. a = ¢f for a,f € R, and ¢ € R implies
c € {£1}.)

Once and for all in this paper, we fix [ + 1 elements,
ag,...,a; € R

such that their images in R, form a basis for R, [Mac]. We shall call them a basis for
(R, G). Such basis is unique up to isomorphisms of (R, G). There exists positive integers

ng,. ..,n; such that the sum:

, !
(2.2.1) ‘ b:= Zniai
=0
belongs to rad(I). By a permutation of this basis,we may assume [Mac],
(2.2.2) no = 1.

Then the images of ay,...,a; in Ry form a positive basis for B¢ and the image of —ay in
Ry is the highest root with respect to the basis. Put,
l
(2.2.3) L= @Rai
i=0
on which I is positive definite and R N L is a finite root system with the positive basis

A1,...,0].



We have a direct sum decomposition of the vector space:
(2.2.4) F=L®rad(l),

and the lattice;

! l
(2.2.5) | QR) =P Zoi ® Za =P Za; ® Za @ L,
=0 =1
(2.2.6) Q(R)Nrad(I) = Za @ Zb,
l
(2.2.7) QR)NL =P Zo.
i=1 '
remark. The choice of the basis ay, . .., a; is done for the sake of explicit calculation, but
it does not affect the result of the present paper. A change of the basis ay, . .., a; induces

a change (a,b) to (a,b + ma) for some m € Z.
(2.3) The Weyl group Wg.

The Weyl group Wg for R is defined as the group generated by the reflexion w, for
Ya € R. The projection p : F — F/rad(I) induces a homomorphism p, : Wgp — Whg,.

One gets a short exact sequence:

(2.3.1) 0— Hp—HWrEHWg, —1.
Here
(2.3.2) Hp = (rad(I) ®r F/rad(I)) N E~\(Wg)

is a finite index subgroup in the lattice (Za @ Zb) @z (Pl=1Zay).
The map E called the Eichler-Siegel transformation, is a semi-group homomorphism

defined as follows([S-3]).

(2.3.3) E: F Qg F/rad(I) — End(F)

(2.3.4) B(Y & @m)(u) i=u— Y &il(ri,u) for u € F
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Here a semi-group structure o on F' @r F/rad(I) is defined by,
(2.3.5) (Z u; ® v;) 0 (Z wj @ zj) 1= Z u; @ vi + ij @z — Z I(vi, wj)u; @ x;.
i j i i ij
The semi-group structure o coincides with the natural addition of vectors on the subspace

rad(I) ® (F/rad(I)) and hence on Hp.
(2.4) The Dynkin graph.

For a marked extended affine root system (R,G), ‘we associate a diagram T'(g,q),
called the Dynkin graph for (R, G), in which all data on (R, G) are coded. The graph is
constructed in the following steps 1)-4). |

1) Let I’ be the graph for the affine root system (R,, F/G),i.e.
| a) The set ofl.the vertices |T'| is {ao, -, a1}. |

b) Edges of I is given according to a convention in 4) b).

2) The exponent for each vertex a; € |I'| is defined by

. Ir(ei,ai)
(2.4.1) | _ m; = _————-2142(01,-) n;,

where k(o) :=inf{n € N: a +na € R}.

3) Put
Mmaz = maz{mg,---,mi},

IT| := {ai € |T'| : m; = muaz},
Ty | == {ai + k(ai)a : a; € |T'nl}.
4) The graph I'r ¢ is defined as the graph for [I'| U |T'}, |,i.e.
a) The set of the vertices [T'g,g| := |T'| U T}, |

b) Two vertices a, § € |[I'g | are connected by the convention:
b e

i I(a, BY) = 0(> I(B,a) = 0),

—o if I(a, ) = I(6,a") = -1,
o iI@)=-LIBa") =t
o XY= I(B,aY) =2,
oo if I(a, BY) = I(8,a") = 2.
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Definition. For a marked extended affine root system (R,G), the codimension, denoted

by cod(R, G), is defined as follows.
(2.4.2) cod(R,G) := #{0< i <l:m; = mpaz} = #T'm|

Note. The exponents m;’s introduced in 2) are half integers, which might have a com-
mon factor. We have : The smallest common denominator for the rational numbers
mi/Mmaz(t = 0,---,1) is equal to lpay + 1([S-3]), where lpq, = max { # of vertices
in a connected component of I' \ I';,}. Thus we sometimes normalize the exponents as

follows.

(2.4.3) my 1= m,'lmaz—-{_l (i=0,---,0).

mmaa:

(2.5) The Coxeter transformation for (R,G).

A Coxeter transformation ¢ € Wg is, by definition [S-3], a product of reflexions w,
for a € |I'r,g| with a restriction on the order of the product that w,+ comes next to
Wq for a € |I'y|. The following Lemma’s A, B and C are basic results for the Coxeter

transformation, which will be used essentially in this note.

Lemma A ([S-3](9.7)). A Coxeter transformation c is semi-simple of finite order =

lmaz + 1. The set of eigenvalues of ¢ is given by:
1 = ezp(0) and exp(2mV—1m;/Mmaz)(5 = 1,--, ).
Particularly, the multiplicity of eigenvalue 1= 1+ cod(R, G).
Lemma B ([S-3](10.1)). Let ¢ be a Coxeter transformation for (R,G). Then
RN Image(c —idp) = ¢.
(26) The hyperbolic extension (F, I).

There exists uniquely (up to a linear isomorphism) a real vector space F' of rank [+ 3

with
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1) an inclusion map F' C F as a real vector space,
2) a symmetric form I : F x F — R such that f|F = I and rad(I) = Ra.
The pair (F, I) will be called a hyperbolic extension for (F,I).
Denote by W, the reflexion for o € R as an element of GL(IE’) and by W the subgroup
of O(F, f)(Where, O(F,I) := {g € GL(F)|I(z,y) = I(gz,gy)Vz,y € F}.) generated by
them. The restriction Wy |F is we. ‘Thus.we have a surjection Wg — W and then a short

exact séquence:
(2.6.1) 0— K Wr—sWr—s1
where Kg is an infinite cyclic group generated by

maz 1 1
—a

N
(2.6.2) ko= (I:Ig) ® b,

Mmazx

and E : F ® F/G — End(F) is the Eichler-Siegel transformation,

(2.6.3) E(Z & @ni)(u) i=u — Z &I (ni,u) for u € F.

Hpisa subgroup of Wr defined as a kernel of the composite map: |
Wr—WpSHWr, .

We have the following diagra.tﬁ.

0 o
| !

0—-—>‘KR———)]§R——+HR——->1

| =
(2.6.4) 0 — I%R _E, WR — Wp — 1
Px
Wgr, = Wg,
1 1

(2.7) The hyperbolic Coxeter transformation.

A hyperbolic Coxeter transformation & € Wg is a product of reflexions Wy for a €

[T | in the same ordering as for the Coxeter transformation ¢ ([S-3](11.2)).
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Lemma C ([S-3](11.3)).
1) The power &llmaz+1) of the hyperbolic Coxeter transformation ¢ is a generator of K.
'2) K is generated by (I : I)L%"‘"fa—tla ®b.

This is equivalenﬁ to:

Lemma C' ([S-3](11.4.1)). There exists a projection map p : F — F such that for
VieF,

(2.7.1) 03) = X+ (c — idp)p(X) + (5, :\)%&’_Qa.

(2.8) A family of polarized Abelian variety over H.

Let (R, G) be a marked extended affine root system and let (F,I) be its hyperbolic

extension. We define complex affine half spaces as follows.

(2.8.1) E:= {z € Homg(F,C): a(;v) =1 and Im(b(z)) > 0}, "
(2.8.2) E := {z € Homg(F,C) : a(z) = 1 and Im(b(z)) > 0},
(2.8.3) H := {z € Homg(rad(I),C) : a(z) = 1 and Im(b(z)) > 0},

where dimoﬁ =142, dimcE =1+1, and dimcH = 1. A change of the basis «ay, ...,
does not affect the definition of the spaces E, E, H. The inclusion maps : ¥ > F D rad(I)

induces the projections:
(2.8.4) E-LESH.

By the projection, E and E are regarded as a total space of a family of complex affine
spaces B, := (7 0 #)~!(7) and E, := 771(7) of dimension I 4+ 1 and ! parametrized by
7 € H, and E has an'éffine bundle structure on.E. The action of the groups Wx and Wg
on F and F fixes the rad(I) pointwisely. Hence the cdntfé,grediént actions of Wg and Wi
induces actions on E and E respectively. They are equivarient with the projectibns # and

7 (2.8.4).
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Lemma 2.1( Saito [S-4]).
1. The actions of Wg (resp. Wg) on E (resp. E) are properly discontinuous.
2. Put X := E/Hpg and denote by n/Hpg the map induced from =:

(2.8.5) x/Hp: X — H.

The fiber X, := (n/HRg)™'(r) over 7 € H is isogeneous to an I-times product of
elliptic curves of the same modulous 7.
3. The action of Hg on E is fixed point free. Put L* := E/IfR. The map fr/ffR induced

from 7:
(2.8.6) #/Hgp:L* — X,

defines a principal C*-bundle over X. Let L be the associated complex line bundle

over X , which is, as a set, a union
(2.8.7) L=L"UX.

The finite Weyl group W, is acting on L and X equivariantly.
4. The Chern class ¢(L|x,) of the line bundle over X, := (W/HR)‘I(}) for v € H is

given by,
2
(2.8.8) o(Llx,)=Im(H) € \ Homz(Hg,C) ~ H*(X,,C),

where H is an Hermitian form on Vg = C Qg (F/rad(I))* given by

(2.8.9) , H(z,w):= —t(R)(lmZTfl)Im(T) Ipv(z, ).

remark. Since the line bundle L~ is ample relative to H, one may blow down the zero
section X C L of L to H (1.e.X; is blow down to a point for + '€ H). The blow down

space, denoted as

(2.8.10) L(~ L* UH),

9
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is a family of affine algebraic variety of dimension | + 1 with an isolated singularity

parametrized by the space H.
(2.9) Chevalley type theorem.

In this subsection, we recall a Chevalley type theorem (Theorem 2.2), studied by
Looijenga[L-2|, Schwarzman & Bernstein [B-S1],[B- SZ] Kac & Peterson [K-P] and others.
Let us fix a base A € F'\ F normalized as
(2.9.1) I(\0) =1,

(2.9.2) I a)=0.(0<i<))
Consider this A as a complex coordinate for E, we obtain
(2.9.3) \,#%):E~CxE.

The generater k of Kg acts on A by

maz+1

ma.z

(29.9) BN = A= (Ir: 1)

Hence the complex function A on E defined by

(2.9.5) A= exp (ZW‘/__(IR I)(?;:x +1) )

is Kg invariant, giving a fiber coordinate for the C* bundle:
(2.9.6) (\,#): E/Kg ~ C* x E.
For a non negative integer k, let

(2.9.7) | S = I(X, O(L~®*))

be the module of holomorphic sections of the —k th power of the line bundle L over X
defined in (2.8) Lemma 2.1. For an element © € S, put

(2.9.8) ‘ - 6:=(W)re.
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Then © is a Hg-invariant holomorphic function on E. The group Wx ;o Wr /Hp acts on

L and X equivariantly. Therefore Wg, acts on the space of sections Si, (k£ =0,1,...).

Put

(2.9.9) - 8% := the set of Wp, invariant elements of Sj.

(2.9.10) S;W := the set of Wg, anti-invariant elements of Si.
(e o]

(2.9.11) sV =S
k=0

) [o ]

(2.9.12) sV = siv.

k=0

Naturally S¥ is a T'(H, Og)-graded algebra, and the grading is defined by k. We prepare
one more concept: the Jacobian J(©q,...,0142) for a system of sections ©; € Sk, (z =

1,...,14+2) as an element of Si(k = Eiii k;) given by the following relation.
(2913) ' dél AN ...dé[+2 = j(@l,...,91+2)(dT /\da1 A ...,dOll/\dS\).

The Jacobian is well defined, since w := dr Adaj A...,da; Ad\ is Hg-invariant. Moreover,
since the form w is Wg anti- invariant and ©; € Sy(i=1,...,1+2), thus J(Oy,...,042)
e SV (k= Zi:? k;),( where J = \%.J).

Theorem 2.2 ([B-S1][B-S2][L-2][K-P]).
1. S is a polynomial algebra over T(H, Oy ), freely generated by | + 1 homogeneous
elements Oy, ...0; of degfee m; 1= milg‘fﬁ-l-(i =0,...,l), where mi(i = 0,...,1) is
the set of exponents for the root system (R,.G).

2. S~W is a free SW-module of rank 1 generated by © 4 := J(7,0y,...,01)) homoge-
(I4+14c0d(R,G))(Imaz+1) '
> .

neous of degree »
3. The zero-loci of © 4 on E is equal to the union 4egr U Hy of the complex hyperplanes
H,, defined by the discriminant for (R, G). |

remark. As an analogue to finite reflexion group case, we ask to clarify the relationship

among the following three polynomials:

11
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1) The Mébius function for the lattice defined by the system of hyperplanes H,(a € R)
mL. -
2) The Poincaré polynomial for the topological space L \ | J,cp Ha-
3) P(T) i=Lizs (1 + i)
( For finite reflexion group case, these polynomials coincide. (see Terao[T], Orlik-
Solomon [0-S1],[0-52].)
(2.10) The C-metrics Iy, I -
Let us denote by Ofc’Q%; and Derg the sheaf of germs of holomorphic fﬁnctions, 1-

forms and vector fields on E respectively. Since E is a complex affine space, the tangent

and co-tangent spaces of E is naturally given by:

(2.10.1) T.(E) ~ C @r (F/G)*,

(2.10.2) | T*(E) ~ C®g (F/G).

Thus we have the canonical isomorphisms:

(2.10.3) QL ~ O ®r (F/G) and Derg, ~ O @r (F/G)*.

The vector space (F/G) carries a nondegenerate symmetric bilinear form induced from I.

By extending I to Q%; by Og-bilinearly, we obtain a form:

Iz:0Lx0l - Of
(2.10.4) E LS e By
1 X Ws Ei,j:l 3X; 0X; (X3, X;),

where X;(¢ =1,---,l 4 2) are basis of F'/G and w = > i 3% dXi. Put,
(2.10.5) Dergw := the module of C-derivations of the algebra S,
(2.10.6) QLw := the module of 1-forms for the algebra S .

They are dual SY-free modules by the natural pairing: <, > with the dual basis:

' o . 3
, w9 w_—_
(2.10.7) Dersw = " —— & é{% S 30,
. . l
(2.10.8) Qw = SWdr & @ SV do;
=0
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using a generator system ©;’s of Theorem 2.2. Dergw and QL have the graded S%-

module structure in a natural way. There is a natural lifting map:

2.10.9 " I
( ) d@ = Ei g_)(?‘dX,',

so that the form fE induces a SY -bilinear form:
(2.10.10) I : w x QLlw — SV,

( The values of Iw lie in S%, since the form fl”-: is Wg invariant. ) Let us denote by Iw
the SW-bilinear form on the module Dergw dual to the form Iw. We use the next lemma

in section 4.

- Lemma([S-4]).
(2.10.11) | Iw(dr,d®) = kO,

where © € S,‘.;V‘ and K := 2—7#{_—’;—7{}——

Proof is easy. Thus we omit it.
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§3.The automorphism group of the extended affine root system.

'In this Section, we define the automorphism group Aut*(R) of R, and its central
extension A,J"‘(R), which act on E and E respectively. Also we show that A’E{"‘(R)

contains Wy as a normal subgroup.
(3.1) Definition of Aut*(R).
In this subsection, we introduce the automorphism group of R.

Definition 3.1. For the extended affine root system R C F', put

Aut(R) := {g € GL(F)| ¢ induces a bijection of R}.

Proposition 3.2. The extended affine Weyl group W is a normal subgroup of Aut(R),
and Aut(R) is a subgroup of the orthogonal group O(F,I). |

Proof. The latter part follows from Saito[S-3]. The first part follows from the formula:

JWag ™! = wye for a € R, g € Aut(R). Q.E.D.
The element g of the orthogonal group O(F,I) induces the linear transformation of

rad(I) by restriction. We denote this restriction map by p.

p:O(F,I) — GL(rad(I)).

3.1.1
( ) g = glrad(I)

Definition 3.3. T':= p(Aut(R)).

Since each v € T' induces an isomorphism of Q(R) N rad(I)(Z - free module of rank
2), determinant of v equals +1. We shall consider only the elements whose determinant

equals 1

14
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Definition 3.4. We define the following groups:
SL(rad(I)) := {9 € GL(rad(I))|detg = 1},
O (F,I) := p~(SL(rad(I))),
O(F,rad(I)) = pY(1),
T* =T SL(rad(I)),
Autt(R) := Aut(R)N O (F,I),
Aut(R, rad(I)) := Aut(R) N O(F, rad(I)).

The relation between the Weyl group and these groups is as follows.

1 | 1
l l
Wg = Wr
1 !

(3.1.2) 1 — Aut(R,rad(I)) —  Autt(R) L.t — 1

1 — Aut(R,rad(I))/Wg — Autt(R)/Wr L Tt — 1

l l
1 1

remark. The projection map p: F — F/rad(I) induces the homomorphism
p: Aut(R,rad(I)) — Aut(Ry),

where Ry = p(R). Thus we have the following ”diagra,m.

1 1 1
! 1 1
1 — Hp —_— ‘ Wgr — Wf — 1
! ! _ !
313 1 — kerp — Aut(R,rad(I)) 2, Aut(Ry) — 1
! ! !
1 — kerp/Hp — Aut(R,rad(l))/Wr — Aut(Rs)/W; — 1
! ! 1
1 1 1

The abelian subgroup Hg becomes a finite index subgroup of (Za® Zb) @z (®!_,ZaY )(see
(2.1.2)), and kerp can be considered as a sublattice of (Za @ Zb) ®z P where P is a dual
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lattice of ®!_,Zao; with respect to I , and I is a bilinear form on F/rad(I) induced from
I). Hence ker p/Hp is a finite group. Furthermore Aut(Rys)/Wy is a finite group ( which
is isomorphic to the automorphism group of finite Dynkin diagram corresponding to the

finite Weyl group), therefore Aut(R,rad(I))/Wr is also a finite group.
(3.2) Explicit description of I't.

We give an explicit descriptibn of I't for each marked ‘extend.ed affine root system.
Fixing one basis a,b € rad(I)N Q(R) (a € GN Q(R)), we can represent I't as a subgroup
of SL(2,7Z).

1)I't = SL(2,Z) for the cases Xl(t’t),X,(t’t)*, (t=1, 2,3).

2+ = {(f ; ) € SL(2,Z)|q = 0(mod 2)} for the cases B, ¢t F12),

)

o= (7!

ATt = { 1; g € SL(Z, Z)|r = 0(mod 2)} for the cases 'B,(2’1), sz’l),FiZ’l),

€ SL(2,Z)|q = 0(mod 3)} for the case Ggl’a).

Bc®® Bc»?(2).
5+ = {(I; g) € SL(2,Z)|r = 0(mod 3)} for the case G§3’1’.
6)[+ = {(f g) € SL(2,Z)|p = 1(mod 2)} for the cases BC>", BC*?(1).
(3.3) The action of Aut*(R) on E. |

In order to define the action of Aut*(R) on the space E, we introduce the space Fjy,; f

as follows:
< bz >
<a,r >

> 0}.

The space Fy,;; has a C*action induced from the C* action on the complex vector space

(3.3.1) Frayp = {z € Homgr(F,C)| < a,z >#0,< b,z >#0,Im

Homg(F, C), defined by
(af)(z) := a(f(z)) for f € Homg(F,C),z € F,a € C*.

We consider the next diagram.

Fftalf
(3.3.2) Y \
E ~ F,‘:alf/C*
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The composite map of the C* quotient map and the natural inclusion E — F} 7 becomes
‘an isomorphism. O%(F,I) acts on Fy, s contragrediently, thus O*(F,I) also acts on
F},15/C*. Using the above isomorphism (3.3.2) , we can define the action of O*(F, I) and

its subgroup Aut*(R) on E. ( We call this action “the linear fractional transformation”.)

remark. In the element of O (F,I), only £1 can be considered as a C*-action. Therefore,
O*(F,I)/{£1} acts on the space E faithfully. The subgroup O(F,rad(I)) does not contain
—id., hence O(F,rad(I)) acts on the space E faithfully. We have the following diagram.

1 1
! e
{£1} = {#1}

! !
(333 1 — O(F,rad(I)) — O*(F,I) £, SL(rad(I)) - 1

1 — O(F,rad(I)) — OYF,D/{x1} X SL(rad(I))/{£1} — 1
| ! | !
1 1
O*(F,I)/{%1} acts on E faithfully and transitively, and SL(rad(I))/{£1}.also acts on
H faithfully and transitively. Hence E and H have the structure of homogeneous space.
These groups act on the bundle E——H equivariantly. Therefore we can regard E——H as

the induced morphism by p.
(3.4) The central extension of Aut*(R).

In order to lift the action of Aut*(R) on E t;o E, we need to define the central extension
Aut*(R) of Aut*(R). First, we define the central extension BE(F, I) of OF(F,I)/{£1}
(Definition 3.5) and also the central extension OF (F, I) of O*(F, I) (Definition 3.6, Propo-
sition 3.7). Autt (R) will be defined at Definition 3.8 as a subgroup of 5‘?(F, I).

We prepare an automorphic factor (¢r + d)~2 intrinsically. For any fo € OF(F,I)/
{*1}, fo actson E as a bundle isomorphism of 7 : E — H. We denote by fo(= p(fo) €
SL(rad(I))/{£1}) the induced isomorphism of H.

We can consider b, an element of the Z basis of rqd(I ) N Q(R)(introduced in (2.2.15),

as a coordinate function of H. When we consider b as a coordinate function, we use the .
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letter 7. Since b is unique up to adding m X a (m € Z), dr and %;&(T) has an intrinsic
meaning.

We recall that E has the affine complex line bundle structure over E.

Now, we define the central extention of Ot(F,I)/{%1} as the subgroup of the holo-

morphic bundle isomorphism of # : E — E whose element satisfies the next conditions.

conditions. For a bolomoxj)bic bundle map f : E — E, there exists the unique fo €
Ot(F,I)/{+£1}, such that

(3.4.1) | o f=fook onE

. * Tw af_b -

(3.4.2) f = (0.

where I* is a C—metric on E defined in (2.10.4). *

We denote the set of the above bundle maps by BE(F, I.i.e.

Definition 3.5. ,
5;3(17, I):= {f : B - E holomorphic bundle isomorphism of # : E > E;

which satisfies the above conditions (3.4.1),(3.4.2).}.

From the condition (3.4.1), we can define the homomorphism

(3.4.3) % : OL(F,I) - OF(F,I)/{£1}.
Since %é’(T) satisfies the cocycle condition with respect to the group SL(rad(I))
/{£1}, 0%' (F,I) has a group structure by composition.

remark 1. Fixing a basis ay, ..., a1, a, %@(7) is an automorphic factor (et +d)~2. If this

automorphic factor is not degree —2, then the Proposition 3.6. does not hold.

remark 2. The Weyl group Wr acts on the space E faithfully satisfying the above con-
dition (3.4.1)(3.4.2), thus we have the natural inclusion map ¢ : Wg — O%}' (F,I).

Under the above preparations, we define the central extension OT(F,I ) of Ot(F, I).

Let ¢ be the natural projection of O*(F,I) — O*(F,I)/{*1}.

18
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Definition 3.6.
OF(F,I) = {(z,y) € OL(F,I) x O*(F,D)l(z) = p(y).}.

5‘-‘:(1;‘, I) has a group structure in a natural way. We call the next two natural projections

D1 andpz:b
(3.4.4) p1:OF(FI) — 6;‘—.g(l”,f)
(2,9) = (z)
| p2: ON(F,I) — O*(F,I)
(3:45) (z,9) = (y)

We define the action of EI(F, I) on E throught p;.
remark. We have a natural embedding:

Wr — OF(F,I)

(3.4.6) g = (d9),9|F)

Hereafter we regard Wy, as a subgroup of ’5':(17', I) by the above homomorphism (3.4.6).

Proposition 3.7. /OT(F, I) is a central extension of Ot (F,I). We have the following

diagram.
1 1
! l
{£1} = {£1}
~ +
(3.4.7) 0 — C — OHFRI) 2  OotFEID — 1
T :

——

0 — C — OiFID 5 OHFED/{x1} — 1

1 1
Proof. We should only prove the exactness of the third row sequence. The other part of

the proof of the diagram (3.4.7) is automatic.
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We take one trivialization of the affine bundle E.
(3.4.8) E~ExC5(z,1).

For all fo € O (F,I)/{+£1}, we must study the existence and the ambiguity of the function
g(x,t) such that

ExC — ExC

(3-4.9) (z,t) = (fo(2),9(z, 1))

is an element of 6;'1:(17‘, I). The projection p : F' — F/rad(I) induces the homomorphism
p: OY(F,I) —» GL(F/rad(I)). The image p(O*(F,I)) is O(F/rad(I),I), where I is a
bilinear form on F/rad(I) induced from I. By this fact, we can reduce the condition
I = %‘é(?’)f* (3.4.2) to the differential equation dg(z,t) = w.

The action Aut™(R) on E is a linear fractional transformation, therefore we find that
w is a closed 1-form. Since E is a simply connected space, we know that g(z,t) always
exists, and that the ambiguity of g(z,t) is described by C, the translation of the affine
bundle 7 : E — E.

g(z,t) has a form of t+ g;(z), therefore the condition (3.4.2) also implies that the map
(3.4.9) becomes a bundle isomorphism of # : E — E as an affine bundle. Q.E.D.

remark. EI(F, I) acts on E transitively, therefore B has a structure of homogeneous

space.

Definition 3.8. The central extension of Aut™(R) is defined as follows:
Autt(R) = (p2) " (4ut*(R)). |

Theorem 3.9. W is a. normal subgroup of AZ?"‘(R).

Proof. For any g € 6'?(F, I), we shall prove

(3.4.10) gUag ™" = Dga,

20



24

where @ € R and § = p2(g) € OF(F,I). If the equation (3.4.10) holds, then Qve.ha,ve the
above theorem by considering only the cases g € A’E{+(R).

If we send the both sideé of the equation (3.4.10) by thé homomorphism p;, then the
equation ’pz(gtﬁag‘l) = p2(Wjqa) holds by the same calculation of the proof of proposition

3.2.. Hence we should only prove the equation

(3.4.11) P1(99ag™") = p1(Wga)-

In other words, we should only prove the equation (3.4.10) on E.
First, we call the inverse image of the subgroup O(F,rad(I)) C O*(F,I)/{+1} of the
homomorphism (3.4.3) ¢ : ’O\:-‘::(F, I) — O+(F,I)/{£1}, O(F,rad(I)).

This leads to the following disgram.

1 1
! !
0 — (lf — ﬂ’,rad{[)) — O(F,rad(I)) — 1
! ! |
B2y L, ¢ o OiRD L OMEDHE} - 1
l |
SLeadD)/{1) = SLoadD)/(21)
1 1

By this diagram, we can reduce the proof to the two parts. 1. (3.4.11) holds for g €
ﬁ’,rad([)). 2. (3.4.11) holds for some lifting of SL(rad(I))/{£1} to 5%(F, I).

Lemma 3.10. (3.4.11) holds for g € O(F,rad(I)).

Proof. We prepare some notations. Fg := F @r C. fo = F ®r C. R C C induces
F C Fg. I := the C linear extention of I, which gives a bilinear form on Fg. Ig :=
the C linear extention of I, which gives a bilinear form on Fg. We define O/(?’, rad(I)) as

follows.

(3.4.13) O(F,rad(I)) := {g € O(Fo, Ic); g(F) C F, glr € O(F,rad(I))}.
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Since g € O/(E’,rad(l )) satisfies the conditions of 5(?’,rad(I )), we have the homomorphism
(3;4.14) | | O‘/(?V’,rad(I)) —)O’E-F”,rad(I))

For g € O/(F",rad(I ), (3.4.11) holds on F. Therefore (3.4.11) holds for the image of the
homomorphism(3.4.13). We show that Of(?’,rad(I ) = 5(\F,rad(I ). Since dimgrad(l) =

1, we have the following commutative diagram.

0 - C — O/(?‘,'rad(f)) — O(F,rad(I)) — 1

(3.4.15) H
0 — C — O(Frad(I)) — O(F,rad(I)) — 1
This implies that O’(E’,rad(l)) = @,rad(I)). :

Q.E.D of lemma 3.10.
Lemma 3.11. (3.4.11) holds for some lifting of SL(rad(I))/{£1} to 0% (F, 1),
Proof. Fixing a basis (see (2.1)), we have one trivialization:
E =~ HxC!'xC

(3.4.16) ’
() — (Yz),u(z), -, a(z), A(z))

-1
We write the element of H x C! x C by (1,2,t). One lifting of SL(rad(I)) > (f Z)

is as follows:

T +4q z r< z,2>
rT+s rr+s’ 2(rT + s)

(3.4.17) (1,2,t) = ( ).

where <, > is a C-bilinear form induced from 1. (3.4.11) can be proved for this lifting By

the explicit calculation.

Q.E.D of lemma 3.11.
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Q.E.D of Theorem 3.9.

Consequently, we obtain the following diagram.

0 1 1
! ! !
0 - K - Wgr — Wgr — 1
| ! N !
(3.4.18) 0 - C - Aut*(R) — . Autt(R) - 1
d A X
1 —» C* - Autt(R)/Wr — Autt(R)/Wg — 1
T
1

 where C* was normalized such that o € C* acts on S; as the multiplication of &F.
AE"‘(R)/ Wgr contains C* as a center, thereby A’;E"'(R)/VVR acts on SW as a degree

preserving transformation.

§4. The action of A?E*‘(R) on the flat invariants.

In Saito [S-4], he introduced the non-degenerate C - Iﬁetric J, and proved that the
Levi-Civita connection V with respect to J is integrable. He called the W invariants
associated to J, the flat invariants. In this section, we study the action of Autt (R) on the
C - metric J, and in the last theorem, we shall write down the action of Aut*(R) on the
‘ﬂat invariants explicitly.

In the rest of this paper, we assume that the codimension of the marked extended
affine root system (R,G) equals one. ( The notion of codimension was introduced in

section 2.)
(4.1) Normalized lowest degree vector field and C-metric J.

In theorem 2.2, it was shown that there exist the algebraically free generators of the
algebra SW: @q,---, ©;. In the S — graded module Dergw , the lowest degree v:ector
fields become a free I'(H, Oy )— module of rank 1 (=codimension) generated by 5%—‘. We

normalize the ambiguity of multiplication of the I'(H, Oy )— factor of ©; by the condition

& .
(4.1.1) —— Iw(d©,,d0;) = 0.
367
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By (4.1.1), b—g—l is determined uniquely up constant factor.

Hereafter we fix Oy, ---, 0, such that ©; satisfies the condition (4.1.1). We define

' 9
.1.2 = w — -

(4.1.2) T {feS lagl 0}

(4.1.3) Dery := the module of C — derivations of the algebra T

(4.1.4) G:= {f € De?"sz[g(Z)—l,f = 0}

(4.1.5) Fi= {w € Qhw|L g w =0 } :

where L 52 means the Lie derivative with respect to the vector field aie,' By one generators
3

7,00, -, 0, we can represent T, Dery, G, F as follows.

(416) T = P(H, OH)[(")(), ",@[.__1]

8 =1 a
(4.1.7) Derp =To—- & Qj Ta@i

& .. 0
4.1.8 iy
( ) ‘ g or ® 16___% T6‘®,~ '

l
(4.1.9) F =Tdr & @) Td®;
' =0

The pairing Dergw X Q}SW — SW induces the complete pairing G x F — T, thereby
G is a T— dual module of F.

We prepare one important lemma due to the Coxeter transformation theory. We recall
that ©4 = J (1,00,---,0;) is an anti Wr invariants, whose degree equals g—%—“ﬁ
( we assumed that cod(R,G) = 1). Thus ©% is an element of Wg invariant function of

degree (I 4 2)(lmaz + 1) = (I 4 2)(deg®;). We expand 0% by O

62 = ¢(Tv®0)"')®l)

(4.1.10) _ = AOTP + 4,002 - Apys

(A; € T), then Ay € T(H, Ogn) because of the degree condition.
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Lemma 4.1 ([S-4](7.4)).
Ao(T) #0 Yr e H.

Sketch of proof. Let ¢ = [ ecr, wa be a Coxeter transformation., Put BE®:={z € E:

c*(z) = z}, where c* is a dual of ¢. Put B¢ := #~1(B°),& = [] Wy ( corresponding

a€l'r
hyperbolic Coxeter transformation ). Since @;(= A™ ©; is an Wg-invariant function on
E, it is invariant under the action of a hyperbolic Coxeter transformation &. Using Lemima

C and (2.9.5), we obtain,
(&) = Bi(¢)(¢ € E°)

therefore
deg®;

lmaz

0i(¢) = exp(2rv—1 )0i(é).

If : < I, then ©;(¢) = 0. Thus we obtain,

0% (€) = Ag(7)O}F2(€) ( where 7 = m(¢)).

Lemma B asserts that ©%(£) # 0. Since 7|ge : E° — H is surjective, we obtain Ag(7) #
0 YreH. Q.E.D.

We define a T bilinear form,

J* FxF — T,

4.1.11 ; =
( ) w1 X wa — E%I(wl,wz).

The value 5%1—f (wl,cgg) belongs‘ to T by the condition (4.1.1). Then the next important

fact was shown by the Coxeter transformation theory for the extended affine root system.
Proposition 4.2( Saito [S-4]). The T bilinear form J* is non-degenerate.

Proof. By (4.1.1), all entries of ({+2) X ({42) matrix (fw(d(:)’,-', d0,))i j=—1,....1( where,
we put 7 = ©_, ) are at most degree = 1 in 0. By the fact det((fw(d(:)i, d(:)j)),-,j=_1,...,1) =
©% = 4007t + -+ + Aryo, we obtain det(((33-Iw(dO;, dO;))i j=—1,.1) = Ao(r). This

does not vanish anywhere on H due to Lemma 4.1. Q.E.D.
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Accordingly, we can also define the non-degenerate dual form
(4.112) J-gxg->T
(4.2) The action of Aut+(R) on the C-metric J.

We shall study the tra,nsformatlon law for Aut"‘(R) of J. We reca.ll that Aut"‘(R)
acts on E throught p;.
p : Autt(R) — “AutE(R),

(4.2.1)
g = p(g)
Proposition 4.3. The transformation law of ——— is as fo]lows
(822 (1o~ (52 = X(0)5a-
3@1 80,’

where x is a group homomorphism:
(4.2.3) . x:Autt(R) - C*.

Proof. Since the action of Afzzt/"‘(R) on Dergw is a degree preserving transformation,
. - . . . o - F)

there exists a non-vanishing holomorphic function f(7) on H satisfying (p1(9™"))x(367) =

f(T)a_?aT . We should only claim that f(7) = const. € C. We apply p;1(g) on the both sides

of equality (4.1.1), we have

L[ 9
0 = pi(g) [ae) 5

i)

7] o2
(@24 =f) ( plfg)) 2 R 8+ W, ()01 + ),
where p;(g) is the isomorphism of H induced by p1(g) ( see (3.4)), and h is an element of
I'(H, Og)[Oq,- - -, ©1_1]. The element h does not affect on this term, Iy (dr,dr) = 0, the

condition (4.1.1), and Iy (dr,d®;) = £~10; (2.8.11), thus we have

S S|
o2 Ip1(9) Q_f_ 1
(4.2.5) (R.H.S) =2f (7') (—6T ar nf3 (7)"
Since f(7), (@)— don’t vanish, f(7) therefore must be a constant. Q.E.D.

By Proposition 4.3, A/;;t:"(R) actson T, G and F.

Therefore the automorphism ‘group A’E‘,“(R) acts also on J and J* in a natural way.
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Proposition 4.4. The action of A/J{"'(R) on J is as follows.

(4.2.6) -m@YJ=¥%w(@%Q)J

Proof. It’s easy to see from Proposition 4.3., and the transformation property (3.4.2) of I.
Q.E.D. |

(4.3)- The Levi Civita connection with respect to J.
We define the Levi Civita connection V on G with respect to J.

Proposition 4.5. (Saito [S-4]) There exists uniquely a torsion free, integrable, metric

(w.r.t.J) connection V on G as a T-module,

V:DerprxG — g

(4.3.1) (61,82)  + (Vallsz)-

ie.
0) The map Vv i.s T~ linear in § and satisfies the Leibniz rule:
(4.3.2) Vs(fv)=6(flv+ fVsvfor fET.
1) For V§,& € Derr,
(4.3.3) | W@Vd:%&y
2) Foru,ve g
(4.3.4) Vav — Vzu = [u,v].
where ¥ and U are the images of u and v in Dery by the projection map:
(4.3.5) g — (_}'/T—Q~ v DCT;T.
90,

3) For § € Derr and u,v € G,

(4.3.6) 8§J(u,v) = J(Vsu,v) + J(u, Vsv).
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Hereafter we fix one basis a,b, € rad(I) N Q(R)(a € G N Q(R)), thereby we also fix

the coordinate function 7 € I'(H, Og ). We represent p o 7(g) € I't by a matrix

@3 Gorbsor@a =00 (7 1) .

S

Proposition 4.6. The action of A/J{WL(R) on Vg, 6, is as follows:

(438)  pi(g™)s(Vs,62) = V5,82 — 50, |’

T~ = = = % 4 O
T‘T:- s [(617’)52 + (627')61 — J(61,62)I§ 1_—_
where 6; = p1(971)6: (2 = 1,2) and 6 € Derr, 82 € G.

Proof. This follows from Proposition 4.4. and the formula

2J(Vs,69,83) _
= 61J(62,03) + J(b2, [63,61]) — 63 J(62,81) — J([62,65],61) + 52;7(53,51) + J(03,[61,62]),

for 6; € Derp,85,63 € G. and J(ai@l,a) = kb1 ( see Saito [S-4, p52 assertion]) for § €
G. = QED.

(4.4) Modular property for the flat invariants.

We rewrite the degrees 0,my,-- -, of 7,0, -+, 0; as follows:
0= Mot =, " yMong <M1l =Mp2 =, ", =My gn, <M1 =, ,= M3, <0<
(4.4.1) ME1 =ME2 =, y=Mkp, <ME41,1 =y, = Mkt1neqq-

such that m; = m, , when ¢ = q+2§____é n;. By the assumption, codimension = 1, ng4; =1

and the duality of the exponents holds for cod(R,G) = 1 case. i.e.
(4.42) ni = nigr—i (0< 5 < k+1)

Theorem 4.7 (flat invariants (Saito [S-4])). In the module SV, there exists uniquely

a complex graded vector space V of rank |42, whose weights are 0 = mg 1,m1 1,...,Mr41,1
i.e. |

k+1 . .
(4.4.3) V= @ V; where dimV;=n; (0<i<k+1)

=0
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such that
1. Vy =Cr.
2. 8% = I‘(H On) ®cyr) S|V]. where S[V] is a symmetric tensor a]gebra of V.
3. dV C Qw becomes a set of horizontal section of F with respect to the dual connection
of V.
4. J* defines a non-degenerate C-bilinear form on V .using the inclusion map: V. <

dV C Qw

(4.4.4) | AR A C

in particular J* defines a complete pairing of Vi and Viq1—i ‘(0 <i:<k+1).
- (445) o Jr : Vi x Viti—i — C.

We call the elements of V' the flat invariants.

Theorem 4.8 (modular property for the flat invariants). The action of A/;E'*'(R)

on the flat invariants is as follows: for (1 <1 < k)

« _PTt4q
(446) p(g)r =L
(4.4.7) p1(g)*v; = m——— ~v; for all v; € V5,

448 m(@O=x(s" >[@ T Z 13656 é]

Also A; has a duality with respect to J*:
(4.4.9) J*(Ai(g'l)v,-, Ak_{_l_,‘(g—l )vk_H_,‘) = X(g)J*(v,f,vk_;_l_i) for a.II v; € V,

where
1. A;: A’;B’"‘(R) — GL(V;) is a group homomorphism.
2. {ég, .+,©,} is a union of the basis of@z , Vi, and @1 € Vk.

3. k is a non-zero constant deﬁned in (2 8.11).
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Il o)
4. J(5§35§;)E(3

Proof. By proposii:ion 4.6., we can calculate the above results. The duality (4.4.9) is a

direct consequence of the proposition 4.4. and the equation (4.4.6). Q.E.D.
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