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Kummer Surface with $D_{4}$-Symmetry

Isao Naruki

For the simple root system $D_{4}$ there are exactly three linearly independent Weyl-

group-invariant homogeneous polynomials of degree 4 on the Cartan subalgebra $V$ . Since
$V$ is 4-dimensional, the null locus $S$ of such an polynomial $\neq 0$ is a quartic surface in

the associated projective space $P(V)\cong P_{3}(C)$ . ( $S$ has two parameters.) $S$ is smooth in

general. In this note however we will only discuss a special case where $S$ is a Kummer

quartic i.e. quartic surface with 16 nodes (ordinary double points)“. This case is introduced

by imposing the following condition on $S$ :

(A) Some (hence any by invariance) root-section of $S$ decomposes into two conics

intersecting transversally.

For any root $r$ the section of $S$ by $r$ is the intersection of $S$ and the null plane

$H_{f}$ $:=\{(x)\in P(V):r(x)=0\}$ . (This plane curve is in general irreducible.) From now on

we assume that $S$ satisfies (A), so $S$ is now a Kummer surface.
$S$ has still one parameter. Explicitly $S$ is given by the equation

$I_{1}(x)-(s^{2}+1)I_{2}(x)+2s(s^{2}+3)I_{S}(x)=0$

where $s(s^{2}+3\neq 0, s=\pm 1)$ is the parameter, $I_{1}(x)$ $:= \sum_{:=1}^{4}x_{:}^{4},$ $I_{2}(x)$ $:= \sum_{1\leq:<j\leq 4}x^{2}x_{j}^{2}:’ I_{3}(x)$ $:=$

$x_{1}x_{2}x_{3}x_{4}$ and the coordinates $(x_{1}, x_{2}, x_{3}, x_{4})$ are so chosen that the roots $are\pm(x_{i}\pm x_{j})$ . The Weyl group

is generated by the even sign changes and permutations of $x_{1},$ $x_{2},$ $x_{s},$ $x_{4}$ . The 16 nodes are the orbit of

$(s, 1,1,1)$ . We see that the 16 nodes lie four by four on the 12 root-sections to be the inter-section points

of the conics in (A). Each node is on exactly three root-sections.

For the definiteness of argument we fix a root $r$ and let $C_{1},$ $C_{2}$ be the conics such that

$C_{1}\cup C_{2}=H_{f}\cap S$ . Let $\{q_{0}, q_{1}, q_{2},q_{3}\}=C_{1}\cup C_{2}$ . Recall now that the abelian surface
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$\mathcal{A}$ associated with $S$ is the double cover of $S$ branched over the 16 nodes; so the nodes

are naturally imbedded into $\mathcal{A}$; in particular $\{q0, q_{1}, q_{2}, q_{3}\}\subseteq \mathcal{A}$ . We regard $q_{0}$ as the

zero of $\mathcal{A}$ . We remark that the inverse images $E_{1},$ $E_{2}$ of $C_{1},$ $C_{2}$ by $Aarrow S$ are elliptic

curves. They are thus two subgroups of $A$ such that $E_{1}\cup E_{2}=\{q0, q_{1}, q_{2}, q_{3}\}$ . We set

$G_{0}$ $:=E_{1}\cap E_{2}$ . This is a subgroup of the 2-torsion $\mathcal{A}(2)$ of $A$ . We also form the diagonal

group $\Delta_{0}$ $:=\{(q_{i}, q_{i})\}_{i=0,1,2,3}$ in the product group $\mathcal{E}$ $:=E_{1}\cross E_{2}$ .

Proposition 1. The product mappin$g\mathcal{E}=E_{1}\cross E_{2}\ni(x, y)rightarrow xy\in \mathcal{A}$ induces the

isomorphism

(1) $\mathcal{E}/\triangle 0\cong A$ .

It follows also

(2) $\mathcal{A}/G_{0}\cong \mathcal{E}$ .

Remark. So far we have only used the existence of a plane which cuts from a quartic two

conics in a transversal position. This property is therefore a characterization of elliptic

Kummer surfaces of degree 2.

We call such an isomorphism as (1) an almost product structure on $A;(1)$ depends

on the root $r$ fixed above. Since there are 12 roots of $D_{4}$ up to sign, we have 12 almost

product structures for $\mathcal{A}$ . But not all of them are different.

Proposition 2. The alm$ost$ produ$ctst$ru $ct$ures associat$ed$ with two roots are identi $cal$ if

and only if they are orthogonal (witb respect to the Killin$g$ form $\sum_{i=1}^{4}x_{i}^{2}$).

The existence of different almost product structures suggests that the original $D_{4^{-}}$

symmetry should be explained by the symmetry of $\mathcal{A}$ i.e. its non-trivial endomorphisms.

This leads further to the natural question: what is the relation between the moduli of two

elliptic curves $E_{1}$ and $E_{2}$ which should exist since we have only one parameter $s$ . The

stabilizer of the Weyl symmetry at $q_{0}$ is isomorphic to $S_{3}$ , so it contains an element of

order 3. This fact proves
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Proposition 3. Tbere is an isogeny of degree 3 between $E_{1}\partial I1dE_{2}$ .

By this result we can describe $E_{1}$ and $E_{2}$ by two lattices $L_{1},$ $L_{2}$ in $C$ in the following

way:

(3) $3L_{2}\subset L_{1}\subseteq L_{2}$ , $[L_{2} : L_{1}]=3$ .

(4) $E_{1}=C/L_{1}$ , $E_{2}=C/L_{2}$ .

Then, by (1), we have also the isomorphism

(5) $(C\cross C)/L\cong \mathcal{A}$

where $L$ is a lattice in $C\cross C$ such that $2L\subset L_{1}\cross L_{2}\subset L,$ $[L:L_{1}\cross L_{2}]=4$ .

Proposition 4. The lattice in. (5) is given $by$

$L=\{(a, b)\in C\cross C;2a\in L_{1},2b\in L_{2}, a-b\in L_{2}\}$ .

The stabilizer at $q_{0}$ is $li$fted to a subgroup of $Aut(A)$ genera$ted$ by the elements rvbicA are

indu$ced$ by the matrices

$M$ $:=(\begin{array}{ll}\frac{1}{2} \frac{3}{2}-\frac{l}{2} \frac{1}{2}\end{array})$ $N$ $:=(\begin{array}{ll}1 00 -1\end{array})$ .

Check that $ML=L,$ $NL=L$ and that $M^{3}=-1,$ $N^{2}=(MN)^{2}=1$ . We close this

note by remarking that the entire $D_{4}$ -symmetry is generated by the stabilizer described

above and the (translation) action of $A(2)$ over $S=\mathcal{A}/\{\pm 1\}$ .

The analytic counterpart of this story contains the parametric representation of $S$ by

the Weierstrass $\sigma$-functions associated with $E_{1}$ and $E_{2}$ ; it also contains the explanation

of the parameter $s$ and the isogeny between the elliptic curves by some modular models.

This interesting topic will however be published elsewhere in a more general form.
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