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The ranges of Radon transforms.

Tomoyuki Kakehi and Chiaki Tsukamoto

1. Introduction.

The purpose of this paper is to characterize the ranges of Radon
transforms on symmetric spaces by invariant differential operators.

We begin with Fritz John’s result. Consider the set of all lines in
$R^{3}$ of the form
$(1,1)$ $l:x=\alpha_{1}t+\beta_{1}$ , $y=\alpha_{2}t+\beta_{2},$ $z=t$, ($t$ ; parameter).

We fix a coordinate system on $M$ by $larrow(\alpha_{1},\alpha_{2},\beta_{1},\beta_{2})\in R^{4}$ and define a
second order differential operator $P$ on $M$ by

$(1,2)$ $P=\frac{\partial^{2}}{\partial a_{1}\partial\beta_{2}}-\frac{t}{\partial\alpha\ovalbox{\tt\small REJECT}\beta_{1}}$

Let $R:C_{0}^{\infty}(R^{3})arrow C_{0}^{\infty}(M)$ be a Radon transform defined by..

$(1,3)$ $Rf(l)=\int_{\infty}^{\infty}f(\alpha_{1}t+\beta_{1}, \alpha_{2}t+\beta_{2}, t)$ dt .

Then, it is easily checked that PRf $=0$ ,i.e., $KerP$ $\supset{\rm Im}$ R. In fact, he
showed that $KerP={\rm Im} R$ , that is, the range of $R$ is characterized by
P.

Gelfand, Graev, and Gindikin extended John’s result to the k-
plane Radon transform on $\Re$ n and $\oplus n$ where $k<n- 1$ . They
characterized the range by a system of second order differential
equations on the affine Grassmann$\cdot$ manifold G(k,n). Gonzalez gave a
simplification of their results by an invariant differential operator on
G(k,n).

For Radon transforms on compact symmetric spaces, there
exists Grinberg’s result. He gave a range characterization for Radon
transforms on real and complex projective spaces. His result was that
the range of the projective k-plane Radon transform is characterized
by a system of second order partial differential equations on the
Grassmann manifold.
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In general, for some kinds of symmetric spaces, the range of
the Radon transform is characterized by an invariant differential
operator.

For simplicity, we explain about the range characterization of
Radon transforms on $P^{n}\mathbb{C}$ , and we give the range-characterizing
operator explicitly.

Let $M$ be the set of all $(l+1)$ -dimensional complex vector
subspaces of $0^{n+1}$ , that is, the set of all projective l-planes in $P^{n}\mathbb{C}$ .
Then $M$ is a compact symmetric space $SU(n+1)/S(U(l+1)\cross U(n- l))$ of
rank $\min$ { $l+1$ , n-l}. We assume that $r:=rankM\geq 2$ , that is,
$1\leq l\leq n- 2$ .

$(1,4)$

$WedefineRf(\xi)=$

a
$\frac{1}{Vo1(P^{l}\mathbb{C})}\int_{x\in\xi}^{Radon}f(x)d(x),\xi^{n}M,f^{d}\in C(P^{n}\oplus)transformR_{v_{\xi}}.\cdot C^{\infty}(P\bigoplus_{\in})arrow T(M_{\infty})by$

,

where $dv_{\xi}(x)$ denotes the canonical measure on $\xi(\subset P^{n}\mathbb{C})$

Then, the following theorem holds.

Theorem 1.1. There exists a fourth order invariant differential
operator $P$ on $M$ such that the range of $R$ is characterized by $P$ , that
is, $KerP={\rm Im}$ R.

Remark 1.2. When $l=n- 1$ , the Radon transform $R$ : $C^{\infty}(pn\oplus)arrow$

$C^{o}(M)$ is an isomorphism. It can be proved by Helgason’s inversion
formula.

Remark 1.3. The range-characterizing operator is not unique. For
example, $P^{2},$ $P^{4},$

$\ldots$ , characterize the range of $R$ , for the above P. But
$P$ is of the least order in all the invariant.differential operators on $M$

that characterize the range of R. In this sense, such an operator $P$ is
unique.

$\lrcorner_{-}$
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We will give the explicit form of $P$ in the next section.

2. The explicit form of the range-characterizing operator.

Let $G$ be a Lie group and $H$ be its closed subgroup. We denote by .

$C^{o}(G,H)$ the set { $f\in C^{\infty}(G)$ ; f(gh) $=f(g)\forall g\in G\forall h\in H$ } , and we
identify $C^{\infty}(G,H)$ with $C^{\infty}(G/H)$ . We define an action $L_{g}$ of $G$ on $C^{\infty}(G)$

by $(L_{g}f)(x)=f(g^{-1}x)$ for $g$ , and $f\in C^{\infty}(G)$ Similarly, we define an
action $R_{g}$ of $G$ on $C^{\infty}(G)$ by $(R_{g}f)(x)=f(xg)$ .
A differential operator $D$ is called left G-invariant if $L_{g}D=DL_{g}$ for

all $g\in G$ Similarly, $D$ is called right H-invariant if $R_{h}D=DR_{h}$ for all
$h\in$ H.

Let $G,$ $K$ , and $K’$ be the groups $SU(n+1),$ $S(U(l+1)\cross U(n- l))$ , and

$S(U(1)\cross U(n))$, respectively. Then, we have $M=G/K,$ $P^{n}\mathbb{C}=G1K$ , and

by the‘ above identification, $C^{\infty}(G,K)=C^{\infty}(M)$, and $C^{\infty}(G,K’)=C^{\infty}(P^{n}\mathbb{C})$

We define Riemannian metrics on $M,$ $P^{n}C,$ $G,$ $K$, and $K’$ by the metrics
induced from the Killing form metric on $G$ , respectively.

Let $g$ and $k$ denote the Lie algebras of G. and $K$ , respectively;

$(2,1)$ $g=\{X\in M_{n+1}(\mathbb{C}) ; X+X^{*}=0\}$ ,

$(2,2)$ $k=$ $\{ (X_{1}0 x^{0_{2}})\in g;^{\cap}X_{1}\in M_{l+1}(\mathbb{C}), X_{2}\in M_{n- l}(\mathbb{C})\}$ .

Let $g=k\oplus m$ be a Cartan decomposition, then $\mathfrak{m}$ is the set of all

the matrices of the form

$(2,3)$ $Z=$

3
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$[$ $z_{n+1,1}z^{l+21}00$

,

$\cdot$ . . . . .

$z^{l+2}z_{n+1l+2}0_{l+1}0,$

,

$-\overline{z}_{l+^{+}}-\overline{z}\iota_{0^{2,l+1}}0^{1,1}$ $\ldots\ldots-\overline{z}_{0^{1.l+1}}^{\overline{z_{n_{0}^{n_{+}+1,1}}}}-.\}$ .

We define differential operators $L_{ij,a\beta}(l+2\leq i<j\leq n+1,1\leq\alpha<\beta\leq$

$l+1)$ and $P$ on $G$ as follows.

$(2,4)$ $L_{ij,a\beta}f(g)=(\frac{\partial^{2}}{\partial Z_{i\alpha}\partial Z_{j\beta}}-\frac{\partial^{2}}{\partial Z_{i\beta}\partial Z_{j\alpha}})f(g\exp Z)|_{Z=0}$

$(2,5)$ $P=\sum_{l+2\leq i<j\leq n+1}L_{ij,\alpha\beta}^{*}L_{ij,\alpha\beta}$
,

$1\leq\alpha<\beta\leq l+1$

where $L_{ij,a\beta}^{*}$ denotes the adjoint operator of $L_{ij,a\beta}$ and is given
$by$

$(2,6)$ $L_{ij,\alpha\beta}^{*}f(g)=(\frac{\partial^{2}}{\partial\overline{z}_{ia}\partial\overline{z}_{j\beta}}-\frac{\partial^{2}}{\partial\overline{z}_{i\beta^{\partial\overline{z}_{j\alpha}}}})f(g\exp Z)|$

$Z=0$ .
Obviously, $P$ is left-G-invariant. Moreover, $P$ is right-K-invariant.
This fact is e\’asily checked as follows.

We define an Ad K-invariant polynomial $F_{j}(Z)(j=1, 2, r. )$

on $m$ as follows.

$(2,7)$ $\det(\lambda I+Z)=\lambda^{n+1}+$ $F_{1}(Z)\lambda^{n- 1}+$ $F_{2}(Z)\lambda^{n- 3}+\ldots$ .

Then, $F2^{(Z}$ ) is given by

$(2,8)$ $F_{2}(Z)=$ $\sum$ $(\overline{z}_{i\alpha}\overline{z}_{j\beta}-\overline{z}_{i\beta}\overline{z}_{ja})(z_{i\alpha}z_{j\beta}- z_{i\beta}z_{j\alpha})$ .
$l+2\leq i<j\leq n+1$

$1\leq a<\beta\leq l+1$

Combining $(2,4)$ , $(2,5)$ , $(2,6)$ and $(2,8)$ , we obtain the above fact.

$\#$
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Therefore, $P$ is well-defined as an invariant differential
operator on $M=G/K$, and this $P$ characterizes the range of the Radon
trasnsform R.

Remark 2.1. The range of $R$ can also be characterized by a
second order differential operator that takes values in the sections of
a vector bundle. If we put this opeator $L$ , then the above operator $P$

can be represented by $P=L^{*}L$ . (See [10])

3. Outline of the proof.

We fix a maximal abelian subalgebra $a$ $(\subset m )$ and a Cartan

subalgebra $t(\subset g)$ such that a $\subset t$

Let $\Lambda_{1},$ $\ldots$ , $\Lambda_{n}$ be the fundamental weights of ($g$ , t)

corresponding to the following Satake diagram of $G/K$ .

$(3,1)$ $(n+1>2r)$

$(3,2)$ $(n+1=2r)$

Then, the fundamental weights $M_{1},$ $\ldots$ , $M_{r}$ of $G1K$ with respect to

$(g, n)$ are given as follows.

$\zeta$



57

$(3,3)$ $n+1>2r$ $M_{j}=\Lambda_{j}+\Lambda_{n+1- j}$ , ( $j=1,$ $\ldots$ , r),

$(3,4)$ $n+1=2r$ $M_{j}=\Lambda_{j}+\Lambda_{n+1\cdot- j}$ ( $j=1,\ldots$ , r-l), $M_{r}=2\Lambda_{r}$ .

We denote by $V(m_{1}, \ldots, m_{r})$ the irreducible eigenspace of $\Delta_{M}$ (the

Laplacian on M) whose highest weight is $m_{1}M_{1}+\ldots+m_{r}M_{r}$ ,

where $m_{1}$ , ... , $m_{r}$ are non-negative integers

In the same manner, we denote the fundamental weight of $G/K’=$

$pn\oplus$ by $M_{1}’$ , and which is given by,
$(3,5)$ $M_{1}’=\Lambda_{1}’+\Lambda_{n}’$

where $\Lambda_{1}’$ , ... , $\Lambda_{n}’$ denote the fundamental weights corresponding

to the following Satake diagram of $G/K’$ .

$(3,6)$

We denote by $V_{m}’$ the irreducible eigenspace of $\Delta_{P^{n}\mathbb{C}}$ whose
highest weight is $mM_{1}’$ , where $m$ is a non-negative integer.

The proof of the theorem is reduced to prove the following
three facts (A), (B), and (C).

(A) The eigenvalue $a(m_{1}, \ldots , m_{r})$ of $P$ on $V(m_{1}, \ldots , m_{r})$ is given
$by$

$\sum$ $l_{j}l_{k}(l_{j}+n+2- 2j)(l_{k}+n+2- 2k)$
$(3,7)$ $a(m_{1}, \ldots, m_{f})=$

$1\leq j<k\leq r$

$+ \sum_{j=2}^{r}$ (j-1) $(n+1- j)l_{j}(l_{j}+n+2- 2j)$

where $l_{j}=m_{j}+\ldots+m_{r}$ .

$d$
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In particular, $V(m_{1}, \ldots , m_{r})\subset KerP\Leftrightarrow m_{2}=\ldots=m_{r}=0$ .

(B) There exists a continuous linear map $S$ : $C^{\infty}(M)arrow C^{\infty}(P^{n}\mathbb{C})$

such that SR $=$ I. (The.existence of the inversion formulae. )

(C) $R:V_{m}’\cong V(m, 0 , ... , 0)$ . ( $G-$ isomorphism).

We admit the above (A), (B), and (C).

We put $V=\oplus_{m=0}^{\infty}V(m, 0 , ... , 0)$ , and V’ $=\oplus_{m=0}^{\infty}v_{m}$ ,

then V’ is dense in $C^{\infty}(P^{n}\mathbb{C})$, and by (A), V is dense in $Ker$ P. By (B)

and (C), $R$ : V’ $\cong V$ and RS $=$ I on V. Therefore, by the argument of
continuity, we obtain that RS $=$ I on $Ker$ P. It completes the proof.

4. On. other results and some problems.

We have explained about the range characterization of Radon
transforms on $P^{n}\mathbb{C}$ . We have obtained similar results for Radon
transforms on other symmetric spaces. We mention some of these
results.

(1) Let $M$ be the set of all oriented l-dimensional spheres in $s^{n}$ . Then
$M$ is an oriented real Grassmann manifold $SO(n+1)/SO(l+1)\cross SO(n- l)$ of
rank $\min$ { $l+1$ , n-l}. We define the Radon transform $R$ : $C^{\infty}(S^{n})arrow$

$C^{o}(M)$ as follows.

$(4, 1)$ Rf $( \xi)=\frac{1}{Vo1(S^{l})}\int_{x\in\xi}f(x)dv_{\xi}(x)$ $\xi\in M,$ $f\in C^{\infty}(S^{n})$ .

We assume $1\leq l\leq n- 2$ , then there exists an invariant differential
operator $P$ on $M$ such that ${\rm Im} R=Ker$ P. When $n=3$ and $l=1$ , we can
take a second order operator for $P$ , and otherwise, we can take a
fourth order operator for P.

2
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(2) Let $M$ be the set of all l-dimensional projective spaces in $pn$ R.
Then $M$ is a real Grassmann manifold $O(n+1)/O(l+1)\cross O(n- l)$ . We can
define a Radon transform $R$ : $C^{\infty}(P^{n}\mathbb{R})arrow C^{\infty}(M)$ similarly. We assume
$1\leq l\leq n- 2$ . Then, there exists an invariant differetial operator $P$ on
$M$ such that ${\rm Im} R=ker$ P. For the order of $P$ , the same fact as (1)

holds.

(3) Let $M$ be the set of all l-dimensional quarternion projective
spaces in $P^{n}$ H. Then, $M$ is a quaternion Grassmann manifold
$Sp(n+1)/Sp(l+1)\cross Sp(n- l)$ of rank $\min$ { $l+1$ , n-l}. We can define a Radon

transform $R$ : $C^{\infty}(P^{n}\mathbb{H})arrow C^{\infty}(M)$ similarly. We assume $1\leq l\leq n- 2$ .
Then there exists a fourth order invariant differential operator $P$ on
$M$ such that ${\rm Im} R=Ker$ P.

In general, if $G/H$ and $G/K$ are compact symmetric $spaces,we$

can define a Radon transform $R$ from $C^{\infty}(G/H)$ to $C^{\infty}(G/K)$ as follows.

$(4,2)$ Rf(g) $= \frac{1}{Vo1(K)}\int_{k\in}K$ f(gk) dk for $f\in C^{\infty}(G,H)$ ,

where we identify $C^{\infty}(G,H)$ with $C^{\infty}(G/H)$ and $C^{\infty}(G,K)$ with $C^{\infty}(G/K)$ .

For a Radon transform on a compact symmetric space, we
cannot generally expect that the range of Radon transform is
characterized by some invariant differential operator. But, for
example, let us consider the following probrem.

(Problem)
(1) Is it possible to characterize the range of the Radon transform by

an invariant differential operator on $G/K$, if $G/H=F_{4}/Spin(9)$ and

G1K $=F_{4}/Sp(3)\cross SU(2)$ ?
(2) If possible, give the explicit form of the range-characterizing

operator.
Here F4 is an exceptional Lie group and $G/H$ is the Cayley projective
plane $P^{2}Cay$ .

$r$
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In this case, we think the answer of (1) is yes, but we have not
obtained the proof yet.
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