A remark on semisimple elements in $U_q(s\ell(2;c))$.

Masatoshi NOUMI

Department of Mathematics, College of Arts and Sciences University of Tokyo, Komaba, Meguro-Ku, Tokyo 153, Japan

In this short note we will give a remark on semisimple elements in the quantized universal enveloping algebra $U_q(\mathfrak{sl}(2;\mathbb{C}))$. Namely we will show that, even in the case of $U_q(\mathfrak{sl}(2;\mathbb{C}))$, there is a family of semisimple twisted primitive elements, analogous to the adjoint orbit { Ad(g)h; $g\in SL(2;\mathbb{C})$ } of the semisimple element h of the Lie algebra $\mathfrak{sl}(2;\mathbb{C})=\mathbb{C}\oplus\mathbb{C}h\oplus\mathbb{C}f$.

Existence of semisimple twisted primitive elements in $U_q(s\boldsymbol\ell(2;\boldsymbol c)) \quad \text{was first recognized by T.H. Koornwinder [K]. The content of this note is a part of a joint work with Mr. Katsuhisa Mimachi on the realization of Askey-Wilson polynomials as spherical fuentions on the quantum group <math>SU_q(2)$ ([NM2]).

1. To fix the notation, we recall the definition of the quantized universal enveloping algebra $U_q(s\ell(2;\mathbb{C}))$. This algebra is the \mathbb{C} -algebra generated by the letters t,t^{-1} ,e,f subject to the fundamental relations

(1)
$$tt^{-1}=t^{-1}t=1$$
, $tet^{-1}=q^2e$, $tft^{-1}=q^{-2}f$, $ef-fe=(t-t^{-1})/(q-q^{-1})$.

Throughout this note, the symbol q denotes a fixed non-zero

complex number (with $q^2 \neq 1$) and we always asumme that q is not a root of unity. For each nonnegative integer ℓ , we denote by V_{ℓ} the unique $(\ell+1)$ -dimensional irreducible left $U_{q}(s\ell(2))$ -module with highest weight q^{ℓ} . The vector representation V_{1} has a basis (v_{1},v_{-1}) under which the action of $U_{q}(s\ell(2;\mathbb{C}))$ is described by

(2)
$$t \mapsto \begin{bmatrix} q & 0 \\ 0 & q^{-1} \end{bmatrix}$$
, $e \mapsto \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $f \mapsto \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$.

We fix a Hopf algebra structure of $U_q(s\ell(2;\mathbb{C}))$ so that its coproduct Δ takes the following values at the generators:

(3)
$$\Delta(t)=t\otimes t$$
, $\Delta(e)=e\otimes 1+t\otimes e$, $\Delta(f)=f\otimes t^{-1}+1\otimes f$.

We say that an element $X \in U_q(s\ell(2))$ is a <u>twisted primitive element</u> of type $(t^{-1},1)$ (resp. of type (1,t)) if $\Delta(X) = X \otimes t^{-1} + 1 \otimes X$ (resp. $\Delta(X) = X \otimes 1 + t \otimes X$). Under the assumption that q is not a root of unity, it turns out that any twisted primitive element X of type $(t^{-1},1)$ is a linear combination

(4)
$$X = at^{-1}e + b(1-t^{-1})+cf$$
 for some a,b,cec.

2. Let $X \in U_q(s\ell(2;\mathbb{C}))$ be a twisted primitive element of type $(t^{-1},1)$ and suppose that it is diagonalizable on the vector representation $V_1 = \mathbb{C}v_1 \oplus \mathbb{C}v_{-1}$. Then it is directly shown that the element X is a constant multiple of a twisted primitive element of the form

(5)
$$X_{\sigma} = -(q-q^{-1})q\alpha\beta t^{-1}e + (\alpha\delta + \beta\gamma)(1-t^{-1}) + (q-q^{-1})\gamma\delta f$$

where $g = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in GL(2;\mathbb{C})$. Note that X_g has linearly independent eigenvectors $u_1 = v_1 \alpha + v_{-1} \gamma$ and $u_{-1} = v_1 \beta + v_{-1} \delta$ belonging to the

eigenvalues $(1-q^{-1})(\alpha\delta-q\beta\gamma)$ and $(1-q)(\alpha\delta-q^{-1}\beta\gamma)$, respectively. We also remark that, in the limit as $q\!\!\to\! 1$, the element $\frac{1}{(1-q^{-1})(\alpha\delta-\beta\gamma)}X_g \quad \text{gives a parametrization of the adjoint orbit of the semisimple element } h \quad \text{in the Lie algebra} \quad \text{sl}(2;\mathbb{C})=\mathbb{C}\text{e}\oplus\mathbb{C}\text{h}\oplus\mathbb{C}\text{f}.$

Theorem 1. Assume that q is not a root of unity. Let $g = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ be an element of $GL(2;\mathbb{C})$ such that $\alpha\delta - q^{2k}\beta\gamma \neq 0$ for all $k\in \mathbb{Z}$. Then the twisted primitive element X_g defined by (5) is semisimple in the sense that it is diagonalizable on every finite dimensional $U_q(s\ell(2;\mathbb{C}))$ -module. Moreover, on each irreducible representation V_ℓ ($\ell\in \mathbb{N}$), the linear mapping $X_g\colon V_\ell \to V_\ell$ has mutually distinct eigenvalues $(1-q^{-m})(\alpha\delta - q^m\beta\gamma)$ $(m=\ell,\ell-2,\ldots,\ell)$.

3. We will show that, for each $\ell \in \mathbb{N}$, the linear mapping X_g : $V_\ell \to V_\ell$ has the eigenvalues as described above. Then one sees that X_g is diagonalizable on every finite dimensional representations, by the classification of finite dimensional $U_q(\mathfrak{s}\ell(2;\mathfrak{C}))$ -modules (see Rosso [R]).

In order to study the action of X_g , we make use of the realization of the representations V_ℓ ($\ell \in \mathbb{N}$) in the coordinate ring of the quantum plane \mathbb{C}_q^2 . Let $A(\mathbb{C}_q^2)$ be the \mathbb{C} -algebra generated by the two letters z, w with commutation relation zw=qwz. Then it is well known that $A(\mathbb{C}_q^2)$ is a \mathbb{C} -algebra with $U_q(s\ell(2;\mathbb{C}))$ -symmetry. Namely, it has a left $U_q(s\ell(2;\mathbb{C}))$ -module structure such that,

(6) if
$$a \in U_q(s \ell(2; \mathbb{C}))$$
 and $\Delta(a) = \sum_i a_i^1 \otimes a_i^2$, then

$$\mathbf{a}.(\varphi\psi) = \sum_{\mathbf{i}} (\mathbf{a}_{\mathbf{i}}^{1}.\varphi)(\mathbf{a}_{\mathbf{i}}^{2}.\psi) \quad \text{for any} \quad \varphi, \psi \in A(\mathbb{C}_{\mathbf{q}}^{2}).$$

Note that the action of $U_q(s\ell(2;\mathbb{C}))$ on $A(\mathbb{C}_q^2)$ is completely determined by (6) together with the following action on the generators z,w:

(7)
$$t.(z,w)=(zq,wq^{-1})$$
, $e.(z,w)=(0,z)$, $f.(z,w)=(w,0)$.

Furthermore, the algebra $A(\mathbb{C}_q^2)$ has the irreducible decompostion

(8)
$$A(\mathbb{C}_q^2) = \bigoplus_{\ell=0}^{\infty} V_{\ell}$$
, where $V_{\ell} = \mathbb{C}z^{\ell} \oplus \mathbb{C}wz^{\ell-1} \oplus \cdots \oplus \mathbb{C}w^{\ell}$.

In this algebra $A(\mathbb{C}_q^2)$, we will construct the eigenvectors of X_g in an explicit manner. For any couple (a,b) of nonnegative integers, we define an element $\varphi_{a,b}$ in $A(\mathbb{C}_q^2)$ by the formula

(9)
$$\varphi_{a,b} = (z\beta + w\delta)(z\beta q^{-1} + w\delta) \cdot \cdot \cdot (z\beta q^{-b+1} + w\delta) \times (z\alpha + w\gamma q^{-b})(z\alpha + w\gamma q^{-b+1}) \cdot \cdot \cdot (z\alpha + w\gamma q^{-b+a-1}).$$

Note that, in the case when q=1, this element corresponds to $(z\beta+w\delta)^b(z\alpha+w\gamma)^a=g.w^bz^a$. For each integer meZ, we set

(10)
$$\lambda_{m} = (1-q^{-m}) (\alpha \delta - q^{m} \beta \gamma).$$

Lemma 2. For any a,bew, one has $X_g \varphi_{a,b} = \lambda_{a-b} \varphi_{a,b}$.

Proof. Note first that

(11)
$$\varphi_{0,b+1} = \varphi_{0,b} (z\beta q^{-b} + w\delta)$$
 and $\varphi_{a+1,b} = \varphi_{a,b} (z\alpha + w\gamma q^{a-b})$

for any a,b \in N. Hence, it is enough to show that, if φ is an element of $A(\mathbb{C}_q^2)$ such that $X_g \varphi = \lambda_m \varphi$ for some $m \in \mathbb{Z}$, then

(12)
$$X_{g}(\varphi(z\alpha+w\gamma q^{m})) = \lambda_{m+1}\varphi(z\alpha+w\gamma q^{m}) \text{ and}$$

$$X_{g}(\varphi(z\beta q^{m}+w\delta)) = \lambda_{m-1}\varphi(z\beta q^{m}+w\delta).$$

By using property (6), one can reduce formulas (12) to the equations

(13)
$$\lambda_{m+1} - q \lambda_m = (1-q)(\alpha\delta + \beta\gamma) + (q-q^{-1})\alpha\delta q^{-m} \quad (m \in \mathbb{Z}) \text{ and}$$
 $\lambda_{m+1} - q^{-1}\lambda_m = (1-q^{-1})(\alpha\delta + \beta\gamma) - (q-q^{-1})\beta\gamma q^m \quad (m \in \mathbb{Z}).$

These can be checked directly from the definition (10) of λ_m .

It is clear that each $\varphi_{a,b}$ is a nonzero element in $A(\mathbb{C}_{q}^{2})$ provided that $\alpha\delta$ - $\beta\gamma$ ± 0 . Hence, for each ℓ $\in \mathbb{N}$, the elements $\varphi_{\ell,0}$, $\varphi_{\ell-1,1},\ldots,\varphi_{0,\ell}$ in V_{ℓ} are eigenvectors of X_{g} belonging to the eigenvalues $\lambda_{\ell},\lambda_{\ell-2},\ldots,\lambda_{-\ell}$, respectively. Under the assumption $\alpha\delta$ - $q^{2k}\beta\gamma$ ± 0 for all k $\in \mathbb{Z}$, these eigenvalues λ_{m} (m= ℓ,ℓ - $2,\ldots,-\ell)$ are mutually distict; this implies that the ℓ +1 eigenvectors $\varphi_{\ell,0}, \varphi_{\ell-1,1},\ldots,\varphi_{0,\ell}$ form a \mathbb{C} -basis for V_{ℓ} as desired. This completes the proof of Theorem 1.

- 4. Remark. In the above argument, we considered only the twisted primitive elements of type $(t^{-1},1)$. Recall that there is an involutive algebra automorphism $\omega\colon U_q(\mathfrak{sl}(2;\mathbb{C})) \to U_q(\mathfrak{sl}(2;\mathbb{C}))$ such that $\omega(t)=t^{-1}$, $\omega(e)=-q^{-1}f$ and $\omega(f)=-qe$. Since ω is a coalgebra antiautomorphism, the twisted primitive elements of type $(t^{-1},1)$ are transformed into those of type (1,t). By this involution ω , it is easy to rewrite Theorem 1 to a version for twisted primitive elements of type (1,t).
- 5. Finally we give a remark on the construction of the

eigenvectors $\varphi_{a,b}$ (a,beN) of X_g .

For a fixed element $g=\left(\begin{array}{c} \alpha & \beta \\ \gamma & \delta \end{array}\right) \in GL(2;\mathbb{C})$, define the two elements Z, W in $A(\mathbb{C}_q^2)$ by the formula

(14)
$$Z=z\alpha+w\gamma$$
, $W=z\beta+w\delta$; namely, $(Z,W)=(z,w)\begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}$.

A point to be discussed is how to control this kind of "coordinate transformation" $(z,w)\mapsto (Z,W)$ induced by g. Although one canno expect the commutation relation ZW=qWZ any longer, there exists an interesting formula very close to this. Namely one has

$$(15) \qquad (z\alpha + w\gamma)(z\beta q + w\delta) = q(z\beta + w\delta)(z\alpha + w\gamma q^{-1}).$$

To take this equality into the argument, regard the symbols α , β , γ , δ as indeterminates and let $\mathcal{C}=\mathcal{C}[\alpha,\beta,\gamma,\delta]$ be the (commutative) polynomial ring in four variables. We define an \mathcal{C} -algebra automorphism $\tau:\mathcal{C}\longrightarrow\mathcal{C}$ by

(16)
$$\tau(\alpha) = \alpha, \tau(\beta) = \beta q, \tau(\gamma) = \gamma q \text{ and } \tau(\delta) = \delta.$$

Namely, τ is the q-shift operator in the variables β and γ . Let $\mathbb{C}[\tau,\tau^{-1}]$ be the subalgebra of $\mathrm{End}_{\mathbb{C}}(\mathfrak{C})$ generated by the left multiplication of $\alpha,\beta,\gamma,\delta$ and the q-shift operators τ,τ^{-1} . We now define the elements \widetilde{z} , \widetilde{w} in the extension $\mathrm{A}(\mathbb{C}_q^2)\otimes\mathbb{C}[\tau,\tau^{-1}]$ by $\widetilde{z}=Z\tau=(z\alpha+w\gamma)\tau$, $\widetilde{w}=W\tau^{-1}=(z\beta+w\delta)\tau^{-1}$, namely by

(17)
$$(\widetilde{z}, \widetilde{w}) = (Z\tau, W\tau^{-1}) = (z, w) \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} \begin{bmatrix} \tau & 0 \\ 0 & \tau^{-1} \end{bmatrix}.$$

Then formula (15) is equivalent to the commutation relation $\tilde{z}\tilde{w}=q\tilde{w}\tilde{z}\quad\text{in}\quad A(\mathbb{C}_q^2)\otimes\mathbb{C}[\tau,\tau^{-1}]\,.\quad \text{A surprising fact is that the eigenvectors}\quad \varphi_{a,\,b}\quad (a,b\in\mathbb{N})\quad \text{we constructed above arise naturally}$

from this framework. In fact one has

$$(18) \quad \tilde{\mathbf{w}}^{\mathbf{b}} \tilde{\mathbf{z}}^{\mathbf{a}} = (z\beta + \mathbf{w}\delta)\tau^{-1} \dots (z\beta + \mathbf{w}\delta)\tau^{-1} (z\alpha + \mathbf{w}\gamma)\tau \dots (z\alpha + \mathbf{w}\gamma)\tau = \varphi_{\mathbf{a},\mathbf{b}}\tau^{\mathbf{a}-\mathbf{b}}.$$

The second equality is obtained by moving τ 's and τ^{-1} 's between the linear factors to the right end.

6. In this note, we showed that there is a family of semisimple twisted primitive elements corresponding to the adjoint orbit of h in $s\ell(2;\mathbb{C})$ and that their eigenvectors are constructed by a sort of "coordinate transformations" on the quantum plane. These two facts are extensively used in the study of spherical functions on the quantum group $SU_q(2)$ and quantum spheres (see [NM1,2], [N]). It is also known that the connection coefficients between the two bases $(z^\ell,wz^{\ell-1},\ldots,w^\ell)$ and $(\varphi_\ell,0,\varphi_{\ell-1},1,\ldots,\varphi_0,\ell)$ of V_ℓ are expressed by the q-Krawtchouk polynomials. Namely if one expresses the eigenvectors as linear combinations of $w^iz^{\ell-i}$ in the form

(19)
$$\varphi_{\ell-j,j} = \sum_{i=0}^{\ell} w^{i} z^{\ell-i} C_{ij}^{(\ell)}, \quad (C_{ij}^{(\ell)} \in \mathbb{C}),$$

then the coefficients $C_{ij}^{(\ell)}$ are polynomials in $\alpha,\beta,\gamma,\delta$ and are explicitly written in terms of q-hypergeometric series:

$$(20) C_{i,j}^{(\ell)} = q^{(i-j)(i+j-1)/2} \alpha^{\ell-i-j} \beta^{i} \gamma^{j} \begin{bmatrix} \ell \\ i \end{bmatrix}_{q^{2}}$$

$$\times 3^{\varphi_{2}} \begin{bmatrix} q^{-2i}, q^{-2j}, q^{2(j-\ell)} \alpha \delta / \beta \gamma \\ 0, q^{-2\ell} \end{bmatrix}; q^{2}, q^{2} \end{bmatrix}.$$

(Cf. [NM1].)

References

- [K] T.H. Koornwinder: Continuous q-Legendre polynomials as spherical matrix elements of irreducible representations of the quantum SU(2) group, CWI Quaterly, 2(1989), 171-173.
- [N] M. Noumi: Quantum groups and q-orthogonal polynomials Towards a realization of Askey-Wilson polynomials on $SU_q(2)$ —, to appear in the Proceedings of the Hayashibara Forum: "Special Functions" (Okayama, August 1990).
- [NM1] M. Noumi and K. Mimachi: Spherical functions on a family of quantum 3-spheres, to appear in Compositio Mathematica.
- [NM2] M. Noumi and K. Mimachi: Askey-Wilson polynomials and the quantum group $SU_q(2)$, Proc. Japa Acad. Ser.A 66(1990), 146-149.
- [R] M. Rosso: Finite dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebra, Commun. Math. Phys. 117(1988),581-593.