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Relative invariants of the polynomial rings

over the finite and tame type quivers

小池 和彦

KOIKE KAZUHIKO

Department of Mathematics

Aoyama Gakuin University

In this note we consider the following problem. Let $F$ be one of the $A_{r}$ ,

$D_{r},$ $E_{r},\tilde{A}_{r}$ ,
ハゾ

$r’\tilde{E}r$ type quivers with $r$ vertices and arbitrarily directed

arrows. Namely $F$ is a directed graph without multiple edges and if we

ignore the directions of the arrows in $F$ , then the gragh coincide with

one of the Dynkin diagrams of types $A_{r},$ $D_{r},$ $E_{r},\tilde{A}_{r},\tilde{D}_{r},\tilde{E}_{r}$ .

We take a representaion of the quiver $F$ , namely we put a vector space

$V_{i}$ on each vertex $i$ in $F$ and put a linear homomorphism $f$ on each arrow

in $F$ . Here $V_{i}$ is a finite dimensional vector space over some field $k$ and

$V_{i}arrow^{f}V_{i}$

.$f$ is a linear homomorphism from $V_{i}$ to $V_{i}$ if

For example if $F$ is an $A_{r}$ type quiver, a representation of $F$ is given

by

$V_{1}arrow f_{1}V_{2}arrow f_{2}V_{3}arrow JsV_{4}arrow f_{4}$ . $arrow\cdotarrow..$ . $arrow^{f_{r-1}}V_{r}$

$(F)$
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Here $V_{i}$ is a finite dimensional vector space over some field $k$ and $f_{i}$

is a linear endomorphism from $V_{i}$ to $V_{i+1}$ if
$V_{i}arrow^{f_{i}}V_{i+1}$

and from $V_{i+1}$

to $V_{i}$ if
$V_{i}arrow^{f_{i}}V_{i+1}$

.

For the exact definition and meanings of finite and tame type quivers,

see [Kal], [Ka3], [Ka4], [Gal], [Ga2] and [B-G-P].

Let $V=\oplus_{iarrow jin}{}_{p}Hom(V_{i}, V_{i})$ and $G=GL(V_{1})\cross GL(V_{2})\cross\cdots\cross$

$GL(V_{r})$ . Then $G$ acts on $V$ naturally, i.e., for $g=(g_{1}, g_{2}, \cdots g_{r})\in G$ ,

the action of $G$ on $V$ is given by $g\cdot f=g_{j}fg_{i^{-1}}$ , if
$V_{i}arrow^{f}V_{i}$

.

For example in the case of the above $A_{r}$ type quiver,

$V= \bigoplus_{iarrow i+1inF}Hom(V_{i}, V_{i+1})\oplus\bigoplus_{iarrow i+1inF}Hom(V_{i+1}, V_{i})$

Then $G$ acts on $V$ naturally. Let $S(V)$ be the polynomial ring over

V. The action of $G$ on $V$ naturally extends to the action on $S(V)$ . The

problem is:

PROBLEM. What is the relati $v^{r}e$ (or absol$ute$) irivarian $ts$ in $S(V)$ with

respect to this action.?

We consider this problem for $A_{r},$ $D_{r},$ $E_{r},\tilde{A}_{r},\tilde{D}_{r},\tilde{E}_{r}$ type quivers

with arbitrarily directed arrows.

We give answers to the above problem for the $A_{r},$ $D_{r},\tilde{A}_{r},\tilde{D}_{r}$ type

quivers with arbitrarily directed arrows in the case of $k=\mathbb{C}$ (complex

number). (The same holds for any field $k$ of characteristic $0.$ )

For the $E_{r},\tilde{E}_{r}$ type quivers, I have not yet obtained complete answers

to the above problem.

We will show a set of generators of the relative (or absolute) invariants

in each case.
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Let $F$ be an $A_{r}$ type quivers whose arrows are directed one way,

$V_{1}arrow^{j_{1}}V_{2}arrow^{f_{2}}V_{3}arrow^{f_{3}}$ . $..arrow^{f_{r-1}}V_{r}$ .

Then our theorem is given as follows.

We fix a base $\{e_{i}^{s}\}(1\leqq i\leqq n_{s})$ of each vector space $V_{s},$ .where $n_{s}$

$(s=1,2, \cdots r)$ denotes the dimension of $V_{s}$ .

Since

$S(V)=S( \bigoplus_{s=1}^{r-1}Hom(V_{s}, V_{s+1}))=\bigotimes_{s=1}^{r-1}S(Hom(V_{s}, V_{s+1}))$

, $S(V)$ can be considered as the polynomial ring in the indeterminates
$\{x_{i,j}^{(s)}\}$ where $1\leqq i\leqq n_{s+1},1\leqq j\leqq n_{s}$ , and $s=1,2,$ $\cdots r-1$ , where
$\{x_{i,j}^{(s)}\}$ is the dual base of the base $\{e_{i}^{s*}\otimes e_{i^{s+1}}\}$ of $Hom(V, , V_{s+1})$ . Here

$\{e_{i}^{s}’\}$ denotes the dual base of the base $\{e_{i}^{s}\}$ of $V,$ . Namely $x_{i_{\rangle}j}^{(s)}=$

$e_{i}^{s}\otimes e_{i}^{s+1^{*}}$ .

In other words, if we substitute some values to $x_{i,j}^{(s)}’ s$ , then the matrix
$(x_{i,j}^{(s)})_{i,j}$ corresponds to the homomorphism $f_{s}$ with respect to the above

basis.

Let $M_{s+1,s}$ be the matrix $(x_{i,j}^{(s)})_{i,j}$ . ( $n_{s+1}\cross n_{s}$ matrix whose $(i, j)$ -th

coefficient is the indeterminate $x_{i,j}^{(s)}.$ )

DEFINITION. For an$yk,$ $l$ with $1\leqq k\leqq\ell\leqq r$ and $n_{k}=n_{t}$ , we define

the polynomial $P_{\ell,k}$ by

$P_{l,k}$ $:=\det(M_{l,l-1}M_{l-1,l-2}\cdots M_{k+1,k})$

and call these polynomials by determinan $tal$ invariants.
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Clearly $P_{\ell,k}$ is a relative invariant and $P_{t,k}\neq 0$ if and only if for

any $v(k<v<\ell)$ , $n_{v}\geqq n_{k}=n_{l}$ . Moreover if a pair $(k, f)$ satisfies

the condition that $n_{v}>n_{k}=n_{t}$ for any $v(k<v<f)$ , then we call

the determinantal invariant $P_{\ell,k}$ primitive. Clearly any determinantal

invariant can be writen as the product of the primitive ones.

THEOREM. Let $F$ be an $A_{r}$ type $q$ uiver with one-way directed arrows.

Then the relati $\tau\prime e$ invariants in $S(V)$ amount to be the monomials of

the prim$i$ tive determinantal invariants $P_{l,k}s$ . Moreover the primitive

determinantal invarian $ts$ are algebraically independent.

For a quiver $F$ of type $A_{r}$ with arbitrarily directed arrows, $generat_{-}ors$

of the relative invariants are given as follows.

Let $p,$ $q(p<q)$ be vertices in $F$ and $u_{1},$ $u_{2},$ $u_{3},$ $\cdots$ $u_{k}(p<u_{1}<u_{2}<$

. . . $<u_{k}<q$ ) be the sources between $p$ and $q$ and let $v_{1},$ $v_{2},$ $v_{3},$
$\cdot\cdot$

$v_{l}$

$(p<v_{1}<v_{2}<\cdots<v_{l}<q)$ be the sinks between $p$ and $q$ . ( $l$ can be

$k+1$ or $k$ or $k-1.$ ) Here a vertex $i$ in a quiver $F$ is called (source “ if

all the arrows connected to $i$ are started from $i$ and a vertex $j$ is called
(sink’ if all the arrows connected to $j$ are terminated at $j$ .

We prepare a notation. Let $u,v(u<v)$ be vertices in $F$ such that there

are no sinks and sources between them. Then there are two possibilities.

(P1) $uarrow\cdotarrow\cdotarrow.$ . . $arrow v$

(P2) $u$

\leftarrow 一一一 . $arrow$ . \leftarrow 一一--一- . . . $arrow v$

In the case of (P1), we define the matrix by

$\Lambda l_{v,u}=M_{v,v-1}M_{v-1,v-2}\cdot$ . . $M_{u+1,u}$
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and in the case of (P2), we define the matrix by

$M_{u,v}=M_{u,u+1}M_{u+1,u+2}\cdots M_{v-1,v}$ .

Here $M_{i+1,i}$ is the matrix $(x_{kl}^{(i)})(1\leqq k\leqq n_{i+1},1\leqq l\leqq n_{i})$ cor-

respoding to the element of IIom$(V_{i}, V_{i+1})^{*}$ and $M_{1,i+1}$ is the matrix
$(x_{kt}^{(i)})(1\leqq k\leqq n_{i}, 1\leqq l\leqq n_{i+1})$ corresponding to the element of

$Hom(V_{i+1}, V_{i})^{*}$ .

Assume that the sources and the sinks between $p$ and $q$ are located as

follows:

$p<u_{1}<v_{1}<u_{2}<\cdots<u_{k}<v_{k}<q$.

$parrow$ . $arrow\dot{u}_{1}arrow$ . $arrow v_{1}arrow u_{2}arrow.$ . . $arrow v_{k}arrowarrow q$

In this case, we define the matrix $M$ as follows:

$M=(M_{v_{0}}^{p_{1}u_{u^{1_{1}}}}0M_{0},,.$
$M_{v_{0^{2}},u_{2}^{2}}^{v_{0^{1}},u}M0$ $M_{v_{0^{2}},u_{3}^{3}}^{v_{0^{3}},u}M00$

$000.\cdot$

$M_{\dot{v}_{k},u_{k}}$

$M_{v,q}^{0}0_{k}000]$

Then $M$ is an $(n_{p}+n_{v_{1}}+n_{v_{2}}+\cdots+n_{v_{k}})\cross$ ( $n_{u_{1}}+n_{u_{2}}+\cdots n_{u_{k}}$ 十 $n_{q}$ )

matrix. If $n_{p}+n_{v_{1}}+n_{v_{2}}+\cdots+n_{v_{k}}=n_{u_{1}}+n_{u_{2}}+\cdots n_{u_{k}}+n_{q}$ , we can

take the determinant of $M$ .
Clearly if $\det(M)\neq 0,$ $\det(M)$ is a relative invariant in $S(V)$ . Since the

action of $G$ on $\det(M)$ just coincides with the matrix multiplication of
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diag$(g, g_{1},g_{2}, \cdots g_{k})$ from the left and diag $(h_{1}^{-1}, h_{2}^{-1}, \cdots h_{k}^{-1}, h^{-1})$ from

the right, where $g\in GL(V_{p}),g_{i}\in GL(V_{v_{i}}),$ $h_{i}\in GL(V_{u_{i}}),$ $h\in GL(V_{q})$

and diag $(g, g_{1},g_{2}, \cdots g_{k})$ denotes the matrix whose diagonal blocks con-

sist of $g,$ $g_{1},$ $g_{2},$ $\cdots g_{k}$ and whose off-diagonal blocks are all $0$ matrices.

Therefore if $\det(M)\neq 0$ , then $P_{q,p}=\det(M)$ is a relative invariant of

weight

$(0,0, \cdots p\wedge 1,0, \cdots\overline{u_{1}^{-1,0}}’ v^{1_{1}}\wedge 0, \cdots v^{1_{k},0}\wedge -1,0\wedge q 0)$

We will determine when $\det(M)\neq 0$ . It is easy to see that the neces-

sary condition for $\det(M)\neq 0$ is given by

$n_{p}\leqq n_{p+1},$ $n_{p+2},$ $\cdots n_{u_{1}}$ ,

$n_{u_{1}}-n_{p}\leqq n_{u_{1}+1)}n_{u_{1}+2},$ $\cdots n_{v_{1}}$ ,

$n_{v_{1}}-n_{u_{1}}+n_{p}\leqq n_{v_{1}+1},$ $n_{v_{1}+2},$ $\cdots n_{u_{2}}$ ,

$n_{u_{2}}-n_{v_{1}}+n_{u_{1}}-n_{p}\leqq n_{u_{2}+1},$ $n_{u_{2}+2},$ $\cdots n_{v_{2}}$ ,

$\leqq$

$n_{v_{k}}-n_{u_{k}}+n_{v_{k-1}}-\cdots+n_{p}\leqq n_{v_{k}+1},$ $n_{v_{k}+2},$ $\cdots n_{q}$

We will define primitive determinantal invariants. A determinantal

invariant $P_{q,p}=\det(M)$ is called “primitive “ if the inequalities in the

above hold strictly.

Any determinantal invariant can be decomposed into the product of

the primitive ones.

For the cases in which the sources and sinks between $p$ and $q$ are

located differently, the matrix whose determinant gives a determinantal

invariant is obtained by arranging the matrices $M_{v,u}$ and $M_{v’,u}$ vertically
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at the source $u$ ( $v$ and $v’$ are adjacent sinks to $u.$ ) and by arranging

the matrices $M_{v,u}$ and $AI_{v,u’}$ horizontally at the sink $v(u$ and $u’$ are

adjacent sources to $v.$ ) and by putting $0$ matrices at the other places.

The primitiveness of them is defined by a similar inequalities to the

above. (See $[K1]$ \S 4 for the details.)

In any cases the relative invariants for the $A_{r}$ type quivers are the

monomials of the primitive determinantal invariants and the primitive

ones are algebraically independent.

Namely

THEOREM. Let $F$ be an $A_{r}$ type quiver with arbitrarily directed arrows.

The relative invariants in $S(V)$ amounts to the monomials of the prim-

itive determinantal invariants $P_{\ell,k}s$ . Moreover the primitive algebraic

invariants are algebrai$c$ally independent.

Next let $F$ be an $\tilde{A}_{r}$ type quivers whose arrows are directed one way

$V_{1}arrow^{f_{1}}V_{2}arrow^{f_{2}}V_{3}arrow^{j_{3}}$ .. . $arrow^{J:-1}$
$V_{i}$

(F) $J_{r}\uparrow$ $\downarrow f$ ;

$\dot{V}_{r}arrow^{f_{r-1}}$
$arrow$ $arrow\cdotsarrow^{f_{i+1}}V_{i+1}$

$S(V)$ can also be considered as the polynomial ring in the indeter-

minates $\{x_{i,j}^{(s)}\}$ where $1\leqq i\leqq n_{s+1},1\leqq j\leqq n_{s}$ , and $s=1,2,$ $\cdots r$ .

We define the determinantal invariants and the primitive determinan-

tal invariants just in the same way as the above. (Here we consider

$V_{r+};=V_{i}.)$ Since $\tilde{A}_{r}$ type quiver has the symmetry under the cyclic per-

mutations, We may assume that $n_{1}=Minimum\{n_{1}, n_{2}, \cdots n_{r}\}$ . Then

we will define absolute invariants $\phi_{i}\in S(V)(i=1,2, \cdots n_{1})$ as follows.

7



116

DEFINITION. Let $\phi_{i}\in S(V)(i=1,2, --, n_{1})$ be the i-th elementary

symmetric function of the product of matrices

$M_{1,r}M_{r,r-1}M_{r-1,r-2}\cdots M_{2,1}$ , namely

$\det(tI_{n_{1}}-M_{1,r}M_{r,r-1}\cdots M_{2,1})=\sum_{k=0}^{n_{1}}\phi_{i}(-1)^{i}t^{n_{1}-i}$ .

It is easy to see that $\phi_{i}’ s$ are absolute invariants.

For a relative invariant $f\in S(V)$ , we call that $f$ has weight $[$ $=$

$(k_{1}, k_{2}, --, k_{r})\in Z^{r}$ if $g\cdot f=(\det g_{1})^{k_{1}}(\det g_{2})^{k_{2}}\cdots(\det g_{r})^{k_{r}}f$ where

$g=(g_{1}, g_{2}, \cdots g_{r})\in G=GL(n_{1})\cross GL(n_{2})\cross\cdots GL(n_{r})$ .

By $S(V)^{\mathfrak{k}}$ , we denote the relative invariants of weight $g$ in $S(V)$ . Here

we can state our theorem for this case.

THEOREM. Let $F$ be $an$

ノの

$r$ type quiver with one-way directed arrows.

(1) The absol$ute$ invariants $S(V)^{G}$ is the polyn$omial$ ring of $n_{1}$ gen-

erators $\phi_{1},$ $\phi_{2},$ $\cdots$ $\phi_{n_{1\rangle}}$ namely,

$S(V)^{G}=\mathbb{C}[\phi_{1}, \phi_{2}, \cdots\phi_{n_{1}}]$ .

(2) The relative invariants in $S(V)$ amount to be the monomials of
$\phi_{1},$ $\phi_{2},$ $\cdots\phi_{n_{1}-1}$ an$dP_{ji}s$ , where $P_{j,i}s$ are th $e$ primitive determin an $tal$

invariants. $\phi_{1},$ $\phi_{2},$ $\cdots\phi_{n_{1}-1}$ and $P_{ji}s$ are algebraically independent.

(3) As $S(V)^{G}$ mod$ule,$ $S(V)^{t}$ is a free mod$u$le of rank one.

For the other cases in which there exist a sink or a source in the

original $\tilde{A}_{r}$ type quiver $F$ , then we have no absolute invariants other than

constant. In this case we also can give explicit generators of the relative
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invariants in $S(V)$ and prove that they are algebraically independent.

(See \S 5 in $[K1].$ )

We will move to the $D_{r}$ and $\tilde{D}_{r}$ type quivers. Let $F$ be a $D_{r}$ type

quiver with $r$ vertices and arbitrarily directed arrows We fix a represen-

tation of the quiver $F$ .

For example let $F$ be a quiver in which the arrows at the branching

vertex $r-2$ are directed as follows and the other arrows are directed

arbitrarily.

Case ordinary at $r-2$ ( $2$ arrows started from $r-2$ to $r$ and $r-1$ )

$parrow\cdotarrow\cdotarrow\cdotsarrow qarrow\cdotarrow..$ . $arrow\cdotarrow\cdotarrow r-2arrow r-1$

$\downarrow$

As in the $A_{r}$ type quivers,according to the distribution of the sources

and the sinks between the vertices $p$ and $q$ , we must divide the cases.

But as in the cases of the $A_{r}$ type quivers, a matrix whose determinant

gives a primitive invariant is obtained by arranging the matrices $M_{v,u}$

and $M_{v’,u}$ vertically at the source $u$ ( $v$ and $v’$ are adjacent sinks to $u.$ )

and by arranging the matrices $M_{v,u}$ and $M_{v,u’}$ horizontally at the sink

$v$ ( $u$ and $u’$ are adjacent sources to $v.$ ) and by putting $0$ matrices at the

other places.

Therefore for the $D_{r}$ type quivers we only give a primitive invariant

for an exemplified case, since for the other cases, primitive invariants

are defined just in the same way.

For example in the above quiver let the sources and the sinks between
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$p$ and $r-2$ be located as follows:

$p<v_{1}<u_{1}<\cdots<u_{t-1}<q<v_{t}<u_{t}<\cdots<v_{s}<u_{\theta}<r-2$ .

If $n_{u_{\epsilon}}-n_{v_{s}}+\cdots+n_{u_{1}}-n_{v_{1}}+n_{p}+n_{u_{\epsilon}}-n_{v_{s}}+\cdots+n_{u_{t}}-n_{v_{i}}+n_{q}=n_{r-1}+n_{r}$ ,

then we will define the matrix $M$ in the following way.

In the case of $n_{u_{s}}-n_{v_{s}}+\cdots+n_{u_{t}}-n_{v_{t}}+n_{q}>n_{r}$ and $n_{u_{s}}-n_{v_{s}}+$

. . . $+n_{u_{1}}-n_{v_{1}}+n_{p}<n_{r-1}$ , let

$M=$

$(M_{v_{0}}00^{1P}0000M_{v_{0}.u_{1}}000001M_{v_{s_{0}}}0^{u_{S-1}}0000M_{r,r-2}M_{r-2,u_{S}}^{u_{S}}M_{v_{0}}0’000sM_{r-1}^{M_{r,r,-2}M_{r2,u_{S}}}M_{v_{S}}^{r-2}0^{M_{u}^{-}-2,u_{S}}0000’ M_{v}.0_{u_{s-1}}00000.M_{v,u}00000_{\ell r}0.M_{v,q}^{0}0_{i}00000)$

If $n_{u_{s}}-n_{v_{\epsilon}}+\cdots+n_{u_{t}}-n_{v_{t}}+n_{q}=n_{r}$ hence $n_{u_{s}}-n_{v_{s}}+\cdots+n_{u_{1}}-$

$n_{v_{1}}+n_{p}=n_{r-1}$ , the situation reduces to the $A_{r}$ cases.

This $\phi_{q,p,r-1,r}=\det(M)$ is called primitive if

$n_{p}<n_{p+1},$ $n_{p+2},$ $\cdots n_{v_{1}}$ ,

$n_{v_{1}}-n_{p}<n_{v_{1}+1},$ $n_{v_{1}+2)}\cdots n_{u_{1}}$ ,

$n_{u_{1}}-n_{v_{1}}+n_{p}<n_{u_{1}+1},$ $n_{u_{1}+2},$ $\cdots n_{v_{2}}$ ,

:
$<$ .

$n_{u_{s}}-n_{v_{s}}+\cdots+n_{p}<n_{u_{S}+1},$ $n_{u_{s}+2},$ $\cdots n_{r-2}$
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and

$n_{q}<n_{q+1},$ $n_{q+2},$ $\cdots n_{v_{t}}$ ,

$n_{v_{t}}-n_{q}<n_{v_{\ell}+1},$ $n_{v_{t}+2},$ $\cdots n_{u_{t}}$ ,

:
$<$

:

$n_{u}$
。

$-n_{v_{s}}+\cdots+n_{q}<n_{u_{s}+1},$ $n_{u_{s}+2},$ $\cdots n_{r-2}$

By substituting the special values to $x_{i}^{(s_{j})}$ , we can see easily that the

primitive $\phi_{q,p,r-1,r}$ is non zero..

We also define the primitive invariants $\phi_{q,p,r-1,r}’ s$ for the other cases

in which the sinks and sources between $p$ and $q$ and $r-2$ are located in

the different ways.

Then we have

THEOREM.

The relative invarian $ts$ in $S(V)$ amount to be the $111$onomials in all the

primitive determinantal invarian $ts\phi_{q,p,r-1,r}s,$ $P_{q,p}s$ an$d$ the primitive

relative invariants are algebraically independent.

We can also give explicit generators for the $D_{r}$ type quiver $F$ in which

the directions of the arrows at the branching vertex $r-2$ are different

from the above and the same theorem hold for these cases.

Let $F$ be a $\tilde{D}_{r}$ type quiver for example, given by

Case ordinary at the branching vertices 2 and $r-2$

$1arrow 2arrow\cdotarrow\cdotarrow\cdotarrow.$ . . $arrow r-2arrow r-1$

$(F)$ $\uparrow$ $\downarrow$

0 $r$
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Let the sinks and sources between 2 and $r-2$ be located in the fol-

lowing way, $2<v_{1}<u_{1}<\cdots<u_{s}<r-2$ .

If $n_{r}-n_{u_{s}}+n_{v_{s}}+\cdots-n_{u_{1}}+n_{v_{1}}+n_{r-1}-n_{u_{s}}+n_{v_{s}}+\cdots-n_{u_{1}}+n_{v_{1}}=$

$n_{0}+n_{1}$ , then we can define the matrix $M$ by

$M=$

$(00o^{1\prime}oo000000011M_{v}0^{u_{S-1}}oo000.M_{r_{0}^{-1’,u_{S}^{\epsilon_{S}}}}M-1M_{r_{0}^{v_{0}}}0s^{u_{u}}M_{v_{0’}}M_{r_{s}}^{0}0^{u_{u^{s_{s}}}}000M_{v_{s_{0^{u_{S-1}}}}}.00000.M_{1^{u}1}000000.M_{v,1}^{0}M_{v,1}0_{1}^{1}0000)$

,where $M_{v_{1},1}=M_{v_{1},2}M_{2,1},$ $M_{v_{1},0}=M_{v_{1},2}M_{2,0},$ $M_{r,u_{k}}=M_{r,r-2}M_{r-2,u_{k}}$

and $M_{r-1,u_{k}}=M_{r-1,r-2}M_{r-2,u_{k}}$ .

This $\phi_{0,1,r-1,r}=\det(M)$ is called primitive if

$n_{2}<n_{3},$ $\cdots n_{v_{1}}$ ,

$n_{v_{1}}-n_{2}<n_{v_{1}+1},$ $n_{v_{1}+2},$ $\cdots n_{u_{1}}$ ,

$n_{u_{1}}-n_{v_{1}}+n_{2}<n_{u_{1}+1},$ $n_{u_{1}+2},$ $\cdots n_{v_{2}}$ ,

.
$<$ :

$n_{u_{s}}-n_{v_{s}}+\cdots+n_{2}<n_{u_{s}+1}$ , $n_{u_{s}+2},$ $\cdots n_{r-2}$ .

Also for vertices $p$ and $q$ with $u_{s}<p<v_{s+1},$ $v_{t}<q<u_{t}$

we will define the matrix $M$ by $M=$
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$[Mv_{00M_{v}M_{v1}M_{v0}00}M_{v_{\theta\prime}}..\cdot 0,\cdot 0_{1},0_{1}0,,02M_{p_{\theta}},0_{u_{S-1}}.000000’0000M_{vu}^{v}M_{v,,.u_{2}}0000M_{v0}M00^{u_{u^{s_{\epsilon}}}}\cdot 00_{1},’ 0_{V}.00000000000000000000000000000000000000000000000001^{u}12111$

,where and $M_{r,u_{k}}=M_{r,r-2}M_{r-2,u_{k}}$ and $M_{r-1,u_{k}}=M_{r-1,r-2}M_{r-2,u_{k}}$ .

If this matrix is a square $m$atrix and $\det(M)\neq 0$ , then $\det(M)=$

$\phi_{0,1,r-1,r,p,q}$ is a relative invariant. We also can define the primitiveness

of this $\phi_{0,1,r-1,r,p,q}$ .

Then our theorem is as follows.

THEOREM. The relative invariants in $S(V)$ amount to be the monomi-

als in all the primitive determinantal invarian $ts\phi_{q,p,r-1,r}s,$ $\phi_{0,1,p,q}s$,

$P_{q,p}s,$ $\phi_{0,1,r-1,r,p,q}s$. The primitive relative invariants are algebraically

independen $t$ .

These are examples of our answers to the problem. The proofs of the

above facts needs the standard monomial theory and some combinatorics

to calculate the Littlewood-Richardson coefficients explicitly for Young

diagrams of the special shapes.

From the above the next problem comes up naturally and seems to

be interesting.

PROBLEM. For what quivers does the relative invariants $S(V)^{rel}$ have

algebraically independent generators? More specifically does this condi-
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tion (having the algebraically independen $t$ generators) characterize the

finite and the $tame$ type $quivers^{7}$

For the $A_{r},$ $D_{r},\tilde{A}_{r},\tilde{D}_{r}$ type quivers, this condition is satisfied.

We also state extentions of the original problem. Theorem comes up

naturally in the following situation.

Let $P$ be a parabolic subgroup of GL(n) (where $n= \sum_{i=1}^{r}n_{i}$ ) defined

by

$n_{r}$ . .. $n_{2}n_{1}$

$)n_{1}^{2}n^{r}n.\cdot$

.

Let $P=LU$ be a Levi decomposition of $P$ , where $L$ is a reductive part

of $P$ and $U$ is the unipotent radical of $P$ . For example

$n_{r}$ . .. $n_{2}n_{1}$

Let $\mathfrak{R}$ be the Lie algebra corresponding to $U$ . Then $L$ acts on ’Yt by

adjoint action, hence $L$ acts on $\mathfrak{R}/[\mathfrak{R}\mathfrak{R}]$ by adjoint action This action

just coincides with the action of $G$ on $V$ in the case of the $A_{r}$ type quiver

with one way directed arrows. So we can extend the problem as follows.
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PROBLEM 1. Let $G$ be a semisimple Lie group and let $P$ be a $p$arabolic

$su$ bgroup of G. Le$tP=LU$ is a Levi decomposition of $P$ an $d$ le $t\mathfrak{R}$

be the Lie algebra correspon$ding$ to U. What is the relati $ve$ invarian $ts$

under the adjoint action of $L$ on $V=\mathfrak{R}/[\mathfrak{R}\mathfrak{R}]$ ?

It is known that the above action of $L$ on $V$ is prehomogenius.

PROBLEM 1‘. Consider the problem and the problem 1 over any field $k$

instead of the complex fi$eld$ (or the field of characteristic $0$).

Especially it seems to be interesting to consider the preblem over the

finite field $k$ .

For example, let $F$ be an $A_{2}$ type quiver and $k$ be a finite field

(F) $V_{1}arrow^{f_{1}}V_{2}$

If $\dim V_{1}=1$ , i.e., $V_{1}=k$ , then $S(V)$ is isomorphic to $S.(V_{2})$ and

$G_{2}$ naturally acts on $S(V_{2})$ . It is known in this case that the absolute

invariants $S(V_{2})^{G_{2}}$ are the polynomial ring in the Dickson’s invariants
$I_{1},$ $I_{2},$ $\cdots I_{n_{2}}$ . Compared with the characteristic $0$ case, (See Theorem

1) things seem to be slightly changed over a finte field,

15
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