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On an affine space partition of the variety of N-stable flags

and a generalization of the length—-MAJ symmetry

ITARU TERADA

Department of Mathématics, University of Tokyo

1. Introduction. J. Matsuzawa introduced in his talk at Nagoya Conference for Com- ‘
mutative Algebra and Combinatorics, August 1990 (or even earlier at the AMS Sum-

mer Institute at Arcata 1986) the following two-variable polynomial G,(g,t) which could

be regarded as a simultaneous “g-analogue” of the Poincaré polynomials of two vari-

eties. Let p be a partition of n (namely p = (p1, pt2,..., 1) with g; € Z5o such that

1 > pg > -+ 2> gy and Z:-'___l pi = n). We fix such p once and for all in this note. Then

his polynomial is: |

Gult,0) = > Kapu(@)Knqm(t).
AFn

In this expression A F n means that A is a partition of n, and A\’ is the conjugate partition
of A defined by A" = (A}, Ay,...,Au), ' = A, Ay =#{i [ X 25} (1 <5 <) (see [Mac,
p. 2]).

Then an interesting property is the following:
Gu(t*,1) = Pp,(t), and G,(1,¢°) = Psy(q).

The right hand sides denote the Poincaré polynomials of the varieties P, and By respec-
tively. P, is a generalized flag variety of GL(n, C) associated to its parabolic subgroup of
type p; namely the variety consisting of all chains V; C V, C -+ C V; of linear subspaces
of C* withdimV; = py +pa +---+p; (1 <2 < D).

The other variety By is the key subject of this note. Let N be a nilpotent n x n matrix

with Jordan cells of size py, pa, ..., pi. (Such N will be called of Jordan type p.) Then By
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is defined to be the variety of all N-stable complete flags, i.e. chains Vi C V, C - CV,,
dimV; = ¢ (1 < i < n), of subspaces of C™ each of which is stable under the transformation
N. Since all such N are conjugate (for a fixed p) under conjugation by GL(n,C), By is
isomorphic for all such N.

In this note we give a combinatorial interpretation of this polynomial. We use a result
on connection between a partition of the variety By into affine spaces and the Schubert
cell decomposition of the variety B of all cbmplete flags, and we borrow a recent theorem
on the Springer representation due to G. Lehrer-T. Shoji and N. Spaltenstein.

The main result is described as follows.

THEOREM. Let pi be a partition of n, and G,(q,t) be defined as above. Then we have:

® Culti)= Y DI,
' TERDT{n)

where the notation is explained below.

Notation. RDT(1) is the set of row-decreasing tableaux of shape p. By a row-decreasing
tableau here we mean a tableau in which each letter in the range 1 through n appears
once and the entries in each row decrease from left to right. (The row-decreasing tableau
is a temporary term used in this note.)

[ in the right-hand side is a function RDT(x) — Z>¢ defined in §3. It reduces to the
usual length function on &, (l(w) =#{(:,7) |1 <i < j <n, w(@) > w(y)}) in the case
p = (1"). T — w7 is an injective map RDT(p) — &, also defined in §3. MAJ(w) denotes

the major index (also called the greater index) of w € &,,, namely MAJ(w) = E ?
1<i<n~1
(see [St, p. 23]). w(d) >w(i+1)

The formula (1) reduces to the following expression which represents the length-MAJ

symmetry proved by D. Foata and M.-P. Schiitzenberger in [FS]:
(2) > g M) =N Ry (9 Ky (8)-

weGS,, Abn
Their method was to construct a bijection ¢: &,, — &, preserving the “inverse” descent
set D(w™)={i|1<:<n—-1, w({) >w(i+1)} (see [St, p. 21] for D(-)) and
satisfying I(¢(w)) = MAJ(w).
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H. Naruse gave another proof of (2) using the representation of &, on H*(B,C). He
also gave some suggestions as to a partition of By into affine spaces and a definition of
the function ! above. This brief note is a realization of his idea. The detailed version will

be published elsewhere.

2. Kostka-Foulkes polynomials and nice bases for C[G,]-modules. First let us
recall some properties of the Kostka-Foulkes polynomials. The K an(q) are defined from

the K,(g) by the relation

Kxu(q) = ¢"MKy,(q™!) where n(u)= i(z - 1A
i=1
For the definition of K ,(q), we refer the reader to [Mac, §II1.6].

Here are some properties of the Kostka-Foulkes polynomials. Let A and p be partitions
of a positive integer n.

PROPERTY 1. K),(1) is equal to K, (the Kostka number), which can be counted as
the number of semistandard tableaux (called just tablaux in [Mac]) with shape A and
weight p (see [Mac, §II1.6]).

PROPERTY 2. f\;,\”(t) = Z <H2'.(BN,C),VA>6" ¢' (see [Mac, Ex. I11.7.9]. Caution:

In [Mac] By is denoted as :\’,‘). Here H*(Bn,C) is regarded as a C[G,}-module via
the so-called Springer representation. There seems to be two kinds of the Springer rep-
resentations differing from each other by the signature character. Here we use the one in
which the trivial representation appears in H°. The symbol V) denotes the irreducible
C[6,])-module indexed by the partition A. The angular bracket { , )g, denotes the

intertwining number of C[G,,]-modules.

PROPERTY 3. Kxam(t) = ) t“@) (see [Mac, Ex. II1.6.2]). Here STab(}) is
’ TESTab())
the set of the standard tableaux of shape A, namely tableaux containing each letter from

1 to n once and in which the entries increase (a) from left to right along each row and
(b) from top to bottom along each column. If T' € STab()\), then ¢' (T) is the sum of
1 (1 €4 < n—1)such that ¢ + 1 lies to the right in T (in the shaded part of Fig. 1).
There is a similar (but more complicated) interpretation of I»,(t) for a general p, shown

by A. Lascoux and M.-P. Schiitzenberger, as a sum of some powers of ¢t determined by

3
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the positions of entries in the semistandard tableaux of shape A and weight u (see [Mac,
§II1.6]), but we don’t need that. Using this, we also know that K(»)(t) = Z(V)) defined

just below.

Fig. 1.

Definition (nice bases). Let (p,V) be a representation of &, over C, and let s; (1 <
i £ n — 1) denote the transposition (¢,7 + 1) € &,. A basis {er}rex of V (where K is
some index set) is called nice if there exists a subset K; of K for each i (1 <i<n-—1)
for which the p(s;)-fixed part of V' is precisely spun by the b#sis vectors indexed by the

elements of K;: VP = Drex, Cer-

Remark (existence). It is known that any C[6,]-module admits a nice basis. In fact,
since any C[6,]-module is semisimple, it suffices to show that any irreducible C[&,,}-
module has one. Let (py, V) be the irreducible representation of &, indexed by the
conjﬁgate partition of A. The representation of &, on Vy obtzﬁned by sending s; to
—par(8;) is also irreducible and is equivlent to the one indexed by A. Then any W-graph

basis of V) serves as a nice basis for py (not pyx).

Definition (Z(V)). Let (p, V) be as above, and let {ex}rex be a nice basis. We define
Z(V) to be a polynomial in ¢ obtained by summing up, for k € K, the monomial obtained
by raising t to the power Z 2.

1<i<n—1
p(si)er=ey

Remark. = (V) is independent of the choice of the nice basis. Z(V) is clearly additive

with respect to V.
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3. Reduced lengths or folded lengths of row-decreasing tableaux and the
representatives wr. The reduced (or folded) length is a temporary term used in this

note.

Definition (I(T)). Let T be a row-decreasing tableau of shape p. We define its reduced
or folded length I(T) to be the sum for ¢ in the range 1 <i < n — 1 of the number ;(T)

of entries greater than i sitting in the shaded area in Fig. 2.

A

Fig. 2.
10864 .
Ezample (I(T)). Let T = 191 3 ; . This is a row-decreasing tableau of shape (4,3,3,1).

We have ll(T) = 1, lz(T) =51, lg(T) = 1, l4(T) - 0, l5(T) = 3,»_ lG(T) ES 0, l-{(T) = 1,
ls(T) = O, lg(T) = 2 and llo(T) = lll(T) = 0, so that I(T) =0.

Definition (wr). Let p be a partition of n. Then we denote by TS the row-decreasing
tableau of shape p obtained by putting the letters 1 through n starting from the rightmost
column and proceeding to the left, filling each column from top to bottom. For any row-
decreasing tableau T of shape u, we denote by wr the element of &, obtained by reading
the entries of Tg in the order designated by T'. In other words, if the position (p,q) in T
is filled by ¢, then the same position (p, ¢) in T} is filled by wr(2).

8 521

Ezample (wr). If p = (4,3,3,1), then Tg = 190 3 2 . For the row-decreasing tableau T
1
shown in the above example, we have wpr = ( ; i 2 ‘; 151 g ; : 190 180 191 ) .

Remark. If p = (1™), then any tableau of shape (1™) containing each of letters 1 though

n exactly once is clearly a row-decreasing tableau. If we denote the entry in the ¢-th row
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by o(4), then wp = ¢~ ! and I(T) = l(o). This shows that, in this case, our result reduces

to the identity (2) in §1 describing the length-MAJ symmetry.

4. Preparation of the proof of the identity. As can easily be seen from Property 3,

we have Ky (1n)(t) = 20 Iam(E™) (= IA\;,\(ln)(t)) and the lesser indez LES(w) if w
defined by LES(w) = Z i satisfies LES(w) = n_(n_2:_1_)_ — MAJ(w), our assertion
: 1<i<n—1 . :
w(@) <w(i+1) ’

is equivalent to the following identity:

Crama. > En(@Kagm(®) = . ¢DBstun),
AFG, . TERDT(y)

‘We prove this identity by computing (
G'(q,t) =Y = (H¥(BN,C)) ¢
J

(where these cohomology groups are regarded as C[G,]-modules via the Springer repre-
sentation) in two different ways.

First, we compute G'(g,t) according to the irreducible decomposition of H*(By,C)
and show that it gives the left-hand side of the claim. We have

G'(q,8) =) > (H(Bn,C),VA)E(Va)e’
J oA

= z Kxu(9)E(Va) (by Property 2)
A

= Z I?A;L(q)l"{/\(1n)(t), (by Property 1)
A «

which equals the left-hand side of the claim.

5. An affine space partition of By and the Schubert cells. Now we use a partition
of By into affine spaces to show that G'(g,t) is equal to the right-hand side of the claim.
Such a partition has been given by N. Spaltenstein [Sp] for By and by N. Shimomura

[Sh] for a similar variety consisting of N-stable generalized flags.
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Our point here is to clarify the relationship between such a partition and the Schubert

cell decomposition of B, the variety consisting of all complete flags in C™. Let

B= ] Xu, Xu=C™
weS,
be a Schubert cell decomposition of B. (See [H, p. 121-122] for example, although there

is considerable difference in notation.) It is quite natural to ask the following question.

PROBLEM. Put X, v = X, NBn. Does By = [[,¢s, Xw,N give a partition into affine

spaces?

In general, this is not true. More precisely, it depends on the position of the “reference
flag” (the unique element of X,, where e denotes the identity element of &,,) with respect
to the chosen transformation N. If one takes the usual Jordan canonical form for N and

the “canonical” flag (V?,V7,...,V}?) defined by V} = {=1 Ce; (j =1, ..., n) where

e; =(0,...,0, T,O, ...,0), then we have a negative answer for u = (3,3). (Recall that u
is the Jordan type of N.)

However, if we take the following particular transformation N, for N (and keep the
canonical reference flag) then the answer is positive.

We specify N, using the tableau Tﬁ defined in §3. We present this rule through an
example. Let p = (4,3,3,1), then N, is defined by reading the rows of Tg as follows

8 5 9 1 (eg+— e5 > e — e; — 0

9 6 3 egr— egr— ey~ 0
TS: Nyt |

10 7 4 egr er > eq 0

1 L €11~ 0

Now we have the following result:
THEOREM. Let u F n and N, be defined as above. Let X, be the Schubert cell with
respect to the canonical reference flag and put Xy n, = X,y N By, (w € G,,). Then

(1) Xw,n, # 0 if and only if w = wyp for some T € RDT(p),

7
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(2) Xwr,N, = CUD for T € RDT(y), where the function I(T) is defined in the earlier

section.

Remark. (1) (1, Va,...,Va) € Xup,n, if and only if all V; are stable under N (i.e. this
flag belongs to By, ) and the sizes of the Jordan cells of N, acting on V/V; are the lengths

of the rows of the tableau obtained from T by removing the squares that are marked as

1 through 1.
(2) For T € RDT(p), the subset I_[ Xwp N, is closed in By, (< denotes the
Bruhat order). T:STITBE(T#)

Due to (2) above, the fundamental classes of X, n, form a basis of the homology

groups H,(By,,C). Therefore H*(By,,C) has a dual basis:

H*(BN“,C) = @ C[XwT,N“]*-
TERDT(p)

Note that [Xu.,n,]* € H2 (B, C).
6. A result of Lehrer-Shoji and Spaltenstein. Next we consider varieties P’ for
1 <3 <n—1 defined as follows:

Vi C -+ C Vo1 (linear subspaces of C™)
k (k< 7)

F+1 (k2 j)

PI={ (Vi,...,Va_
(Vi 1)&mw={

Then P’ has a similar classical decomposition:

Pl = ]_I Y] and for such w we have YJ ~ X, ~ C'™),

’wE(‘S,,
w(j) <w(j+1)

Now let 'PIJ;, be the subvariety of P’ consisting of N-stable elements, and put Yu’;, N =

Yin ’Pf;,. Then we can show that, if N = N, then ’P,’;,“ has a similar decomposition as

follows:
P, = 11 Y., andforsuchwwehave Y7 n & Xu.n, = CHT.
TERDT(y)
wr (J)<wr (j+1)
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We have a natural projection 7: By — ’P,’;, which induces a map on the cohomology
groups 7*: H*(P},,C) — H*(Bn,C). If N = N, then the [YuJ;T,N,,]* (T € RDT(p),
wr(j) < wr(j + 1)) form a basis of H*(P} ,C). The map =* sends [Y],_ 5 ]* onto
[Xwp,n,]* if wr appears in the decomposition of ’P,’;,F .

The following fact has been shown by T. Shoji, G. I. Lehrer [ShoL] and N. Spaltenstein
[Sp2].

THEOREM (Shoji-Lehrer, Spaltenstein). Let N, By, j, 'P]J;,, 7, s; be all as above. Then

we have:

m™: H*(P},C) = H*(BN,C)%.

7. Conclusion of the proof. From the above theorem, it follows that the set of
{[Xwr,~n.]*}, T € RDT(p), is a nice basis of H*(Bn,,C). [Xw,,n,]* is fixed by s; if and
only if wr(j) < wr(j + 1). Therefore we have

G'(q,t) — Z Z tLES(wT)qj

j TERDT(u)
UT)=j

— Z tLES(wT)qI(T)7
TERDT(p)

which concludes our proof.

8. Discussion. (1) Can one characterize (up to conjugacy) the pairs (N, F) (N a nilpo-
tent nxn matrix of Jordan type p, F the reference flag for the Schubert cell decomposition
of By) for which {X,, n} gives a partition of By into affine spaces?

(2) Can one find a Foata—Schiitzenberger type proof of the identity (1)?

(3) (suggested by R. Stanley) Can one find an interpretation of a more general poly-

nomial Z Ku(q)K 5, (1) for partitions g, v of n in general? (This polynomial has also
AFn '
been investigated by J. Matsuzawa.) A first step would be to find some interpretation of

K au(t) in the space Vy which would generalize Z(Vy).
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