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Non-convex curves of constant angle
of double type

RIMS, Kyoto University
Junpei SHEN (3. % /5)?& )

§1. Introduction

In this article we study and develop a theory of curves of constant angle

of double type. First we summarize the theory of those curves of single type

-~ and twin type. Next, we shall give double type theory as a generalization
and study the extremal values of various geometric functionals. A duality
in those curves will also be treated in the double type theory. Professor
Shigetake Matsuura first developed the theory of curves of constant angle of
single and convex type for several years (see [1] ~ [17]). It had a very simple
intuitive meaning. He, however, introduced the concept of the admissible
curves and developed the theory of single and twin type. The duality is
now complete in curves of these types.

But twin type theory suggests that there is room to develop more
general complete theory of curves of constant angle.. Thus we realize the
generalization in the form of double type theory. It includes the theory of
single and twin type.

Our main purposes are to investigate the interelations of these geo-
metric quantities and to obtain their extremal values. Our main tools are
the theory of distributions of L.Schwartz, Fourier series in L? apace and
geometrical inequalities. Further, the method of linearization is extensively
exploited. To obtain the concrete extremal values, the construction of ex-
tremelizing sequence of generators is important.

According to the lack of space, we should omit to give proofs of almost
all results.

§2. Preliminaries
§2.1. Admissible curve

We consider the director circle C in R2, whose center is the origin and
the radius is the unity 1. Let A be a curve inside the circle C. Since we
are obliged to treat non-convex curves, something which plays the role of

1



25

supporting lines to convex curves, we introduce generalized tangent lines to
admissible curves defined below.

Definiton 2.1.1. Let T be one dimensional torus R/27Z. An admis-
sible curve is a curve A which satisfies the following three conditions:
(1) A is a closed continuous curve parametrized by § € T,

{x:ﬂ@

y = y(6).
(ii) A is a rectifiable curve. i.e. for any partion A of [0, 2],
A:0=60,<0,<..<0y=2m,

the length of a polygonal line with respect to A,

N
LI(Aa) = -/ (@(6;) = 2(0,-0)) + (w(6;) = 9(6;-))  (2:1.1)

is bounded when A runs over all partitions, the length of A is defined by

IL|[A] = sup L|[As]. (2.1.2)

(i) For every fixed 6, consider the straight line ly, the equation of
which takes the form

lg : zcosh + ysind = p(0). (2.1.3)

Lemma 2.1.2. A is a rectifiable curve. <= z(0),y(0) are of bounded
variation.

§2.2. Non-convex curves and its generators

- In general, we shall need to consider non-convex curves. Denote a gen-
erator of the non-convex curve by p(8), and its period be 2x. Differentiate

p(0) = x(0)cosd + y(0)sind. (2.2.1)
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Since z(0),y(0) are of bounded variation, (6),y(f) are Radon measures.
The above equality shows that p(#) is continuous in 8. Thus we get

p(0) = —2(0)sinb + y(8)cost + [&(0)cosh + 7(0)sind].

Since the derivatives z(0),y(6) are taken in the sense of D'(T), we have
z(0)cosf + y(0)sind = 0 in an open neighbourhood of the fixed value 6,.
Thus, we get

p(0) = —x(8)sinb + y(0)cosh. (2.2.2)

It is obvious that p() is continuous, which means that p € C*(T). By
differentiating (2.2.2), we have

p(0) = —z(0)cost — y(0)sinf + [—zsinf + ycosh].

Hence
p+ p = —2zsinf + ycosh. (2.2.3)

It implies that p + p 1s a Radon measure. Put

T(0) = (cos@ —sin@)

sinf  cosf

For each point (z(0),y(0)), by formula (2.2.1) and (2.2.2), it easily follows
that, ‘

Then, we have
ﬂﬁ) (M®>
=T(0) |~ :
(y(9) O 50)
Hence, the parametric representation of A takes the form:

z = 2(0) = p(0)cosd — p(0)sind |
{ y‘: y(0) = p(6)sinb + p(6)cosh ,0 € (0,27).

Since T'(6) is an orthogonal transformation, it is clear that,
pP+p =2+ 9. | (2.2.4)
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Before to consider the curves of constant angle « of non-convex of
double type, we need to use the following notations :

¢ = ¢ (o) = sina
¢, = & (@) = cosay,

Here o is a given angle (which is constant) and 0 < o < 7. Let I and J,
be open intervals defined by

I

1

I

Oy O
t\)lQl\’IQ

2

Ia = (_Qaa Qa)

.
7

where Q, = min(¢,,¢,), and

J, = (0701)7 lfo <O.’S g’
o (—C2,1)7 if _72£ S o < T

the characteristic function y, is as follows:
Xa(t) = V1 — 12 — oo, te Ja. (2.2.5)

Then y, maps J, onto J, and is strictly monotone decreasing.
Let &,n € Jq, such that n = x4(€), then we get the characteristic
ellipse as

&+ 0"+ 2c,én = c;
whose graph is the thick line parts of Figure [2.1].

0<a<g 3
\(:—/,

Tigure \2-1\

Theorem 2.2.1. For a pair of continuous functions p(f) = (p,,p.)
of 6 to be the gererator of a curve of constant angle of double type, it is
necessary and sufficient that
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(a) p;j(0), (j=1,2)isa C*'-function with period 27;

(b) pj(e) - Jd,VG;
p;(8)* + p;(0)* < 1; [differential inequality]

(¢) p.(04+7—a)=xa(p:(0)); [functional equation]
(d) p;+p; € M(T).

Let p = (p,,p.) be a pair of generators of admissible curves, o be
a given angle, 0 < a < 7, we observe that the following conditions are
equivalent:

(1)

p.(0) € Ju
{pzw L1 ) = xa(:(6)) (22.6)

p2<9) € J,
{pl (0 - (71' - Qf)) = Xa(pz(e)) (227)

{pl((f — (7~ a)) = Xal(p (?) | (2.2.8)

Definition 2.2.2. We denote by pi**c, the totality of pairs p =
(p1,p.), where p,,p, satisfy the four conditions in Theorem 2.2.1. Then p
is called the generator of curves of constant angle a of general double type.

‘ double

Definition 2.2.3. We denote by p5*™™""*¢, the totality of pairs p =
(py,p,) such that both p and p = (p,,p,) are in p&“*'e. Then p is called the
generator of curves of constant angle o of symmetric double type.

Definition 2.2.4. We denote by p'***, the totality of pairs p = (p,, p,)
satisfying p,(0) = p,(0 + 7). Then p is called the generator of curves of

constant angle o of twin type.

Definition 2.2.5. We denote by p:"7'c, the totality of pairs p =
(p1,p.) satisfying p,(6) = p,(0). Then p is called the generator of curves of
constant angle o of single type.
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In view of these definitions, we obtain the inclusion relations among

them as follows:

double
twin symmetric double

gpa g@a gpa :

single

Pa

double
symmetric

Lemma 2.2.6. Let p € p4& , then both 27 and 2« are periods
of p, and p,.

double

Theorem 2.2.7. « be given, let a/m € Q, and p € p3™™*"*°, then
the curves A; (j = 1,2) are concentric circles with C.

Remark 2.2.8. Let (p,,p,) be a generator of general double type, one
of components can be chosen rather arbitrarily. More precisely, for instance,
if p, satisfies the conditions: p,(8) € J4,p,(0)*+p,(6)* < 1,and p, € M(T),
then we can define p,(6) by the formula p,(6) = xo(p,(0 — T+ «)). Then

double

we get p = (p1,P2) € 5
§2.3. The modified characteristic function ¥,

The modified characteristic function Y, is defined by the formula
Xa(8) = V1 — s = G,s, sel, or sé€J, - (2.3.0)

Xo Maps Jq onto I, and is strictly monotone decreasing.
Let p; € Jo,w; € I, (j = 1,2), such that w; = Xa(p;), then we get
the ellipse equation as

p; +wi + 26,p;w; =)
whose graph is the thick line part of Figure [2.2],

?

R

!
i .
]

Figure [2.2)

To exploit the linearization effect of Y, it is convenient to introduce

6



30

the space W, of functions of the double type defined by

"/I/';ouble — ;\“‘/a(g)double) )

e

The precise meaning of this definition is

Wiewtle = {w = (wy,w,);w; = Xa(p;), J=1,2, p=(p,p.) € p**'°}.

Since

PO+ T — ) = xalpy), [non linear relation in p, and p,]
We get,

w,(0 + 7 — a) = —w,(6). [linear relation in w, and w,]

This simplifies much calculations especially when we try to obtain ex-
tremal values of the oriented length L[p] and the oriented area A[p].

§2.4. Duality relation and its linearization

Let (A,,A,) be admissible curves inside C, and 0 be given. For every
point P on the director circle C, there exists a unique pair of values (6,,6,),
such that P is the target point of I, which is called the generalized tan-
gent line incoming to P, and P is the source point of lyp,, which is called
generalized tangent line outgoing from P.

2

P Figure [2.3]

The two edge lines lg,,lp, of the sector intersect with C' at points S
and T, respectively. Consider the point P’ antipodal to P, i.e. the other
end of the diameter of C passing P. Put & = 7 — «. Then the angle SP'T
is equal to &. Now let P move around on the circle C', then P’ also moves
around on C. We obtain fhe new sector of the angle & with vertex P’ and
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with the edge lines passing through points S and T respectively.(See the
Figure [2.3]).

Definition 2.4.1. Let (A,,A,) be a pair of admissible curves inside
C. For every point P € C, let [,(P) be the incoming generalized tangent
line to A,, I,(P) be the outgoing generalized tangent line to A,. « be an
angle 0 < « < 7, suppose that {,(P) and [,(P) span the angle « for all
P € C. Then we call the pair (A,, A,) a curve of constant angle « of double
type. Denote by X&**¢ be the totality of those curves. With the notation
& = 7 — «, and for (p1 Do) € &) we denote the duality mapping by a,

double

A @a (])171)2) A (ﬁ];ﬁg) E 80

(louble )

with the following properties:
(1) p = (p,,P2) is given by the formulas:

{ﬁl((? V1-p.(0—

3)?
p2(0 \/1_171(9’*'%)

(2.4.1)

(i) A is a bijective mapping such that  is the identity on pi™**'°, i.e.

p=p. L
The pair of curves A = (A;,A,) (A; being the curve defined by gener-
ator pj) would be the dual of A. Schematically,

A:X;ouble 3 (Al,AQ) — (AUAQ) € Xgouble.

Remark 2.4.2. The bijectivity of duality mapping can be stated
schematically

A '[V(iouble 9 (’LUI,T,U;,) — (ﬁ)],wg) E '{ double

Now we state the duality relation in the linearized form.

Theorem 2.4.3. w,,w, are calculated as follows,

{wl(e) = —w,(0 —

)
o(0) = —w (61 3). (2.4.2)

MI‘\MH
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And 0, =w, (j=1,2).

)

Summarizing the arguments above on the linearization effect of ¥, on
the relations of generators involving X, we give a scheme with p;(0) € J,,
pi(0) € Ja, wj(0) € I, and w;(0) € I4 as follows:

o &
(p} >pz) s (ﬁiaﬁz)

I Xa . I Xa
('LU],’LUQ) — (wlawz)

Noting that for J, = (0,sina), we have J; = (—cosd, 1) = (cosa, 1). It
implies that Jg is different from J, in general. However, we have always
I; = I, because Qo = Min(cosg,sing) = Min(sing,cosg), therefore
(=, Q) = (—Qa, Qa).

§3. The oriented length and the oriented area

Our main purpose of this chapter is to introduce structural properties
of the oriented length L[p] of the generators p of the admissible curves
of double type. We shall obtain the concrete extremal values of them. In
section 3.3 easy calculators show the oriented length L[p] of the dual curves.
A similar argument applies to the oriented area A[p] of the generators of the
admissible curves of double type which will be treated in separate sections.

§3.1. The orientated length

In section 2.2, we have discussed the admissible curves A with generator
p € C(T),then by the formula (2.2.3)

p+ p = —zsinf + ycosl
we see < (2(8),y(0)), e >= x|(z(8),9(0))|, if z(8),y(0) are differentiable.
On the other hand, we have already defined the non-oriented length

of admissible curves in section 2.1. For a given rectifiable curve A, the
non-oriented length of A has been defined by

|L|[A] = sup | L|[Aa]
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However, for generator p € C*'('T'), these observations give us that for z, y €
C(T),then heuristically assuming the differentiability of x(6),y(0),.we get

+/2(6)2 + §(6)? = p(0) + p(6),

ds = \/33(9)2 + 9(6)2df = j;’(g;(a) + p(8))do. (3.1.1)

Thus, we define the oriented length of A by the following formula

L[A]dgtotal mass of T measured by p(8) + p(6)

= (p+ p)[1]

= /p(G)d&

since p[1] = p[i] = —p[0] = 0.

Definition 3.1.1.  For an admissible curve A with generator p =
(pa,p.) € plovdle the oriented length L[p] is defined by:

L% 3 (Llp.] + lpa))

§3.2. Extremal values of L[p]

In this section, we intend to discuss the concrete extremal values of
L[p]. The idea is to apply the linearization to the relation of generator
involving Y, which is given in section 2.3.
double e have

For p = (p1,p2) € 98
P20 + 7 — @) = Xa(p:(6))-
By the definition of Wdouble for (w,,w,) € Wiout  we have

w;(0) = Xa(p;(0)), j=12

Then
w, (0 + 7 — ) = —w,(6).

10



34

Hence,
Pr(6) = Xa(w:(6)) = &\/1 — w,(8)" — &w, (8);
PO+ 7 = @) = Xa(ws(8+ 7 — ) = Xa(—w,(6))
= &1/1 —w,(8) + &w,(6).
Thus,

2w 2

Lip,] = / ps(6)d6 = / 601/1 — w, (8)" — &y, (0)]d6.

0 0
Now we review that if f(6) is a function with period 27, then

27

7 £+ B)do = / F(6)de.

Since p,(6) has 27 as a period and Lebesgue measure df is translation in
variant, we can also obtain

Llp} = 7192(9)019
= 7rp2(9 + 7 — a)df

0
27

_ /[5”/1 — w,(0)* + Ew, (8)]d6.

0

Then we have following:
Theorem 3.2.1.  For an admissible curve A with generator p =
double the oriented length L[p] is given by the formula:

(p1:p2) € 98
Lip) = 5(Lip.] + Lip.))

27
= ¢, / \/1—w,(6)d6.
0

11

(3.2.1)
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Obviously, the maximum of the right-hand side of the quantity (3.2.1)
is attained if we take w, = 0, that is,

max = 27c,.

pEgo‘Ci,‘OUble

However, to minimize this quantity (4.2.1) is delicated, since w, € I, =
(—Qq, Qa), where Q4 = Min( (), (), therefore we need to separate
two cases.

Case 1. If 0 < a < F; then ¢, > &. So Qq = &(«). Letting
w; — & (), then we have

pepgouble

27
inf  L[p] = &, / V1 - Q,7db
0

Case 2. If I <o < m;then ¢ > ¢,. So Qq = & (). Letting w, — &(a),
then we have

pGngUble

| . 27
in L[p]:&l/\/l—ﬂfxdé
0
27
- / V1= &d = 2né.
0

§3.3. Relations between the oriented length L[p] and L[]

It is interesting to compare L[p] and that of the dual curve L[p]. Now
we give their relations in the following.

Theorem 3.3.1. Let p be duality generator of p. Then

L
[p] = constant.

Lp]

12
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§3.4. The oriented area

Let T = R/27Z,p be a generator of admissible curve, p € C* and p be
bounded variation. By Leibniz formula we have

(p1p1)" = P + PP (3.4.1)
Consider the formula p,(p, + p,), by (3.4.1) we get

P1(P1 +P1) = P;l +P1_751 = pi - Pf + (plpl)"

’ 27
Heuristically, the oriented area of A, would be 1 [ p,(8)ds.
0

Thus we define

Alp.) = 52 (s + 511

= 56— 31+ (P

27

1
= — 2 — p2de.
2/p1 Y2

0

Definition 3.4.1. For an admissible curve A with generator p =

(p1,p.) € plovble the oriented area A[p] is defined by

ARI S (Alp.] + D)

Thus, the oriented area A[p] is given by the formula
2w

1 2 2 ) %)
MM=Z/%+m—ﬂ—mW& (3.4.2)

0

§3.5. Extramal values of the oriented area

13
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To maximize the functional A[p] described as formula (3.4.2), we use
Fourier series expansion in the Hilbert space H = L?[0,27] or the same
thing L?(T). Since

1 1 '
€y = ——— = ——=coskl, e, = —=sinkl, k=1,2,---

m)"'aezk+1 ﬁ \/—7? y Ly

constitute a complete orthonomal system in L*(T), every element f of H
can be expanded as a strongly converging series

f=ua,+ Z apcoskd + bisinkf
k=1

o
f = Z Ck€f,
k=1

(<, > indicates the inner product).
And the Parseval equality gives

oo
=) el
k=0

Applying this to the generator p:, we have

and

I/

P =a + Z a$’coskd + b{’sinkd
k=1
and

0
Il = 20 47 Y o+ 1"
k=1
(3.5.1)
In the space D’ we can differentiate both sides term by term, thus we get

pi(0) =D —ka sinkd + kb coskd. (3.5.2)
k=1

14
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Since p, € H, this expansion coincides the usual Fourier series expansion in
H because the topology of D’ is weaker than that of H. Thus, according
to the Parseval equality, we have

I =7 > k(e +b0).
k=1

Hence, we have

27

/ﬁ—ﬁw

0

= ~(lp: Il ~ 15:1P)

A[P:] =

DO

1 2 St 2 2 1
= 5{2maf” + 7y (1 F)a’ + 5%}
k=1

Since the length of the curve with generator p,(0) is

27

Llp,] = /pl (6)df = 2malV,

0

therefore,

1.1 2 2 12. 1)2
Alp] = Si{g-Lp " +7 ) (1= F)ai” + 5]

1
< —Llp,|?.
< L]

i

So we obtain the following formula

Al = S(Ap] + Al < - (T LY. (353)

Here the equality holds, if and only if A,, A, are concentric circles with C,
according to the following

15
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Lemma 3.5.1. Let A;, A, be circles in C,z € A,y € Ay, (py,p.) be
generators of curves of constant angle. Then A, A,, C are concentric circles.

Let p,(0) = dy,p.(0) = d,, and d,,d, be constants such that d, =
Xo(d;)-Then by the formula (3.5.3), we have

| ~

Al < g-{(2rd,)" + (27}

[7d,® + 7d,?]

I
|>]w|+—x

(d +d,*).

Thus the problem to maximize A[p] is reduced to the choice of constants

d,,d,. Since d, = xo(d,) = c;/1 —d,* — ¢,d;, we have
d,>+d,” =c¢’— 2c,d,d,.

Now we treat the problem in three different cases.

Case 1. a=73%. Thenc, =0, d,"+d,” =c,*>. Thus Ap] < Zc,”.
This Z¢,” is the maximum value of Afp] in this case.

Case 2. Z <a<m. Thenc, <0. In this case the diameter of
the ellipse d,” + d,* = cl° + (—2c¢,)d,d, is on the diagonal line in (d,,d,)-
plane. To maximize d,” + d,?, it is the same to maximize d,d,. Now
consider the family of hyperbolas d,d, = ¢ (c :parameter). On the ellipse
d*+d,?=c¢*+ (—2¢,)d,d,, the value c attains its maximum on the edge
point of the diameter which lies on the diagonal d, = d,. Thus A[p] attains
the maximum at d, = d, = ¢,. And

max Alp] = né.

pesOdoublc

Case 3. 0< a< Z. Then ¢, > 0. Thus to maximize d,” + d,” =
¢’ — 2¢,d,d,, we minimize d,d,. Now consider the family of hyperbolas
d,d, = ¢ (c :parameter). To minimize d,d, on the ellipse, hyperbolas
d,d, = c should, in the limit, passes through the two points on the axes in
the first quadrant. Therefore A[p] does not attain the maximum. But its

16
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supremum value is attained as the limit when (d,,d,) — (0,¢,) or — (¢4, 0).

And -
sup Alp] = =c.
pEpdoubie 2

‘e 2‘ Care 3.

VS ERN\N

7 TN

Figure (3.1} \ Figure {3.2]

Now we treat the problem of minimizing A[p]. For that purpose we
exploit the linearization effect of the modified characteristic function y..We

put
w;(0) = Xa(pj(0))  (1=1,2).

Then we have

and
wq
P J ~ 12,7,2
P =A== — G, }’}
— .2
£/1 W
£ 2
~ ~ 212 w]
= {Gwj + G /1 —w;?} ———.
1 —wj~
Since

p2(0 + 7 — a) = xalp:),
the linearization effect of Y, gives

W, (0 + 1 — ) = —w,(0).
Putting 7 — o = &, we get

27

Al = 7 [ @1(0) = 5(0)+ 9200+ &) = 5200 + @)

0

17

(3.5.4)

(3.5.5)

(3.5.6)
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since the Lebesgue measure df is translation invariant and p, has 27 as a
period.
To simplify the notations, we put

w(0) = w,(6),

then we have

—w(0) = w,(8 + &),
so that the equation (3.5.4),(3.5.5) take the forms

POy = (/T=wl) ~E0OF,
5.0 = {ow(®) + 6/ T= ol P s
p:(0+ &) = {&v1-w®) +aw®)), N
0+ ) = (~80(6) + &V T OV 1

1—w(8)
Therefore, we have

271'»

Al =5 / &~ @ -]~ 6+ @ - Bl Vg (35.7)

To minimize this quantity, we need the following

Lemma 3.5.2. (Explicit construction of extremizing sequence) Con-
sider a functional of the form

%)
w-

DN |

do

— w?

Blw] = / Fy(w) = Fy(w);

on the function space W, = {X”a(]?l(é’)); (Pl,]?g) c @dawble

non-negative functions of w. Note that the inequality

}, where F,, F, are
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Then, we have the results.

double
d(];) If p = (p),p.) € P&'™™"", and a/7 ¢ Q, then the elements of
| poummeTe are all constant functions. Thus the same holds for all w € W,,.

2

Therefore ] ¥ — 0 and the function ®[w] takes the form

_w'.’

where ¢ is a suitable constant.

(2) Except the case (1), namely in the case that p = (p,,p,) ¢
double
symmetric

Po or a/m € Q, we can explicitly construct a sequence of functions
wr € Wy, (k=1,2,3,---) such that
(i) For every constant ¢ € I, = [~Q4, %), wr — ¢, uniformly, (as
. 2
(ii) _w(O)”
1 —w(h)?

— 1, almost everywhere in [0, 27], (as k — o0).

To minimize the quantity given by the right hand side of (3.5.7), we
firstly assume that the condition (2) of the above lemma be fulfiled, then
we need to separate two cases.

Case 1. If § < o < w. Then ¢ > ¢. Taking the inequality

2

w-~

0< .

S 7 < 1 into account, we get that
— w-' ‘

Since w? < 22, = ¢2, we get further

2T
1 .
Al > 5/(53 _ &)(1 - 28)d0

_ ~2 ~2\2 - 2
—~/ & —&)di = mc,’.

19
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However, if we take an extremalizing sequence wy such that wg(8) — €,
uniformly, we get the result
inf  Alp] = we,’.

pepdaouble

Case 2. If0< a< %. Then ¢, > ¢,. We rewrite (3.5.7) for A[p] in
the form

[+ @ -2+ @ - @ - ar—ds

2
1—w* 71—w?

Now it is clear that this quantity tends to its infimum, when we employ an
extremizing sequence wy such that wi(f) — 0 uniformly as k¥ — oco. Thus
we get the result

27
: 1 ~2 ~2 — —
pesfl,%?fuble A[p] = '2—/(01 — cz)dﬁ = —T7C,.
0

Secondly, we assume that the condition (1) of the above lemma is
fulfiled. In this case, putting w(f) = d € I,, (d: constant), we get

Al =5 [ 18- @ - 2

0
= 7(& - (& - &)d"].

(3.5.8)

Case 1. If & <o < 7. Then letting d — ¢,, we get

it Al =& - (& - )3



Case 2. If0< o< 7. Then putting d = 0, we get

min Alp] = 7é.
pepdaouble

Thus, the minimizing arguments of A[p] are completed.
§3.6. Relations between the area A[p] and the area A[p)]

We may suppose without loss of generality < o < . This condition
is convenient for discussions, since Afp] > 0, if p € pdov¥e, Then p €
plovble & =1 — ,0 < & < Z. We have

27

A= [B- @ -2l - @+ @ - @

0

202

w

~do.  (3.6.1)

1 —w?

Comparing A[p] and A[p], we get the result,
Theorem 3.6.1. If o € Q, then for Vm € R, m > 0, we have

[Alp][™
| Alp]|™

= not constant.

Now we consider the quantity A[p] + A[p]. By formulas (3.5.7) and
(3.6.1), we get |

0 < Alp] + A[p]

27
1 w?
= — 1— do
2/( 1—102)
0
27

1 —w?

- -
:7r——2—/ ad df < .

0

Therefore, we obtain

pel;lzci??sze(A[p] + A[ﬁ]) = 7
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inf  (Alp] + A[p]) = 0.

pepdaouble

If we consider the quantity Alp] — A[p], then we see that

27

Alp] - Alf] = (—61-‘2-—@/[(1 ~20%) + (1 - 20%) a8
= (78 —7&) + ("% / (1 - 20") "_"w _ 2u?)dh,
then
Alp] - Alp] - (v & — &)
_G-4) ; ) / (1 - 2w?)< j“_”wz — 2w?]d6. (3'6'2)

If o € Q, by using the Lemma 3.5.2, we can obtain the concrete ex-
tremal values of A[p] — A[p].

If we take an extremalizing sequence wy such that wg(8) — 0, uni-

formly, as £ — o0, and taking the inequality 0 < lf’;g < 1 into account,
by (3.6.2), we get

Alp] — A[p] — (7 — 1é) < w& — weS.
Thus, we obtain

sup (Alp] — A[p]) = 2(né& — 7&) = —27c,.

pepaouble

However, if we take an extremalizing sequence wy such that wi(8) —
0o, uniformly, as & — oco. Since 7 < a < w, then ¢ > &, 2, =
Min(2:,é) = 2. We get ’

Afp) — Alp] — (& — 78) > —2n (&, — &),

22
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therefore,

Alp] = A[p] > 7(& - &)(1 - 26;)
= mcy(a).

Thus, we obtain

inf  (Alp] — A[p]) = 7ea?(a).

pep;ixouble

double
Remark 3.6.2. Assume that p = (p,,p,) € ™™™, and /7 ¢ Q.

In this case, the condition (2) of Lemma 3.5.2 is fulfiled. Then putting
w(f) =d € I, by (3.5.7).and (3.6.1) we have

A= [1& - (@ - )

= 7[¢, = (& - &)d*],

and
Alp] = e} — (&) = &)d’).
Hence
Alp] + Alp] = 7 = constant
holds.
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