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Non-collision solutions for a second order singular Hamiltonian system
with weak force
Kazunaga Tanaka
Department of Mathematics, College of General Education, Nagoya University
Chikusa-ku, Nagoya 464, JAPAN
0. Introduction
We study the existence of T-periodic solutions of the following Hamiltonian system:
E + VQ(Q)i) = 0)
gt +T)=q(t), 1E€R, (HS)

q(t) # 0,

where ¢ = (g1, 92, ,qn) € RN (N > 3) and V(g,1) : (RV \{0}) xR — R is a T-periodic

(in t) function such that V'(g,1), V,(g,t) — 0 as | ¢ |— o0 and V(¢,t) —» —c0 as ¢ — 0.

Classical solutions of (HS) can be characterized as critical points of functional:

T
o= [ 1P -Vl A—r

where
A={q(t) € H. (R, R"); q(t + T) = ¢(t), q(t) # 0 for all ¢}.

In case V(q,1) satisfics the strong force condition (ST) of Gordon [Go]:

(SF) there is a neighborhood Q of 0 in R and a function W(q) € C*(Q\ {0}, R) such

that : :
W(q) > o0 asq—0,

- V(g,1) 2| Wy(q) |> forall g€\ {0} andt,

the functional I(q) satisfies the Palais-Smale compactness condition and we can apply

minimax arguments to I(q). Especially under the assumptions of (SF) and
(V1) V(g,1) € CL((RN \{0}) x R, R) is T-periodic in ¢;
(V2) V(g,t) <0 and V(q,t), V4(g,t) — 0 as | ¢ |— oo;
(V3) =V(g,t) o0 as ¢ —0,
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Bahri and Rabinowitz [BR] introduced a minimax method and obtained the existence of
classical solutions (non-collision solutions) of (HS). See also [AC1, Gr1]. But in case (SF)
does not hold, we cannot verify the Palais-Smale compactness condition for I(q) and we
cannot apply minimax argument directly to I(q). However, using a suitable approxima-
tion argument, Bahri and Rabinowitz [BR)] proved the existence of generalized T-periodic
solutions, that may enter the singularity 0 (i.e., collision) under the conditions (V1)-(V3)
(without (SF)).

For the study of the existence of non-collision solutions in case of weak forces (i.e., the
case where (SF) does not hold), we refer to [AC3,DGM,DG,C,ST]. In [AC3,DGM,DG],

they found critical points of I(g), whose critical values are less than

Jnf 1(q) = inf{I(q);g € Hio(R,RY), g(t+T) = g(t) for all ¢ and
qft

q(t) = 0 for some 1 }.
In [C,ST], they studied (HS) through minimization problems. They studied the behavior

of solutions near collisions (especially [ST] studied the Morse index) and they obtained
the existence of non-collision solutions.

This work is largely motivated by the works [BR,C,ST| and we study the existence
of non-collision solutions under the weak force condition through minimaz problem. We
study the following class of weak force potentials; for 0 < a < 2 we assume the potential

V(q,t) is of a form:
1
(W1) V(g,t) = TR
where
(W2) Ulq,t) € C*((RN \{0}) x R,R) is T-periodic in ;
(W3) | ¢ |*Ulg,?), | ¢ la+1 Ug(g,1), | ¢ la+2 Ug(g;t), | ¢ |* Ui(g,t) = 0 as|q|— 0

uniformly in .

We remark (V1) and (V3) follow from (W1)-(W3). We also remark (SF) holds if o > 2.

Our main result is as {ollows:

+ Ul(q,1);

Theorem 0.1. Assume N >3, (W1)-(W3), (V2) and 1 < a < 2. Then (HS) has at least
one T-periodic (non-collision) solution.

In case 0 < @ < 1, we cannot show the existence of non-collision solution. However we
can estimate the number of collisions of the generalized T-periodic solutions due to Bahri

and Rabinowitz [BR]. More precisely, we get
Theorem 0.2. Assume N > 3, (W1)-(W3), (V2) and 0 < « < 1. Then (HS) has a

generalized T-periodic solution, which has at most one collision, i.e., which enters the

singularity 0 at most one time in its period T.

2
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The existence of a non-collision solution of (HS) will be obtained as follows; first we
consider modified functional:

T, ¢ :
I(q) =/0 [-12- g% -V(g,t)+ —14] dt for e € (0,1]

lq
and obtain critical points ¢, € A of I.(q). Second, we try to pass to the limit ¢ — 0. Here
we remark I.(q) satisfies the strong force condition (ST') for each € € (0, 1].
~ The proof of Theorem 0.1 will be given in the following sections; in Section 1, we study
the modified functional I.(q). We apply the minimax method of Bahri and Rabinowitz
’ [BR] and get a critical point g.(t) of I.(g) for € € (0,1]. Moreover we obtain the following
uniform bounds '

m < I(q) < M, (0.1)
I(ge) =0, (0.2)
index I (q¢) < N — 2, (0.3)

for € € (0,1], where m, M > 0 are independent of . Here we denote by index I”(qe) the
Morse index of I (q).

‘From (0.1) and (0.2), we can deduce the uniform H*'-bound for (ge(t))ce(0,1]- Thus we

may assume

e, — Qoo Wweakly in H! and strongly in L (0.4)

for some sequence ¢, — 0. However qo.(t) may enter the singularity 0.
In Sections 2-4, we study the behavior of critical points (gc, )%, of I, (g) with prop-
erties (0.1), (0.2) and (0.4). We will establish the following estimate of the Morse index

Proposition 0.3. Let (¢,(1))32,; C A be a sequence of critical points of I, (q) satisfying
(i) en — 0;
(i) there are constants 0 < m < M independent of n such that

I, (gn) € [m,M] for all n;

(iii) I (gn) = 0;
(iv) gn — qoo(t) weakly in H' and strongly in L>;

and let v be the number of times ¢ (t) enters the singularity 0; that is,

v=#{t € (0,T]; g0 (t) = 0} € NU{c0}. (0.5)

3
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Then
liminf index I (gn) > (N — 2)i(a)v, (0.6)

n—+o0

where () € N Is an integer defined by

i(a) = max{m € N; m < -2-3-; . (0.7)

We remark that i(a) = 1 for @ € (0,1] and i(a) > 2 for & € (1,2). To prove the above
proposition, we use re-scaling argument, which is based on the scale-invariance of the

equation:

oo aq .
q +I—q—|a—ﬁ =0 in R, (0.8)

that is, (0.8) is invariant by the scale changes:
g() = 8§ g(81o+D/2).

In Section 5, we combine results obtained in Sections 1-4 and give proofs of our
theorems 0.1 and 0.2.

1. Modified functional and minimax procedure

In this section, we study the following functional

T
Ie(q)=/0 [%lQI2—V(q,t)+l——q—F]dt for ¢ € (0,1]. (1.1)

Here we assume only (V2), (V3) and
(V) V(g,1) € C?*((RN \{0}) x R, R) is T-periodic in t.
We need the following notations; let E = HL(R,R") denote the space of T-periodic

functions on R with values in R" under the norm:

T
lalle = ([ 131 e+ a1,
where [¢] = F foT q(t)dt. We remark that

A ={q € I; q(t) # 0 for all 1}

is open in F and I(q) € C*(A,R). We also use the notation:

T
llgllz= = (/0 | g(2) |* dt)t/2.
4
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There is a one-to-one correspondence between critical points of I.(¢q) and classical T-

periodic solutions of the following equation:

[X] 4e
q +1/<1(q7t) I |q6 = 0)

g(t +T) = q(t), n R, (12)
g(t) # 0.
We remark the potential V(g,t) — I—EF satisfies the strong force condition (SF) with
q
Ve
W(q) = +—.
=T

First we state some properties of I(q).

Lemma 1.1. Assume (V1’), (V2) and (V3).
(i) For any M > 0, there exist constants C;(M) > 0 (i = 1,2) independent of ¢ € (0, 1]
such that

. T T P
12112, / ~V(g,1)dt, / it < Cy(), (1.3)
min, 1q(t) |2 Ca(M M)e? (1.4)

for all ¢ € A and € € (0,1] with I.(q) < M.
(i) For any M > m > 0, there exists a constant C3(m, M) > 0 independent of ¢ € (0, 1]
such that

llglle < Ca(m, M) (1.5)

for all ¢ € A and € € (0,1] with I(q) € [m, M] and ||I’(g)||g~ < m/\/
(iii) For any € € (0,1), I.(q) satisfies the condition (PS™) on A:

(PS*): for any s > 0, if (q,) C A, I(gs) — s and I'(q,) — O, then g, possesses a

subsequence converging to some q € A in E.

Proof. (i) By (V2) and (V3), it follows from I.(q) < M that
gz < V2M, (1.6)
T
| —vanasw, (17
0 .

T
/ P ot < M, (1.8)

5
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Thus we get (1.3). Next we deal with (1.4). We get for all s, ¢ € [0, T] that

1 1 T d 1
roRroiel ArEreyi
T o T
< (A lq? d7)1/2(/0 I q(:')]‘l dT)Uz < “\/—3—%{'

By (V3), we can find a constant ¢(M) > 0 with the followiﬁg property; for any ¢ € A with
(1.7) there is a to = 19(q) € [0, 7] such that

(1.9)

| q(to) |2 c(M).

We set s = 1p in (1.9), then we get for all ¢ € [0, T

rol SC‘W + o S \f(\/—M+ on
Thus
o> (Van + ) = e,
Hence we get (1.4).

(i1) By (1.6), it suffices to prove ||q||pe < Cs(m, M). We have for ¢ € A with ||I!(q)|
m/V2M and I(q) < M that

E* <

o) =5T@a - +5 [ Vila.0la et
T T
+/0 —V(q,i)d“r2/0 ‘-;—P(q,q— [g))dt

T
€
+/ €
| g

T
<Goa=lile+3 [ V@) la-1d1d

T T2lg—1[q| 1
+/o _V(q’t)dH/o lq s dt+£ Tl

Note that we have from (1.6)

(@)  ldlllze < VT3l < V2T,

6
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Thus we get

1 \/QT

I(g) < 5\/—:_ IV (g,1) | dt
+/ —V(q,1)dt +/ \/2T di +/ TR di (1.10)
0

1

5 +T@([q] 2T M),
where

20°M 2V2TM 1
®(R) = lylzflryl%é([O,T][—T [Valy, ) | V(g O+ ——+ 77
We remark that
®(R) -0 as R— oo. (1.11)

Now we assume I.(q) € [m, M], then we have from (1.10) that

%—m < To([g] — V2T M),

By (1.11), we can see there is a constant C3(m, M) > 0 independent of € € (0, 1] such that
| [g) I< Cs(m, M),
Le.,
llgllze < Cs(m, M).
Thus we get (1.5).
(i) Assume (gn) C A satisfies Ic(q,) — s > 0 and I (¢g,) — 0 in E*. From (1.4)—(1.6), we
can extract a subsequence — we denote it still by ¢, — such that

gn — q¢ € A weakly in E and strongly in L™.

Thus the form of I'(q) shows ¢, — ¢ strongly in E. |

Next we apply minimax method, which is essentially due to Bahri and Rabinowitz
[BR], to Ic(g) for each ¢ € (0,1]. Consider the family of mappings C(SV~2, A). Identifying
[0,T1/{0, T} ~ S, we can associate each v € C(SV~2, A) with a mapping 7 : SN-2x 5! —
SN-1 by

v _ 2@ orz € SV"% an 1
7(m’t)—l7(z)(t) | forzesS dte S ~[0,71/{0,T}.
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We denote the Brouwer degree of ¥ by degy. We define

I* ={yeC(S""%A); deg7#0}. (L12)

We can see I'* # § as in [BR, Lemma 1.2)].

We define minimax values of I.(q) as follows:

be = 'YIEHI{:. max, I(y(z)) for e € (0,1], (1.13)
bo = 'ylélrf:‘ Jax I{v(z)). (1.14)

Since I(q) < I(q) S]"l(q) for all ¢ € A and € € (0, 1], we have

bo<b.<b  foree(0,1]. (1.15)
We argue as in [BR, Proposition 1.4], we get
Proposition 1.2. by > 0. |
Thus we have

Proposition 1.3. For ¢ € (0,1], there is a critical point q.(t) € A of I(q) such that

(1) Ie(‘]e) = be, (1.16)
(i) I(ge) =0, (1.17)
(iii) indexI”(q.) < N — 2, (1.18)

where index I'(q¢) is the Morse index of I!(q.).

Moreover there are constants M > m > 0 such that

m < be=1I(q) <M foree(0,1]. (1.19)
Proof. (1.19) follows from (1.15) and Proposition 1.2. Since I.(q) satisfies the strong
force condition (STF) for € € (0, 1], we have the following “Deformation Theorem”:

Proposition 1.4 ([BR, Proposition 1.17]). Suppose € € (0,1] and assume s > 0 is not a

critical value of I.(q). Then for each @ > 0 there is an a € (0,a) and n € C([0,1] x A, A)
such that

1° n(l,q) =qif I(q) & (s — 3,5 +7),
2° I.(n(7,q)) < I(q) for 7 € [0,1],
3 n(l,[Ie<s+a]) C[I: <s—a], where [I. < o] ={q € A; I(¢q) < o} |

By Proposition 1.2 and (1.15), we can see
be >bo >0 forall ¢ € (0,1].

8
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Using the property 3° of Proposition 1.4 in a standard way (c.f. [R]), we can see b, > 0 is
a critical value of I(q).

As to the property (1.18), we can obtain it in a similar way to the proof of Theorem A
of Tanaka [T]. In [T], we studied properties of Morse indices of critical values related to the
symmetric mountain pass theorem and we got (1.16)—(1.18) for the symmétric mountain
pass theorem. See also [BL,S¢,V ,LS]. |

The above proposition ensures the existence of approximate solutions g.(f) € A to-
gether with uniform estimates (1.17) and (1.18). We will get a solution of the original
problem (HS) as a limit of ¢.(t) as e — 0.

To do so, we study the behavior of critical points of I.(¢q) whose critical values and
Morse indices are uniformly bounded, that is, we study the behavior of critical points
qn(t) € A such that

en — 0,
I, (qn) € [m, M],
I:,.(Q'n) = 0)

index I{ (¢.) < N - 2.
The following proposition, which is due to Bahri and Rabinowitz [BR], ensures the exis-
tence of convergent subsequence of (g, (t)) and it shows the limit of the subsequence is a

generalized solution of (HS).

Proposition 1.5 (c.f. [BR, Theorem 3.24]). Let (€,)3%,; C (0,1] be a sequence such that
€n, — 0. Suppose (¢, (t))S%, C A Is a sequence of critical points of I, (q) such that

I; (42) =0, (1.20)
I, (¢s) € [m,M] for all n, (1.21)

where 0 < m < M are constants independent of n.
Then there is a subsequence — still denoted by n — and qo(t) € E such that

(i) g.(t) converges to qoo(t) weakly in E and strongly in L*°;
T

(ii) / ~V(goo, 1)dt < o0;
0
(1) qoo(t) vanishes on a set D, of measure 0;
(iv) 90o(t) € C*(R\D, R);
(v) qoo(1) satisfies (HS) on R\D.
Remark 1.6. (i) (ge(?))ce(o,1] given in Proposition 1.3 satisfies the assumptions of the

above proposition.
(i) goo(t) is a generalized T-periodic solution of (HS) in the sense of [BR].

9
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Proof of Proposition 1.5. By Lemma 1.1, we get

T
llgnll 2, f ~V(ga,t)dt < Cs (1.22)
0

where Cg > 0 is independent of n.

Thus we get (i). By (1.22) and Fatou’s lemma, we get (ii). We have (iii) easily from (ii).
Since ¢, (t) satisfies (1.2) with € = ¢, and ¢, (1) — goo(f) in L, we can deduce (iv) and
(v). |

If D = @ in the above proposition, the limit function ge, () is a classical solution (non-
collision solution) of the original problem (HS). In the following sections, we will show that
for the sequence (ge(t))cg(o,1) given in Proposition 1.3

(i) if V(q,t) satisfies (W1)—(W3) with o € (1,2) in addition to (V1)-(V3), then D = §;
(i) if V(q,1) satisfies (W1)—(W3) with € (0, 1] in addition to (V1)-(V3), then DN(0, T]
consists of at most one point, that is, g (¢) enters the singularity 0 at most one time

in period T'.

To get the above properties (i)—(ii), the uniform estimate of Morse indices (1.18) plays an
important role. We remark that in Proposition 1.5, we used only the uniform bound of
critical values.

Lastly in this section, we assume (W1)-(W3) in addition to (V1)-(V3) and get some

a priori estimate, which will be used in the following sections.

Proposition 1.7. Assume (W1)-(W3) and (V2) Forany 0 < m < M, there are constants
C7(m, M), Cs(m, M) > 0 independent of ¢ € (0,1] such that for all ¢ € A and € € (0, 1]
with I.(q) € [m,M] and I'(q) = 0

; T T
MHT&Aiqpﬂl;nFﬁs&mJﬂ
(i) 131400 P~

+U(q,t)—-|-q—F |< Cs(m, M) for allt € R. (1.23)
Proof. We can get the assertion (i) from (W1)-(W3) and (i), (i) of Lemma 1.1. To
obtain (ii), we set

€

lg]*

B(t) = 5 1§ P~ + U(g,0) -

1
lq |
By (i), we get

T 1 (7., T T
E(t dtg—/ q dt+/ ~V(q,1 dt+/ ——dt
AI @ra<s [liras [ -voas [ 2 (120

< Cz(m, M).

10
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Since ¢() € A is a solution of (1.2),

%E(t) = Ui(g,1).

Thus by (W3)

fOT | SB() | di g/ | Uia,) | dt < c/ i S CHman. (125)
Combining (1.24) and (1.25), we get
HE@)lze < Cs(m, M).
Therefore we obtain (ii). N

2. Asymptotic behavior of ¢,(t) near collision

In what follows, we assume (V2) and (W1)-(W3). Suppose (¢n(t)) C A be a sequence of
critical points of I, (q) satisflying

€n — 0, (2.1)
Ifn (qn) € [m>M]) V (22)
I (g) =0, (23
qn(t) = goo(t) weakly in E and strongly in L, (2.4)

where 0 < m < M are constants independent of n. By Proposition 1.5, a suitable subse-
quence of critical points (ge(?))ee(0,1] C A, which is obtained in Proposition 1.3, satisfies
the conditions (2.1)-(2.4).

The main purpose of the following 3 sections is to prove Proposition 0.3, that is, to

estimate the Morse index of I (¢,,) from below by the number of collisions v:

v=#D =#{t € (0,T]; g0(t) = 0}.

We can obtain Theorems 0.1 and 0.2 from Proposition 0.3 and (1.18). First we study the
asymptotic behavior of ¢, (%) near collisions. Suppose 1o, € (0,T] satisfies

Joo(leo) = 0.

We may assume fe € (0,7 without loss of generality. Extracting a subsequence — still
denoted by n —, we can choose ¢, € (0,7 such that

11
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1° | gu(tn) | takes its local minimum at t =1, (2.5)
2° 1, >t as n — o0, (2.6)
3° | gn(tn) |— 0 as n — oo. (2.7)
In fact, by (iii) of Proposition 1.5, we can find a sequence a,, b, € (0,T) such that
too—-1-<a,,<i°°<bn <io.;,+l
n n’ (2.8)
doo(an) > 0, Qoo (bn) > 0.
Thus we can find a sequence of integers m(1) < m(2) < --- such that
|Gy (too) 1< 5 ML) Gy (@) 1, | Gy () 11 (29)

Suppose | gmn)(tm(n)) |= ming, 5.1 | Gmen)(t) | for tn) € [@a,bn]. By (2.9), tmm) €
(an,bn). Thus | ¢nm)(t) | takes its local minimum at ¢ = ¢,,(,). Moreover we have
tm(n) = too by (2.8) and | gm(n)(tm(n)) I<] ¢mn)(feo) |— 0. Therefore we get (2.5)-(2.7)
for the subsequence m(n).

By Proposition 1.7, ¢, (t) satisfies
e, Xendn

q +rTi3 Uy(gn,t) + —= ENE =0, (2.10)
gn(t+T) = gn(1), in R, (2.11)
1, 2 1 €
=19, - + U(gn,t) — ——= |< C7(m, M). 2.12
| 519(1) ] TG (gn,1) anl‘*l 7(m, M) (2.12)
We set
bn = ga(ta) [> 0 (2.13)
and define z, : R — RV \{0} by
T (s) = 670qn (80 D/25 4 1) forseR. (2.14)

We consider the asymptotic behavior of z,(s) as n — co. From the definition of z,(s) and
(2.5)-(2.7), (2.10)—(2.13), we can easily see

Lemma 2.1. 2z,(s) and §, > 0 satisfies

(1) 6, — 0, (2.15)
(ii) =, (s) takes its local minimum at s = 0,
(iii) | 2a(0) |= 1, 2,(0) L 2,(0), (2.16)

4e, z,
64 o:l ‘

azx,

(iv) T, (s) + To o ™ 53U (BT, 80D 25 4 1,) + =2 =0inR (217

1. . 1 n 1
() 15 n(s) iz + 850 (B, 35 1 1) = 22 1< Gim, DS
for all s € R and n € N. (2.18)

The following lemma gives us an estimate of the coefficient of the equation (2.17).

12
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Lemma 2.2.
2—«a

2

Proof. Since | z,(s) |? takes its local minimum at s = 0, we have

<

lim sup

n-—+00

64&

0< 5| 120(0) = (a0, 2O+ 10O

Using (2.16)—(2.18), we get

0<(2—0a)— 5= 64 P ‘Sa+1(zn( ), Uq(5nxn(0))tn))
= 268U (67, (0),1,) + 2C3(m, M)85

By the assumption (W3), we can see

€n 2 -«

limsup —— < 5
n—+00 n

By Lemma 2.2, we can extract a subsequence — we still denote it by n — such that

€n

5= d€[0 a] as n — oo.

Then we can deduce the following from (2.18).

| 2,(0) |— V/2(1+d) asn— oo. (2.19)

We extract a subsequence again — still denoted by n — and by (2.16) we may assume

z,(0) — e, (2.20)
2, (0) = V/2(1 + d)ea, (2.21)
where e, €9, - -+, ex are an orthonormal basis of RV .

By the continuous dependence of solutions on initial data and equation, we have

Proposition 2.3. For any £ > 0, z,(s) converges to a function y, 4(s) in C%([-£,£],R"),
where y4,4(s) is a solution of

v ay y :

Y+ + 4d =0 m R, 2.22
Ty FAT T (2.22)

y(0) = e1, (2.23)

9(0) = V/2(1 + d)es. (2.24)

13
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Proof. By Y(W3), we have for any R > 1
Sp ¥ Uy(Bn, 855+ %s +1,) — 0

in C'({z € RY; 1/R <]z |[< R} x R,R") as n — co. On the other hand, (2.22)—(2.24)
has a global solution y4,¢(s) satisfying

| Yea(s) |21 foralls €R (2.25)

for 0 < & < 2 and d € [0, 25%]. (The proof of (2.25) will be given in Lemma 4.2.) Therefore

we can see

Zn(8) = Yo,a(s) in C%([-¢, Z],RN)
for any £ > 0. i

Using Proposition 2.3, we will estimate the Morse index of Il (¢,) for large n in the

following sections.

3. Morse index of I(¢q) and the limit problem

For arbitrary given £ > 0, we define linear operator T}, : Hi(—£, £ R) — H3(0,T; R) by
(Ta)(t) = bnp(67 (D2 (2 — 1)) (3.1)

for n € N and ¢ € H}(—£,£;R). Remark that T, is well-defined for large n.
Extending (T, ¢)(t) periodically, we regard it as a T-periodic function on R.
We -have for j =3,---, N

6;(2—0‘)/212’,. (Qn)((Tn‘P)eJ': (Tn‘P)ei)
=5—(2—a)/z/T[| Zid"(T 2 _o|Tap? | afo+2)(gn, )" | Tnp |
n t n
0

T 4 o+
de, | Top |2 24e e:)? | Tho |2
 Ua(ams )((To)es, (Tag)e;) — |'q I;P' t ”(""I’ q’)lJ ne )y
n n
/ [l‘P l2 |‘Pl a(a+2)(wmej)2l‘iolz
lo(+2 l Tn Ioz+4

— 53+2U¢IQ(5nzrn 5£,a+2)/25 + tn)(?’e.i’ pe;)

_ 4eyn le|? + 24en (20, 6) |0 |?
a2 |8 83T |z B

]ds.
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By (W3) and Proposition 2.3, we have

5;(2_01)/2121. (9:)(Tnip)es, (Tnip)e;s)
¢ . o 2 ol o,ds € 2 2
'—)[_[[ISO(S)Iz-l ]Sol ( +2)(y ,d ) l(lol

Ya,d |22 | Yo,a |t
4d || 24d(yaa,¢) | ¢ |? d
TToea P VT Twa P
o,d Ya,d

{ 2 2

. ol 4d | o |
= e(s) |2 - - ds 3.2
Lot o - 1 ] 3.2

as n — 0o.
Here we used the fact:

Ya,d(s) € span{e;, e} for s€R.

We set .

T PN 1 K R P PA RN
Taade) = [ 19(6) P ~2fids « Hy(-t.6R) ~ R

for @ € (0,2), d € [0,(2 — «)/2] and £ > 0. Then we can see
lim 87 G021 (02)(Tae)es, (Tnp)e;) < Juae(y) (3.3)

for all ¢ € HY(—£,4;R).
We define

N(a,d,£) = max{dim H; H CH)(—£,£;R) is a subspace such that

(3.4)

Ja,a0(p) <0 for ¢ € H\ {0} }.

Clearly
N(a,d,£) = the number of negative eigenvalues of the following
eigenvalue problem:
[ o
—U - ——————y = Ay in (—{, ),
a7 =49 (35)
u(—£) = u(£) = 0.

We remark that N(e,d, £) is a non-decreasing function of £ for each o and d. Let ¢;(s) €

HY (=4, 4R) (i=1,2,---, N(a,d,£)) be eigenfunctions of the problem (3.5) with negative
eigenvalues, in particular, we have

Ja,at(p) <0 for ¢ €span{p;(s);i=1,---,N(e,d,0)}\ {0} (3.6)

15
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We consider the set of functions:
Hl(too,n) = span{(Tagi)ej; 1S i < N(@, 4,8, 3<j<NYC B (37)
By (3.3) and (3.6), we can see for sufficiently large n that

I! (gn)(h,h) <0 forall h € H(ts,n)\ {0}. (3.8)

We remark
dim H(teo,n) = (N — 2)N (o, d, £).

Finally we set

() = su min N(a,d, ). 3.9
H0) = S0P By (2D (3.9)

Choosing £ > 0 sufficiently large, we may assume
dim H(leo,n) > (N — 2)i(a). (3.10)

In Section 4, we will give a representation (0.7) of i(«).

Proposition 3.1. Assume (V2) and (W1)-(W3) and suppose (¢,(1))3%, C A satisfies

n=1

(2.1)-(2.4). Let v be the number of times g (t) enters the singularity 0:

v= #{t € (O)Tk q00(t) = 0}'

Then we have
liminfindex I (gn) > (N — 2)i(a)v. (3.11)

n—+oo

Proof. Suppose v < co and

{ioo,l;too,% oo )too,ll} = {t € (O)T‘]: (]oo(t) = 0}

For any given subsequence n,, — 0o, we can extract a subsequence — we still denote it

by n,, — such that Proposition 2.3 holds for each 1., ) for suitable orthonormal basis egk),

egk), e 655) and d®) € [0, 352]. Thus we can construct subspaces H(too,k,nm) C E for
each tor (k=1,2, -+, v) asin (3.7). From the construction, we have

dim H(loo kynm) > (N-— 2)i(a) for all k.
For any 6 > 0, we find a constant mg(8) € N such that

supp A(t) C [too,k — 6, too,k + 6]

16
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for all A(t) € H(teo k, "m) and m > mo(6). Thus we get
H(too,i;m) N H(looj,nm) = {0} (i # j)
for sufficiently large n. Set
Hy, =H(lo,1,7m) ® H(lco,2,m) @+ ® H (oo, ).
Choosing sufficiently large £ > 0, we obtain from (3.8) and (3.10) that
dim H,,, > (N = 2)i(a)v,

Ié’n(qnm)(h,h) <0 forheH, \{0}

for sufficiently large m.

Therefore we get (3.11). In case v = oo, for any k € N we can see in a similar way that
liminfindex I (¢n) > (N — 2)i(a)k.
n—00

Thus we conclude

liminf index I} (¢5) = co. i

4. Representation of the number i(a) and proof of Proposition 0.3

- The aim of this section is to give a representation (0.7) of the number i(«), that is, to

prove

Proposition 4.1. Let i(o) € N be the number defined in (3.4)-(3.9). Then for any

a € (0,2) the number i(a) can be represented as

i(a) = max{m € N; m < 2 }.

2-«
We remark
ila)=1 for0<a<l, (4.1)
i(a) 22 forl<a<?, (4.2)
i(a) 200 asa— 2. (4.3)

First, we consider the solution yq,4(s) of (2.22)—(2.24).

17
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Lemma 4.2. For any 0 < o < 2, d € [0, 25%], the equation (2.22)-(2.24) has a global
solution yq4,q4(s). Moreover, yq,4(s) satisfies

1 <] Ya,a(8) <] Ya,0(5) | (4.4)
for all d € [0,%5%] and s € R.
Proof. First we remark that y, 4(s) satisfies

1 d
| Yard 1 | Yaa |*

1 ..
5 | Ya,a(s) |2 =0 fors€eR. (4.5)
We fix here « € (0,2) and set Ry(s) =| ya,a(s) |*. Using (2.22) and (4.5), we get

L X .0 *
Ra =2(Y od, Yoo,d) + 2| Yo |2

1 1
—2(2 - a)—é'gl—.z - 4d‘é‘g, (4.6)
Ra(0) = 0. (4.8)
We can easily see from (4.6)-(4.8) that R(s_4)/2(s) =1 and for d € [0, 252)
Ra(0) =2(2 — &) — 4d > 0
and . .
Ra(s) > 22— 0)(— — =5) >0 if Ra(s) > 1.
(s) 2 2( )(RZ,,2 Rﬁ) a(s)
Thus we get for d € [0, 252
Ry(s)>1 forall s #0,
(4.9)

sRa(s) >0 for all s # 0.

Next we fix d € (0, 25%) and prove Ry4(s) < Ro(s) for all s. Since ‘}%d(O) =202-a)—4d <
22—-a) = }io(O) for d € (0, 25%), we have

R;(s) < Ro(s) for sufficiently small s > 0.

Suppose there is an s; > 0 such that R4(s1) = Ro(s1). Then there is an sg > 0 such that

Ra(s) < Ro(s) for s € (0, sp),

4.10
Rd(So) = Ro(So). ( )

18



135

Since Rg4(s) satisfies (4.6)—(4.8), we have

Rals)? — 4R/ _ Ad _ _4(1 +d).
Ry
Thus we get ‘
. ° 1
2 _ 2 _ —1) < 0.
Rd(SQ) RO(SO) 4d( Rd(so) 1) < 0

By (4.9), we get }.Zd(so) < ;{o(so). But this contradicts with (4.10). Therefore we have
R4(s) < Ro(s) for s> 0.

Similarly we get R4(s) < Ro(s) for s < 0. |

Corollary 4.3. Forany 0 < a<2,d€[0,25%] and £ >0,
N(,0,£) < N(, d,¢),

Le.,

i(a) = sup N(«, 0, £). (4.11)
£>0

Proof. By (4.4), we have
Ja,d,z(SO) < Ja,o,[((p) for all p € H&(-—[, L R)

Thus we get the desired result from the definition of N(e, d, £) and i(e). |

By (4.11), from now on, we deal with only the case d = 0. The following lemma is a

consequence of Sturm Comparison Theorem.

Lemma 4.4. The number i(a) + 1 is equal to the maximal number of zeros of nontrivial

solutions u(s) of
oo o

— U — ——
| Ya,0(s) |+?

0 inR. (4.12)
That 1s,
i(e) + 1 = max{ #{s € R; u(s) = 0}; u(s) Is a nontrivial solution of (4.12)}.

Proof. Suppose i(a) = k and let £ > 0 be sufficiently large so that N(«,0,£) = k. Then

k-th eigenvalue Aj, of (3.5) is negative, that is, there is an eigenfunction uy(s) of

.o 41

e —up =M in (=

Tty e T e i (260,
uk(:l:l)=0,
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which has exactly (k+ 1) zeros in [—£, £]. Consider initial value problem (4.12) with initial
data u(—£€) = 0 and u(—£) = 1, then by Sturm Comparison Theorem, u(s) has at least
(k + 1) zeros in [—£, {].

Conversely, suppose (4.12) has a nontrivial solution with (k + 1) zeros t =1; <13 <
-+ < tg+1 and consider the eigenvalue problem:

oo o
- U —
| ya,0(s) |*+*

u(t1) = u(tg41) = 0.

=Au in (tl,tk+1),

Then we can see that the k-th eigenvalue A equals to 0. Choosing £ > 0 such that
[t1,tk+1] C (—£,2), we have N(«a,0,£) > k. ' |

Therefore we will consider the number of zeros of nontrivial solutions u(s) of (4.12).
We write yi(a)(s) = (Ya0(s),€) : R — R (i = 1,2). Then {yi"),yg“)} are linearly
independent solutions of (4.12). Thus any solution u(s) of (4.12) can be represented by

their linear combinations. That is, we can write

u(s) = sin By (s) + cos By{*)(s)  (BER)

up to multiplicative constants. Using polar coordinate (r4,8,), we write
(W87(8), 457(6)) = (ra(s) cos a(s), 7a(s) sin fa(s) (4.13)

where r4(s) > 0 and 6,(s) € R with 8,(0) = 0. Then any solution u(s) of (4.12) can be
written (up to multiplicative constants) as

u(s) = r4(8) sin(f.(s) + A) (B €R). (4.14)
From (4.14), we can easily see
Lemma 4.5. The maximal number of zeros of nontrivial solutions of (4.12) is equal to

the number
+

6 —6;
max{m € Z; m < —“—-—;r—-i} + 1. (4.15)
Here 0% is defined by

Remark 4.6. The number (4.15) describes twice of the number of times the point
(yga)(s), yga)(s)) turns around the singularity 0 while —co < s < 0.
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Proof. For ug(s) = ro(s)sin(f4(s) + B), we can easily see
ug(s) =0 if and only if 6,(s)+ f = mn for some m € Z.

Thus we can see the maximal number of zeros of nontrivial solutions of (4.12) is equal to
the number (4.15), that is,

0f -6

max{ #{s € R; ug(s) =0}; # € (0,27] } = max{m € Z; m < }+1 |

Proof of Proposition 4.1. Since y(s) = ya,0(3) = (7a(8) cos84(5), 7a(s) sin 6, (s)) satis-
fies (2.22)~(2.24) with d = 0, we have

o (s)? ba(s) = \/; foralls e R (4.16)

(conservation of the angular momentum). Thus we can make a change of independent

variables s — 0 = 6. We set po = pa(f) = —t=. Then p,(f) satisfies
P ral0) P

(pa)oo + pa = 5 (pa)™ =10, (4.17)
pa(0) =1, (4.18)
(pa)o(0) =0, (4.19)

and 6% can be characterized as
8% = £ sup{f > 0; p,(7) exists and is positive for all = € [0,8).} (4.20)
By (4.16)-(4.19), we have
(pe)o(6)? + pa(6)” = pu(0)* =0 for all 0 € (65, 63).
Since (pa)o(8) < 0 for all § > 0 (it follows from (4.9)), we have

—(pado(®) _ _ |
Vral8)" = p(b)?

Integrating over [0, 8], we get

1
/ _ % _p ferallfc [0,6).
p

«(0) V™ — p?
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By (4.20), we can see

1
d ™
+ _ P -
Ha-—i/o m—iQ—a' (4.21)
Thus by Lemmas 4.4, 4.5 and (4.21), we obtain Proposition 4.1. |

Proof of Proposition 0.3. We can easily deduce Proposition 0.3 from Propositions 3.1
and 4.1. |

5. Proofs of Theorems 0.1 and 0.2
Now we can deduce Theorems 0.1 and 0.2 from Propositions 1.3, 0.3 and (4.1)-(4.2).

Proof of Theorem 0.1. Let (ge())ce(0,1] be a sequence of critical points given in Proposi-
tion 1.3. By Proposition 1.5, we can extract a subsequence ¢, — oo such that ¢,(t) = ¢, (¢)
satisfies the assumptions of Proposition 0.3. Since i(a) > 2 for « € (1,2), we have from
Proposition 0.3

liminf index I (gn) > 2(N — 2)v.

Comparing with (1.18), we can see

v=20.

That is, geo(t) does not enter the singularity 0 and g (¢) is a non-collision T-periodic
solution of (HS). |

Proof of Theorem 0.2. Proof of Theorem 0.2 can be done in a similar way to the proof
of Theorem 0.1. However, by (4.1), i(a) =1 for o € (0,1]. Thus

linrr_iioréfindexIé'" (g2) > (N = 2)v.

Comparing with (1.18), we get

This i1s the desired result. |
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