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Embeddings of Geometries and related Codes

弘前大学理学部 吉荒 聡
Satoshi Yoshiara

Department of Information Science, Hirosaki University, Hirosaki 036 JAPAN

Abstract

Results are described on embeddings of primitive regular near polygons and flag-transitive
classical locally polar geometries of rank 3 defmed over $F_{2}$ , togetlter with a simple idea to
generalize the notion of apartments.

1. Introduction.
The aim of this exposition is to give asurvey of results concerning elnbeddings of incidence geome-
tries (see 3.1), including my recent $cont_{1}\cdot ibutions$ , together with ageneralization of the notion of
apartments to general geometries (see 2.5). Iwill treal these two unrelated-loolcing subjects uni-
fordy from view of coding $t1_{1eory}$. Though we $rest_{1}icto\iota\iota rselves$ to embeddings of $geomet_{1}\cdot ies$ of
rank 2, the notion of embeddings can be $t_{1}\cdot eated$ more generally in the context of homology groups
of simplicial complexes with locally constant presheaves. (The usual homology groups in 2.2 are
nothing more than those for the constant presheaf of thc tiviaJ modnle. See [11] $D^{\prec}x.1$ p.328). As for
this interesting and promissing setting, see papers by $M_{\mathfrak{c}}\backslash r1_{c}$

, Rollan and Steve Slnit $l\iota[11][14][15]$ .
Tlle organization is as follows: In \S 2, we $fi\iota\cdot st\sigma_{i\iota mma\iota\cdot ize}nccessal\cdot yteI^{\cdot}11linologyfo1$ inciclence

geometries ancl then $int_{1}\cdot oduce$ acode in the $sp(\urcorner.ce$ with basis llle $\ln_{\dot{c}}t\backslash i_{II1i\backslash }1n_{a_{1\supset}s}\sigma$ . $P_{1}\cdot opo_{b}\neg ition2.\angle l$

$sho\backslash vs$ that minimum supports of this code are candidates for $0\sigma eneralization$ of $c\backslash partlnents$ to general
geometries. The sporadic $A_{7}$-geometry( $\backslash vith$ a $dia_{c>}\circ ram$ of type $C_{3}$ ) $\backslash vil1$ be treated as an interesting
example. (Proposition 2.4 and Example 2.6 are worked ont by the authol in the summer 1988 under
coInInunication with Steve Smith, but not yet $p\iota$blished. [26])

In the reminder of this exposition are devoled to embeddings of geometries of rank 2. Fundamen-
tal facts about embedding are reviwed in \S 3 togethel with an elementary lemma which motivates
the investigation of minimum $suppo\iota\cdot ts$ of some codes. $T$} $\iota ey$ appeared in [10] in aslightly diffelent
$fo\iota\cdot m$ (in $te\iota\cdot ms$ of cohomologies). In \S 4, wc brie$I1y$ review $1$)$roperties$ of some ilnportant $f_{c11}nilies$ of
$geomet_{1}\cdot ies$ of rank 2: regular near polygons, generalized polygolts ( $b\iota ildi\iota\iota gs$ of $1^{\cdot}ank2$) ancl plane-
line truncalions of flag-transitive $cla_{3^{\neg}}sica1$ locally polal geometries of $1^{\cdot}\iota\backslash nk3$ . $\Lambda nswers$ lor $prol\supset lcms$

proposed in 3.7 will be $s\iota mmal\cdot ized$ in \S 5 to the.sc geometries clefined $ov(\backslash ,rF_{2}$ . Some of them $c\backslash .re$

calculated earlier in the different setting, but at least the results for the following geometries seem
to be new: thin $gener4ized$ polygons, the near $n$-gon $H(n, 3)$ of Hamming graph lor any $n$ , the $nea\iota$

.

hexagons $B_{3}(2)$ and $2A_{5}(2)$ for dual polar spaces, the sporadic near polygons on 729 point.$q$ and 315
points, and the truncations of flag-transitive classical locally polar spaces of rank 3over $p_{\sim^{)}}$ .

2. Homology Groups for Incidence Geometries.
2.1 Incidence Geometries. We consider an ordered sequence $\mathcal{G}=$ $(\mathcal{G}_{0}, \mathcal{G}_{1)} . , \mathcal{G}_{-1} ; *)$ of , $(\geq 2)$

pairwise disjoint nonempty sets $C_{J\dot{\iota}}$ $(i=0, \ldots , r-1)$ together with a reflexive and symmetric relation
$*$ (called incidence) on their union $V\mathcal{G}$ $:=\mathcal{G}_{0}\cup\cdots\cup \mathcal{G}_{r-1}$ A nonempty subset $F$ of $V\mathcal{G}$ is called a flag
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if $x$ is incident with $y$ (that is, $x*y$) for any $x,$ $y\in F$ . The sequence $\mathcal{G}$ is called an incidence geometry
defined on $I=\{0, \ldots, r-1\}$ , if any flag of $\mathcal{G}$ is contained in ama.ximal flag $F$ with $|F\cap \mathcal{G}_{2}|=1$ for
all $i=0,$ $\ldots,$ $r-1$ . The number $r$ is called the rank of $\mathcal{G}$ . Elements $of_{J0}C$ and $\mathcal{G}_{1}$ are usuaUy called
points and hnes, respectively.

For a $!iagF=(x_{io}, \ldots, x_{j;})$ , where $0\leq j_{0}<\cdots<j_{i}\leq r-1$ and $x_{j_{m}}\in \mathcal{G}_{j_{m}}(m=0, \ldots, ?)$ ,
the type of $F$ is defined to be the subset $\{j_{0}, \ldots, j_{i}\}$ of $I$ and denoted by Type $(\Gamma^{;})$ . The number
$|Type(F)|$ is cdled the $7’ ank$ of F. If $i\neq 0$ in the above, the $j_{m}$-th face of $F$ is defined to be aflag
$ol\supset tainedfi\cdot omF$ by deleting $x_{j_{m}}(m=0, \ldots, i)$ . If there are exactly $s_{\dot{t}}+1ma\backslash \prime imal$ flags containing
each flag of type $I-\{i\}$ and any $i\in I,$ $\mathcal{G}$ is called of $or\cdot der(s_{0}, \ldots, s_{r-1})$ . If $s_{0}$ is apower of aprime,
say $q,$

$\mathcal{G}$ is said to be defined over $F_{q}$ .
The full automorphism group $Aut(\mathcal{G})$ is the group of dl bijections $g$ on $V\mathcal{G}$ such that $x^{9}\in \mathcal{G}_{i}$

iff $x\in \mathcal{G}_{i}(i\in I)$ and $x*y$ iff $x^{g}*y^{g}$ for any $x,$ $y\in V\mathcal{G}$ . Apair $(\mathcal{G}, G)$ of an incidence $geo$metry
$\mathcal{G}$ and asubgroup $G$ of $Aut(\mathcal{G})$ is caJled flag-transitive, if $G$ acts transitively on the set of $max$. imal
flags of $\mathcal{G}$ If $(\mathcal{G}, G)$ is flag-transitive, there is an element $g\in G\backslash vithF^{g}=F’$ for any flag $F,$ $F’$

with Type $(F)=Type(F’)$ . An incidence geometry $\mathcal{G}$ is called flag-transitive, if $(\mathcal{G}, Aut(\mathcal{G}))$ is flag-
transitive.

The $i\uparrow\iota cidence$ graph of $\mathcal{G}$ is defined to be agraph with $\iota^{\gamma}\mathcal{G}$ as its set of vertices by declaling that
two $\backslash \prime ertices$ form an edge whenever they are incident. Two points of $\mathcal{G}_{0}$ are called collinear if they
are incident with aline of $\mathcal{G}_{1}$ in common. The graph defined on $\mathcal{G}_{0}$ whose edges $ale$ the pairs of
collinear points is caUed the collinearity graph of $\mathcal{G}$ Ageolnetry $(\mathcal{G}_{i}, \mathcal{G}_{j} ; *)$ of rank 2obtained from
$\mathcal{G}$ by taking vertices of type $i$ is ciled the $(i,j)$-truncation of $\mathcal{G}$ .

As for examples of geometries of rank 2, see \S 4.

2.2 Homology groups. Let $\mathcal{G}$ be an incidence geometry defined on $I=\{0, \ldots, r-1\}$ . The set
$\triangle=\triangle(\mathcal{G})$ of all flags of $\mathcal{G}$ can be recognized as an abstract simplicial complex with its set of vertices
$V\mathcal{G}$ . Thus we may associate with an incidence geometry $\mathcal{G}$ several standard modules in algebraic
topology.

$\Gamma^{\tau}ori\in I$ , we denote by $C_{i}=C_{i}(\triangle)$ the group of $i$-chains, that is, the free $Z$-modnle with $ba\backslash _{-}\neg\backslash is$

$\triangle;,$ $\backslash vhere\triangle_{i}$ denotes the set of flags of $\mathcal{G}$ of rank $i+1$ . The i-th boundary map $\partial_{i}$ from $C$;to $C_{i-1}$

$(i\neq 0)$ is defined by $\partial_{i}(F)=\Sigma_{m=0}^{\mathfrak{i}}F_{j_{m}}$ for aflag $F\backslash vith$ type $\{j_{0}, \ldots,j_{m}\}$ and by extending linearly,
where $F_{j_{m}}$ means the $j_{m}$-face of $F(m=0, )i)$ . The $map\partial_{0}$ from $C_{0}$ to $C_{-1}$ $:=Z$ is defined to be
the zero map. We denote by the image and the kernel of $\partial_{i}$ by $B_{i}(\triangle)=B_{\mathfrak{i}}(\subseteq C_{\dot{t}}-1)$ and $Z_{i}(\triangle)=Z_{\dot{t}}$

$(\subseteq C_{i})$ , respectively $(i\in I)$ . We $dso$ set $H_{i}(\triangle)=H_{i}$ $:=Z_{i}/B_{i+1}(i\in I)$ . The $Z$-modules $B_{i},$ $Z_{i}$ and
$H_{\mathfrak{i}}$ are called the i-th group of boundaries, cycles and i-th homology group, respectively. By tensoring
with any field $K$ over its prime field, we have $I\zeta$-vector spaces $C_{i}(K):=C_{i}\otimes K,$ $B_{\mathfrak{i}}(K):=B_{i}\otimes K$ ,
$Z_{i}(K)$ $:=Z_{i}\otimes K$ and $H_{\mathfrak{i}}(K)$ $:=H_{\mathfrak{i}}\otimes K$ .

If $(\mathcal{G}, G)$ is flag-transitive, the group $G$ permutes $\triangle_{\mathfrak{i}}$ and so acts on $C_{i}(i\in I)$ . The module $C_{-1}$

is atrivial $C_{7}$-modde. Since $G$ preselves the types of vertices, we may verify that the action of $G$ is
compatible with the boundary maps: $(\Gamma^{g}’)\partial_{\mathfrak{i}}=((F)\partial_{\mathfrak{i}})^{g},$ $g\in G,$ $i\in I,$ $F\in\triangle;$ . Thus $B_{\mathfrak{i})}Z_{\mathfrak{i}}$ and $H_{\mathfrak{i}}$

are considered as $G$-modules, and therefore, we have representations $B_{i}(K),$ $Z_{l}(K)$ and $H_{i}(K)$ of $G$

over any field $K(i\in I)$ .

2.3 $H.-1(K)$ as a code in $C_{r-1}(K)$ . Since $B_{r-1}=\{0\}$ , the top dimensional homology group
$H.-1(K)=Z_{r-1}(K)$ is a subspace of the vector space $C_{r-1}(K)$ with the specified basis $C:=\triangle_{\mathcal{T}-1}$ ,
the set of maximal flags of $\mathcal{G}$ Thus we may consider $H.-1(K)$ as a linear code in $C_{\tau-1}(K)$ for any
field $K$ . From view of coding theory, it is natural and fundamental to ask “what is the dimension,
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the minimum weight and the corresponding support of this code?”, where the support of a vector
$x\in H_{r-1}(K)$ (denoted by supp$(x)$ ) is defined to be the subset supp$(x);=\{F\in\triangle_{r-1}|x=$

$\Sigma_{F\in\Delta_{r-I}}\alpha_{F}F,$ $\alpha_{F}\neq 0\in K$ } of A. $-1$ and the weight of $x$ is $|supp(x)|$ . That is, the minimum number
$w$ of the weights for all nonzero vectors of $H_{r-1}(K)$ and the subsets supp$(x)$ of $\triangle_{r-1}$ with $wt(x)=w$
are main concern in coding theory, together $\backslash vith\dim H_{r-1}(K)$ .

If the geometry $\mathcal{G}$ is a natural finite geometry associated svith a fnite group of Lie type (called
a building), it is rather easy to answer these questions.

2.4 Proposition. Let $\mathcal{G}$ be a finite building for a finite group $G$ of Lie type defined over $K=F_{p^{e}}$

and $W$ the Weyl group of G. Then the code $H.-1(K)$ in $C_{r-1}(K)$ affords the Steinberg module of $G$ ,
and so its dimension is equal to the highest power of $p$ dividing $|G|$ . The minimum weight is given
by $|W|$ and for $x\in H_{r-I}(K)$ we have $wt(x)=|W|$ if and only if supp$(x)$ forms the set of maximal
flags in an apartment of $\mathcal{G}$

The above proposition suggests that the minimum supports of the code $H_{r-1}(K)$ for suitablly
chosen field $K$ are considered as (apartments’ of a general geometry $\mathcal{G}$ . Thus it is natural to propose
the following problem.

2.5 $P_{1}\cdot oblem$ . For a general incidence geometry $\mathcal{G}$ , determine the minimum weight and the corre-
sponding supports of the code $H_{r-1}(\triangle(\mathcal{G}), K)$ in $C_{r-1}(\triangle(\mathcal{G}), K)$ .

2.6 Example. The sporadic $A_{7^{-}}geomet_{1}\cdot y$. (see e.g. [3] p.392) Thi.qgeometry $(\mathcal{P}, \mathcal{L}, \mathcal{Q};*)$ is
known to be the unique example of geometries belonging to diagrams those for finite buildings, but
not abuilding or its quotient. The sets $P$ and $\mathcal{L}aletl\iota e$ set $\{1, \ldots, 7\}$ and the set of triples of
points, respectively. There are in totaJ 30 ways to choose asubset $\mathcal{T}$ of $\mathcal{L}$ so that $(\mathcal{P}, \mathcal{T})$ forms a
projective plane of order 2with incidence by natural inclusion, and they are divided into two orbits
of length 15 under the action of the alternating group $A_{7}$ on $\mathcal{P}$ . We $def\iota neQ$ to be one of these two
orbits and define $*by$ natural inclusion. Thus $\mathcal{G}$ belongs to the diagram $C_{3}$ , that is, the residues
at points (resp. lines and planes) ar$e$ generalized quadrangles (resp. digons and triangles) (see 4.2).
Note that the building admitting $O_{7}(2)\cong Sp_{6}(2)$ or $U_{6}(2)$ also belongs to the same diagram.

We choose $F=F_{2}$ as the coefficient field of homologies of $\triangle(\mathcal{G})$ . The space $C_{2}$ of 2-chains of $\mathcal{G}$

has abasis indexed by $315=15\cdot 7\cdot 3ma_{-}xima1$ flags. The code $H_{2}$ is asubspace of $C_{2}$ of dimension
56, $w\}_{1}ich$ is alnultiple of the highcst power of 2divicling $|A_{7}|$ . As an $A_{7}$-module, $H_{2}$ is projective,
but not irreducible. (This follows from [17] 3.1 and the fact that $\triangle(\mathcal{G})$ is Cohen-Macaulay, that is,
the reduced homology group $\tilde{H}_{i}$ of $\mathcal{G}$ and its residnes are trivial except those for top dimension.)
The minimum supports are of weight 36 and form one conjugacy class under $A_{7}$ with stabilizers $S_{3}$ .
Note that the minimum support of the code $H_{\sim^{)}}(\triangle(\mathcal{B}), F_{q})$ is $|W|=|2^{3}S_{3}|=48$ for the buildings $\mathcal{B}$

belonging to the diagram of type $C_{3}$ . For the detail, see [26].

3. Embeddings and Codes for Geometries.
In this section, we consider realizations of incidence geometries as configurations of subspaces in
projective spaces, in which incidences are defined by natural inclusion. We formalize this notion as
follows. For simplicity, we restrict ourselves only to the case of rank 2 and try to define any objects
as simple as possible.
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3.1 Embeddings. Assume that a geometry $\mathcal{G}=(P, \mathcal{L};*)$ of rank 2 is defined over $F_{q}$ . A pair
(V, $\rho$) of $a$ vector space $V$ over $F_{q}$ with $\dim V\geq 2$ and $a$ map $\rho$ : $\mathcal{P}arrow V$ is called a (point-line)
embedding of $\mathcal{G}$ , if they satisfy the following conditions:
(1) For each $\alpha\in \mathcal{P},$ $\rho(C)$ is a subspace of $V$ of dimension 1.
(2) For any $l\in \mathcal{L}$ and $q+1$ points $\alpha;(i=0, \ldots, q)$ through $l$ , the subspace $\rho(l)$ of $V$ spanned by
$\rho(\alpha;)(i=1, \ldots, q+1)$ is of dimension 2. Furthermore, $\{\rho(\alpha_{\mathfrak{i}})|i=0, \ldots, q\}$ coincides with the set of
all subspaces of dimension 1 of the 2-dimensional subspace $\rho(l)$ .
(3) The vector space $V$ is spanned by all $\rho(\alpha)$ for $\alpha\in P$ .

The subspace $V$ is called an ambient space. For two embeddings $(\rho, V)$ and $(\rho’, V’)$ of $\mathcal{G}$ , a
morphism of $(\rho, V)$ to $(\rho’, V’)$ means an $F_{q}$-linear map $f$ of $V$ to $V’$ for which $\rho’(\alpha)=f(\rho(\alpha))$ for
any $\alpha\in \mathcal{P}$ . If such a morphism $f$ is a bijection, $(\rho, V)$ and $(\rho’, V’)$ are called isomorphic.

3.2 Universal embeddings. It is known that for any embedding $(\rho, V)$ of $\mathcal{G}$ there is a unique
(up to isomorphism) embedding $(\tilde{\rho},\tilde{V})$ and a morphism $\tilde{p}$ of $(\tilde{\rho},\tilde{V})$ to $(\rho, V)$ satisfying the following
universal property: [10] For any morphism $g$ of $(\rho’, V’)$ to $(\rho, V)$ , there is a morphism $\tilde{g}$ of $(\tilde{\rho})\tilde{V})$

to $(\rho’, V’)$ such that $g\tilde{g}=\tilde{p}$ . Such an embedding $(\tilde{\rho},\tilde{V})$ is called a universal embedding of the
embedding $(\rho, V)$ . In general, the universal embedclings of two non-isomorphic embeddings of $\mathcal{G}$

may or may not be isomorphic. How$e$ver, the situation is quite simple if $\mathcal{G}$ is defined over $F_{2}$ (see
2.1). Here we need some terminology about codes.

3.3 Incidence codes for geometries. For a geometry $\mathcal{G}=(\mathcal{P}, \mathcal{L};*)$ of rank 2 and a field $F$ , we
denote by $F\mathcal{P}$ the vector spac $e$ over $F$ with basis $e_{\alpha}(\alpha\in \mathcal{P})$ indexed by $P$ . The incidence matrix $N$

of $\mathcal{G}$ is a matrix with rows and columns indexed by $\mathcal{L}$ and $P$ respectively, in which the $(l, \alpha)$-th entry
$(l\in \mathcal{L}, \alpha\in P)$ is 1 if $l*\alpha$ and $0$ otherwise. Each row $(x_{\alpha})_{\alpha\in \mathcal{P}}$ of $N$ can be identified with the vector
$\Sigma_{a\in \mathcal{P}}x_{\alpha}e_{\alpha}$ of $FP$ , and the subspace of $F\mathcal{P}$ spanned by all rows of $N$ is denoted by $C_{F}(\mathcal{G})$ (or simply
$C(\mathcal{G}))$ . The dual code of $C(\mathcal{G})$ is defined to be the subspace $C(\mathcal{G})^{\perp};=\{x\in F\mathcal{P}|x\cdot y=0(\forall y\in C(\mathcal{G}))\}$

of $F\mathcal{P}$ , where $x\cdot y=\Sigma_{\alpha\in \mathcal{P}}x_{a}y_{\alpha}$ for $x=\Sigma_{\alpha\in \mathcal{P}}x_{\alpha}e_{\alpha}$ and $y=\Sigma_{\alpha\in \mathcal{P}}y_{\alpha}e_{\alpha}$ .
These codes have been discussed by several authors (for example, [5]). From geometric point of

view, these codes are most interesting if $\mathcal{G}$ is defined over $F\circ\sim$ and $F=F_{2}$ .

3.4 Lemma. For a geometry $\mathcal{G}=(\mathcal{P}, \mathcal{L};*)$ of ranh 2 defined over $F_{2}$ , the map from $\mathcal{P}$ to $V(\mathcal{G})$ $:=$

$F_{2}P/C(\mathcal{G})$ given by $\rho(\alpha)=e_{\alpha}+C(\mathcal{G})$ for $\alpha\in \mathcal{P}$ affords the universal embedding of $\mathcal{G}$ , if $V(\mathcal{G})\neq\{0\}$ .
Wc will $c_{c}\sqrt{}|V(\mathcal{G})$ lllc universal embedding or $\mathcal{G}$ (sce [10], Prop. 3).

3.5 Geometric hyperplanes and embeddings. In general, a geometry $\mathcal{G}$ defined over $F_{q}$ may
not have any embedding. However, there is a nice criterion for $t1_{1}e$ existence of embeddings of a
geometry defined over $F_{2}$ (see [10], \S 3, Cor.2,4), in terms of a geometric object: A non-empty proper
subset $H$ of $\mathcal{P}$ for a geometry $\mathcal{G}=(\mathcal{P}, \mathcal{L};*)$ of rank 2 is called a geometric hyperplane of $\mathcal{G}$ , if $H$

contains either all the points on 1 or exactly one point on 1 for any line $1\in \mathcal{L}$ .

3.6 Lemma. Let $\mathcal{G}=(P, \mathcal{L};*)$ be a $geomet\uparrow\cdot y$ of rank 2 defined over $F_{\sim^{)}}$ . Then the map associating
$\mathcal{P}-supp(x)$ with a vector $x=\Sigma_{\alpha\in \mathcal{P}}k_{\alpha}e_{\alpha}(k_{\alpha}\in F_{2})$ gives a bijection from $C(\mathcal{G})^{\perp}onto$ the set of
all geometric hyperplanes of $\mathcal{G}$ and $\mathcal{P}$ , where supp$(x)$ $:=$ { $\alpha\in \mathcal{P}$ I $k_{\alpha}\neq 0$ } is the support of $x$ . In
particular, there is a geometric hyperplane $H$ of $\mathcal{G}$ if and only if there is an embedding of $\mathcal{G}$
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The above lemma shows that the support of a non-zero vector $x$ of $C^{\perp}$ with minimum weight
is a complement in $\mathcal{P}$ of a geometric hyperplane of $\mathcal{G}\cdot of$ maximum size. Thus it is interesting from
both coding-theoretic and geometric point of view to solve the following problems.

3.7 Problems. For a geometry $\mathcal{G}$ defined over $F_{2)}$ determine the dimension of $C^{\perp}(=the$ dimension
of the ambient space of the universal embedding of $\mathcal{G}$ ) and the minimum supports of $C^{\perp}$ .

3.8 Remark. The dimensions, minimum weights and supports of the codes $C_{F}(\mathcal{G})$ and $C_{F}(\mathcal{G})^{\perp}$

for finite field $F$ have been investigated by Bagchi and Sastry [5] when $\mathcal{G}$ is a generalized $2d$-gon of
order $(s, t)(s, t\geq 2)$ (see 4.2). However, similar arguments to them (see [5], Theorem 3.6) do not
apply to $F=F_{2}$ .

4. Generalized Polygons, Regular Near Polygons and truncated Locally
polar spaces of rank 3 over $F_{2}$ .
We consider Problems 3.7 for several important geometries of rank 2 defined over $F_{2}$ ; that is, regular
near polygons, generalized polygons and the line-plane truncations of locally polar spaces of rank
3. In this section, these geometries are briefly reviewed. As for general $t$ erminology for geometries,
see 2.1. For regular near polygons and generalized polygons, see e.g. [3] 6.4, and for locally polar
geometries, see [9], [23] (in which they are called $c.C_{n}$-geometries).

As we shall see below, the locally polar geometries of rank 3 defined over $F\circ\sim$ (exept for that
admitting flag-transitive group $3O_{6}^{-}(3))$ are subgeometries of suitable dual polar spaces of rank 3, in
which point-line truncations form regular near hexagons. (This article seems to be the first literature
referring the fact that the points of the locally polar geometry adnlitting $O_{6}(3)$ form a geometric
hyperplane of the dual polar space adinitting $U_{6}(2).)$ Thus solutions for Problem 3.7 for these
geometries are closely related.

4.1 Regular near polygons. (See $[3],6.4$ p.198 or [16] p.2. Note that, for example, we exclude
generalized quadrangles from regular near hexagons.) An incidence geometry $\mathcal{G}=(\mathcal{F})\mathcal{L};*)$ of order
$(s, t)$ is called a near 2d-gon (resp. $(2d+1)- gon$) for a natural number $d$ , if $tl\downarrow e$ diameter of the
collinearity graph of $\mathcal{G}$ is $d$ (resp. the diameter of the incidence graph $I\Gamma$ of $\mathcal{G}i\backslash ^{\neg}2d+1$ ) and fol
any integer $i$ with $0\leq i\leq d-1$ and any point $c\backslash$ and any line $l$ at distance $2i+1$ (in $I\Gamma$ ), there
is a unique point $\beta$ on 1 with $\delta(\alpha, \beta)=2i$ (resp. furthermore, all points on a linc 1 at clistance (in
II’) $2d+1$ from a point $\alpha$ are at distance $2d$ from $\alpha$ ). A near polygon ( $2d$ or $(2d+1)$-gon) is called
regular, if its collinearity graph is distance-regular.

4.2 Generalized polygons. (As for generalized quadrangles, see [8].) A geometry $\mathcal{G}=(\mathcal{F})\mathcal{L};*)$

of rank 2 of order $(s, t)$ is called a generalized n-gon, if the incidence graph of $\mathcal{G}$ is of diameter $n$ and
of girth $2n$ . A (1, t)-sub $2dgon$ of a generalized $2d$-gon $\mathcal{G}$ is a subset $X$ of $\mathcal{P}$ such that the geometry
(X, $Y;*$ ) is a generalized 2$d$-gon of order $(1, t)$ , where $Y$ is the set of lines incident with at least two
distinct points of $X$ .

A generalized 2$d$-gon $\mathcal{G}$ of order $(s, t)$ is a regular near $2d$-gon and generalized 3-gons (generalized
triangles) of order $(s,t)$ are nothing more than projective planes of order $(s, t)$ . In particular, $s=t$

for generalized triangles. Generalized 4-, 6- and 8-gons are called generalized quadrangles, hexagons
and octagons, and denoted by GQ, GH and GO, respectively. Finite generalized n-gons are (weak)
buildings of rank 2, admitting flag-transitive actions of associated groups of Lie type.
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There are six known infinite families of flag-transitive GQ of order $(s,t)$ with $s$ or $t\geq 2$ : they are
$Q^{+}(3, q),$ $Q(4, q),$ $Q^{-}(5, q),$ $H(3, q^{2}),$ $H(4, q^{2})$ and $W(q)$ , admitting flag-transitive actions of finite
groups $O_{4}^{+}(q),$ $O_{S}(q),$ $O_{6}^{-}(q),$ $U_{4}(q^{2}),$ $U_{5}(q^{2})$ and $S_{4}(q)$ of Lie type, respectively. They (sometimes
omitting $Q^{+}(q)$ of order $(q, 1)$ as in [24]) are called classical GQ (see [8] 3.1 pp.36-37). Note that
except $O_{4}^{+}(q)\cong L_{2}(q)\cross L_{2}(q)$ , all groups above are simple.

4.3 Generalized polygons defined over $F_{2}$ . We now consider the isomorphism classes of gen-
eralized polygons of order $(2, t)$ . Except GOs of order $(2, 4)$ , the classification is completed, as we
will described below. First, by the remarkable theorem of Feit-Higman (e.g. [3] 6.5.1 p.210), one of
the following holds for a generalized n-gon $\mathcal{G}=$ $(P, \mathcal{L}; *)$ of order $(2, t)$ .
(1) $t=1$ and $n=6,8$ or 12. There is a generalized $n/2$-gon $\mathcal{G}_{0}$ of order $(2, 2)$ such that $\mathcal{P}$ and $\mathcal{L}$

the sets of vertices and edges of the incidence graph of $\mathcal{G}_{0}and*is$ the natural inclusion.
(2) $n=3$ and $t=2$ . (3) $n=4$ and $1\leq t\leq 4$ .
(4) $n=6$ and $t=2$ or 8. (5) $n=8$ and $t=4$ .

In the case (2), $\mathcal{G}$ is isomorphic to the projective plane $PG(2, F_{2})$ with 7 points and lines. In
the case (3), it follows from [PT] 6.1 pp.122-123 that $\mathcal{G}$ is isomorphic to the classical generalized
quadrangle $Q^{+}(3,2),$ $Q(4,2)\cong W(2)$ or $Q^{-}(5,2)$ for $t=1,2$ or 4, respectively (we do not have
$t=3)$ . In the case (4), it follows from theorems 1 and 2 in [CT] that $\mathcal{G}$ is isomorphic to the GH
$\mathcal{H}(2)$ with the full automorphism group $G_{2}(2)$ and point-stabilizers 4 $S_{4}$ : 2, the dual $H(2)^{*}$ of $H(2)$

with the full automorphism group $G_{2}(2)$ and point-stabilizers $4^{2}$ : $D_{12}$ , or the GH $D$ with the full
automorphism group $3D_{4}(2).3$ and point-stabilizers $2_{+}^{1+8}$ : $L_{2}(8)$ : 3.

There is a unique known GO of order $(2, 4)$ , that is, the GO $\mathcal{O}(2)$ with the full automorphism
group $2F_{4}(2)$ and point-stabilizers $2.[2^{8}]$ : 5: 4. Though it seems to be believed that any GO of order
$(2, 4)$ is isomorphic to 0(2), no reference of a proof is available, as far as the autor knows.

4.4 Other $f_{c\backslash }milies$ of regular near polygons defined over $F_{2}$ . In 4.4-5, we assume that
regular polygons are not generalized polygons. There are three known families $H(n, 3),$ $C_{d}(2)\cong$

$B_{d}(2)$ and $2A_{2d-1}(2)$ of regular near polygons defined over $F_{2}$ . (See [3], Table 6.6 p.206, noticing
that anear polygon is defined over $F_{2}$ iff $\lambda=1$ . Furthermore, not $e$ that there are misprints in Table
6.6 $!$ ]$/Ve$ should erase the number $d$ appearing the column for $k$ and rows (R4) (R5) (R6), and then
shift the numbers in the colums for $\lambda$ and $c$ ;into the columns for $k$ and $\lambda$ , respectively. As for the
column for $c_{i}$ , the quantities in the rows (R4),(R5) and (R6) should be $c_{l}=i(i<d),$ $c_{d}=\gamma d$ (for
(R4)), $c_{i}=i$ (for (R5)) and $c;=thcq$-binomial coefficient for $i$ choose 1(for (R6)).)

$Th_{C^{\backslash }}gComCtryII(n, 3)$ is ageoInelry whose incidence $g_{1}\cdot aph$ is the Hamming graph on the n-
dimensional space $F_{3}^{n}$ over $F_{3}$ , that is, the set of points and lines consist of vectors of $F_{3}^{n}$ and the
translations of the sets $\{0, e_{i}, -e_{i}\}(i=1, \ldots, n)$ by vectors of $F_{3}^{n}$ , respectively, where we denote by
$e_{i}$ the $ith$ natural base of $F_{3}^{n}$ .

The other two families ar$e$ members of dual polar spaces (more precisely, truncations of them)
$B_{d}(2)=C_{d}(2)$ and 2 $A_{2d-1}(2)[3]9.4$ . The points of $B_{d}(2)$ (resp. $2A_{2d-1}(2)$ ) are totally singular (resp.
isotropic) subspaces of dimension $d$ of a $2d+1-(resp. 2d-)dimensional$ vector space over $F_{2}$ (resp.
$F_{4})$ with anon-degenerate orthogonal (resp. unitary) form. Atriple of points containing atotdly
singular (resp. isotopic) subspace of dimension $d-1$ in common is called aline. The incidence is
defined by natural inclusion. By talcing all singular subspaces as veltices, we get ageometry of rank
$d$ , which is called adual polar space. Thus our geometries are truncations (see 2.1) of dual polar
spaces on maximal and submaximal singular spaces.
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4.5 Three sporadic examples of primitive regular near n-gons. Besides the families in
4.4, the following three sporadic examples are $1_{t}’nown$ to be regular near 2$d$-gons defined over $F_{2}$ ,
admitting primitive actions of automorphism groups on the sets of points. (See [3], Table 6.7 p.207.
Remark that the full automorphism group of (N2) should be $3^{6}$ : $(2M_{12}))$ not $3^{6}J/I_{12}.$ ) In the below,
we denote by $\Gamma_{i}(\omega)$ the set of points at distance $i$ from a point $\omega$ in the collinearity graph $\Gamma$ . The
characterizations of these near polygons by parameters are established (see [3], 11.4.1, 11.3.1, 11.6.1
and [19]).

(1) A regular near hexagon $/\vee\ell$ on 759 points of order $(2, 14)$ admitting $Aut(/\vee l)\cong M_{24}$ , in which
the orbits of the stabilizer of a point $\omega$ on the points are $\Gamma_{i}(\omega)(i=0,1,2,3)$ of lengths 1, 30, 280, 448,
respectively.
(2) A regular near he$x$agon $\mathcal{N}$ on 729 points of order $(2, 11)$ admitting $Aut(\mathcal{N})\cong 3^{6}$ : 2 $M_{12}$ , in which
the orbits of the stabilizer of a point $\omega$ on the points ar$e$ F. $(\omega)(i=0,1,2,3)$ of lengths 1, 24, 264, 440,
respectively.
(3) A regular near octagon $\mathcal{J}$ on 315 points of order $(2, 4)$ admitting $Aut(\mathcal{J})\cong J_{0,\sim}.2$ , in which the
orbits of the stabilizer of a point $\omega$ on the points are $\Gamma_{i}(\omega)(i=0,1,2,3,4)$ of lengths 1, 10, 80, 160, 64,
respectively.

4.6 Flag-transitive classical locally polar spaces of rank 3defilled over $F_{2}$ . $[18][23][9][24]$

Ageometry $(\mathcal{P}, \mathcal{L}, \mathcal{Q};*)$ of rank 3is caJled aclassical locally polar geometry if the residue at each
$p\in P$ (resp. $1\in \mathcal{L}$ and $\pi\in \mathcal{Q}$ ) is aclassical GQ of order $(s, t)$ with $s$ and $t\geq 2$ (see 4.2) (resp. a
generalized 2-gon and the geometry of vertices and edges of acomplete graph). In this article, we call
them FECQs (flag-transitive extended $cla_{\vee}$($*sica1$ quadrangles). They are now completely classified
(see e.g. $[9],[18],[23]$). We consider the plane-line (that is, (2, $1)-$ ) $t_{1}\cdot uncations$ (see 2.1) of then.

There ar$e$ six FECQs with $(2, 1)$ -truncations defined over $F_{2}$ ; The $FD^{\prec}CQ$ $A$ with 32 points
admitting $2^{5}O_{5}(2).2$ and its quotient $\overline{A}$ with 16 points, the $\Gamma\{D^{\dashv}CQS$ with 28 points admitting
$O_{6}^{+}(2).2$ , aFECQ $\mathcal{F}$ with 36 points adlnitting $O_{6}^{-}(2).2$ , and the FECQ $\mathcal{O}\backslash vith378$ points admitting
$3O_{6}^{-}(3)$ and its quotient $\overline{\mathcal{O}}$ with 126 points. The residues at points are isomorpllic to $W(2)\cong Q(4,2)$

for FECQs $A,\overline{A},$ $S,$ $\mathcal{F}$ and to $H(3,2^{2})$ for FD$ $CQs\mathcal{O}$ and $\overline{O’}$.
We will observe that, except $\mathcal{O}$ , they are subgeometries of the dual polar spaces for near hexagons

$B_{3}(2)$ and $2A_{5}(2)$ . Let $\mathcal{G}=(Q, \mathcal{L}, \mathcal{P};*)$ be the dual polar space for $B_{3}(2)$ , that is, $\mathcal{Q},$
$\mathcal{L}$ and $\mathcal{P}$ are

the sets of 135 singular planes, 315 lines and 63 points of a7-dimensional orthogonal space V. For
any hyperplane $H$ of $V$ and $X=\mathcal{P},$ $\mathcal{L}$ or $\mathcal{Q}$ , we denote by $X\cap H$ the set of memb$ers$ of $X$ lying
completely in $H$ , and set $X’=X-X\cap H$ . Since singular subspaces containing $p\in \mathcal{P}’$ does not lie
$i_{I}\iota\Pi,$ $tllc$ rcsiduc at $p$ of the subgeomctry $\mathcal{G}’=(P’, \mathcal{L}’, \mathcal{Q}’)$ coincides $\backslash vith$ that of $\mathcal{G}$ , and so it is a
classical GQ $Q(4,2)$ . Then we may verify that $\mathcal{G}’$ is a $\Gamma^{t}I^{t}iCQ$ . $\backslash !Ve$ let $vt1_{1}e$ dilnension of maximal
singualr subspaces contained in H. Thcn $v=6,3$ or 2. If $v=6,$ $H=p^{\perp}$ for some $\cdot p\cdot\in P$ , and
so $|\mathcal{Q}\cap H|=|\mathcal{Q}(p)|=15,$ $|\mathcal{L}\cap H|=75$ and $|\mathcal{P}\cap H|=|\{p, q\in \mathcal{P}|q\in l\in \mathcal{L}(p)\}|=31$ , and $\mathcal{G}’$

is isomorphic to A. If $v=3,$ $(\mathcal{Q}\cap H, \mathcal{L}\cap H, \mathcal{P}\cap H)$ is the dual polar space for $O^{+}(6,2)$ and $\mathcal{G}’$

is isomorphic to S. Since any $l\in \mathcal{L}\cap H$ is contained in two planes of $\mathcal{Q}\cap H,$ $\mathcal{Q}’$ is ageometric
hyperplane of the near hexagon $(\mathcal{Q}, \mathcal{L})$ . If $v=2,$ $Q\cap H=\emptyset$ and $(\mathcal{P}\cap H, \mathcal{L}\cap H)$ is the classical GQ
$Q^{-}(5,2)$ , and so $\mathcal{G}’$ is isomorphic to $\mathcal{F}$ .

We may also establish that the the $(2, 1)$-truncation of the $FD^{\prec}CQ\overline{O}$ is asubgeometry of the near
hexagon $2A_{5}(2)$ , and that the set of planes $forIIL^{\epsilon_{i}}$ ageometric hyperplane by an $e1e$mentary counting
argument. This accounts for the $e$.xistence of lnaximal $subg_{1}\cdot oupsU_{4}(3)$ in $U_{6}(2)$ , and also gives an
embedding of $\overline{\mathcal{O}}$ of dimension 21 via the embedding of 2 $A_{5}(2)$ into the Leech lattice modulo 2. For
the detail, see [22] [25].
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5. Summary of Results.
In this section (see Tables 1-3 in the last page), we summarize the answers for Problem 3.7 to
regular near polygons, generalized polygons and the plane-line truncations of flag-transitive locally
polar geometries of rank 3defined over $F_{2}$ described in \S 4. As far as the author knows, the resdts
for the following geometries ar$e$ new: generalized polygons of order $(2, 1)$ , the near hexagons $H(3, n)$

for any $n,$ $B_{3}(2),$ $’\sim^{)}A_{5}(2)$ , the sporadic near polygons admitting $3^{6}2M_{12},$ $J_{2}.2$ and the truncated
FECQ. For some geometries, the answers are left open. (I do not claim that the remaining problems
are difficnlt, especially for minilnum weights.) Apparently, it is most interesting to get $ans\backslash vers$ for
families of geometries $B_{d}(2)$ and $2A_{2d-1}(2)$ (and related subgeometries). Isimply worked with the
smallest cases so far, but suspect that the equalities always hold in the inequalities in Table 3.

In Table 1and 3in the last page, the columns for $\dim$ and ${\rm Min}$ .Wt. show the dimension of
the ambient space of the universal elnbedding of $\mathcal{G}$ and the minimum weight of the code $C(\mathcal{G})^{\perp}$ ,
respectively. The supports of minimum weight are briefly described in the last column of Table 1,
if it is asub n-gon. $\Gamma or$ the other $ca\sigma ses$ , see below. The generaJized hexagon (6) and (7) in Tabl$e1$

denote the hexagons $H(2)$ and $H(2)^{*}$ in 4.3, respectively. In Table 2, the weight enumerator of the
code $C(\mathcal{G})^{\perp}$ (in $F_{2}\mathcal{P}$ ) means aformal sum $\Sigma_{n=0}A_{n}z^{n}$ , where $A_{n}$ is the number of vectors of $C(\mathcal{G})^{\perp}$

of weight $n$ .
It should be mentioned that several values in the tables below have already calculated. Amongst

them, the work by Buekenhout and Lefevre [4] determined the dimensions of embeddings for gen-
eralized quadrangles with $s\geq 2$ and $t\geq 2$ , Mark Ronan and Steve $s_{n1}ith$ calculated the dimension
of the universal embedding of generalized hexagons for $G_{2}(2)$ ([11](3.3), [10]Examples 3,4) and the
weight enumerators for the geometries (4),(6) $,(7)$ can be read from the works by $Broo1_{t}^{r}e$ (See [1]
the column for (4), [2] the columns $14l$ in p.391 and in p.398 for (6) and (7), respectively. These
enumerators can also be seen in [13] pp.308-309). The structure of the universat embedding of the
near haxagon for $iM_{24}$ on 579 points is described in [10] Exalnple 2, [15] pp.536-537 as well as an
example of its geometric hyper planes.

Now Idescribe the method. First, we consider the problem to determine the dimensions of the
universal embeddings. The collinearity graphs of regular near polygons and generalized polygons are
distance regular graphs, and therefore $\backslash ve$ may calculate the eigenvalues and their multiplicities of the
adjacency matrices $A$ of these graphs $($ [3] 4.1 $(B))$ . Since ${}^{t}NN=A+(t+1)I$ for the incidence matrix
$N$ of the corresponding geometry $\mathcal{G}=(\mathcal{P}, \mathcal{L};*)$ of order $(2, t)$ , the $Q$-rank of $N$ (the Q-dimension
of the subspace of $Q\mathcal{P}$ (see 3.3) spanned by the rows of $N$ ) is given by $|P|-m$ , where $m$ is the
multiplicity of the $eigcnv4\iota e-(t+1)$ of A. Since $t$.he $F_{2^{-}}ran1\sigma$ is smallcr than the $Q$-rank in general,
wc $1\iota avc$ clim $V(\mathcal{G})\geq m$ by Lemma 3.4. (Up to here, ex $\backslash ctly$ llle $s\backslash lnc$ argulnent ha.$s$ devcloped in
the proof of Theorem 3.6 in [5].)

Thus it is crusial to get anice upper bonnd of diln $V(\mathcal{G})$ . This problem is treated by so called
“geometric spanning argument”, that is, to exalnine the $geomet\uparrow\cdot ic$ span of $suital\supset le$ chosen points.
This argument has adopted by several people (see e.g. [11] pp.340-341, [7] for embeddings of locally
Petersen geometries). Here, the geometric span of asubset $X$ of points means the set of points
obtained as the inductive limit of $X;(i=0,1, \ldots,)$ with $X_{0}=X$ , where $X_{i+1}$ consists of all the
points lying on lines which contain at least two distint points of $X_{\mathfrak{i}}$ . This part is of strong geometric
flavor, and requires certain amount of works depending on detailed information on each geometry.
For the regular near octagon admitting $J_{2}.2$ , we consider agraph on suitable imprimitivity- bloclcs
for the subgroup $L_{3}(2)$ of $J_{2}$ (see [25]).

For the regular near hexagon $B_{3}(2)$ adlnitting $O_{7}(2),$ $\backslash ve$ may argue as follows: To each singular
point $p$ of the associated orthogonal space, the snbspace $V(p)$ of the nniversal embedding $V(\mathcal{G})$
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spanned by one-dimensional spaces for isotropic planes containing $p$ adlnits an embedding of the
generalized quadrangle $W(2)=Q(4,2)$ (the residue at $p$ in the dual polar space for $\mathcal{G}$ ). Thus either
$\dim V(p)=4$ or $\dim V(p)=5$ and $V(p)$ contains the non-zero $ve$ ctor $w_{p}$ fix$ed$ by the stabilizer of $p$

in $O_{7}(2)$ . Thus the quotient space $V(B_{3}(2))/W$ by the subspace $W$ of $V(B_{3}(2))$ spanned by $w_{p}$ for
all singular points $p$ (we take $w_{p}=0$ if the former case happens) admitts an embedding of the dual
polar space for $\mathcal{G}$ in which singular points, lines and planes correspond to subspaces of dimensions
4, 2and 1, respectively. Thus this affords the fixed-point presheaf [11] for the spin module for
$O_{7}(2)=Sp_{6}(2)$ , and we have $\dim V(\mathcal{G})/W\leq 2^{3}=8$ by [11] Theorem 4.1. As for the subspace $W$ ,
there are one-dimensional subspaces { $w_{p}\rangle$ for singular points $p$ . We may velify that the subspaces
$W(l)$ and $W(\pi)$ spanned by $w_{p}$ for $aUp$ contained in singular lines $l$ and planes $\pi$ are of dimension
2and 3, respectively. Thus $W$ affords the ffxed-point presheaf of the polar space for $S_{6}(2)=O_{7}(2)$

for the natural module for $S_{6}(2)$ , and therefore we have $\dim W\leq 7$ by [11] Theorem 4.1. Hence we
have $\dim V(B_{3}(2))=15$ , as 15 is the above multiplicity giving the upper bound.

Since FECQ defined over $F_{2}$ are subgeometries of the above dual polar space for $B_{3}(2)$ , we may
determine the dimensions of embeddings of these geometries. In particdar, we may verify that the
locally polar geometry $\mathcal{A}$ for $O_{6}^{+}(2)\cong A_{8}$ gives ageometric hyperplan$e$ of $B_{3}(2)$ . Thus we may
give an another proof for the fact $\dim V(B_{3}(2))=15$ by first directly $sho\backslash ving$ that $\dim V(A)=14$

using $ge$ometric spanning argument, which is not so $diffi_{Ct1}1t$ to establish [22]. The similar situation
occurs $\backslash vhen$ we try to determine $\dim 1^{\gamma}(2A_{5}(2))$ and $\dim V(\overline{/O})$ , since the $loc4ly$ polar geometry $\overline{\mathcal{O}}$

admitting $O_{6}^{-}(3)$ gives ageometric hyperplan$e$ of $2A_{5}(2)$ .
As for minilnum weights and supports, it is immediate to observe that a sub $(1, t)- gon$ (see 4.2) of

ageneralized polygon $\mathcal{G}$ of order (2, t) affords aminilnum support, provided it exists (see $[\backslash 5]$ Lemma
2.4). However, there is no such sub $n$-gon in the geometries (1),(4) $,(7),(8),(10)$ . The minimum
supports for (1) are non-degenerated quadrangles in $PG(2, F_{2})$ , those for (4) are $\Gamma_{2}(p)\oplus\Gamma_{2}(q)$

(symmetric difference) for non-adjacent distinct points $p,$ $q$ in the collinearity graph $\Gamma$ . On the other
hand, the similar questions for the remaining regular near polygons and locally polar geometries are
left open except for the near octagon on 315 points, $in\backslash vhich$ nlinimum $s\iota$pports arc $\Gamma_{4}(p)$ for points
$p$ (in the collinearity graph $\Gamma$ ) and the vectors of minimnm $\backslash veight$ span $C(\mathcal{G})^{\perp}[25]$ .

Finally, we list the dimensions of universaJ embeddings for FECQs defined $0\backslash \prime erF_{2}$ : 14, 9, 14,
15, 21, 12+21 for the FECQ $\mathcal{A},\overline{A},$ $S,$ $\mathcal{F},$

$\overline{O}$ and $O,$ $respecti\backslash \prime ely$ . See [22], for the detail and the
dimensions of “group-admissible” embeddings of FECQs not defined over $F_{2}$ .
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Table 1: Generalized n-gons of order (2, t) $(t\geq 1)$ .

Table 2: Weight Enumerators of $C(\mathcal{G})^{\perp}$ for generalized n-gons (1) $-(7)$ in Table 1.

Table 3: Known primitive near n-gons (not gen.polygons) of order $(2, t)$ .


