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Embeddings of Geometries and related Codes
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Abstract

Results are described on embeddings of primitive regular near polygons and flag-transitive
classical locally polar geometries of rank 3 defined over F,, together with a simple idea to
generalize the notion of apartments.

1. Introduction.

The aim of this exposition is to give a survey of results concerning embeddings of incidence geome-
tries (see 3.1), including my recent contributions, together with a generalization of the notion of
apartments to general geometries (see 2.5). I will treat these two unrelated-looking subjects uni-
formly from view of coding theory. Though we restrict ourselves to embeddings of geometries of
rank 2, the notion of embeddings can be treated more generally in the context of homology groups
of simplicial complexes with locally constant presheaves. (The usual homology groups in 2.2 are
nothing more than those for the constant presheaf of the tivial module. See [11] Ex.1 p.328). As for
this interesting and promissing setting, see papers by Mark Ronan and Steve Smith [11] [14] [15].

The organization is as follows: In §2, we first summarize necessary terminology for incidence
geometries and then introduce a code in the space with basis the maximal flags. Proposition 2.4
shows that minimum supports of this code are candidates for generalization of apartments to general
geometries. The sporadic Ar-geometry (with a diagram of type C3) will be treated as an interesting
example. (Proposition 2.4 and Example 2.6 are worked out by the author in the summer 1988 under
communication with Steve Smith, but not yet published. [26])

In the reminder of this exposition are devoted to embeddings of geometries of rank 2. Fundamen-
tal facts about embedding are reviwed in §3 together with an elementary lemma which motivates
the investigation of minimum supports of some codes. They appeared in [10] in a slightly different
form (in terms of cohomologies). In §4, we briefly review properties of some important families of
geometries of rank 2: regular near polygons, generalized polygons (buildings of rank 2) and plane-
line truncations of flag-transitive classical locally polar geometries of rank 3. Answers for problems
proposed in 3.7 will be summarized in §5 to these geometries defined over Fa. Some of them are
calculated earlier in the different setting, but at least the results for the {ollowing geometries seem
to be new: thin generalized polygons, the near n-gon H(n,3) of Hamming graph for any n, the near
hexagons B;3(2) and 2As(2) for dual polar spaces, the sporadic near polygons on 729 points and 315
points, and the truncations of flag-transitive classical locally polar spaces of rank 3 over Fs.

2. Homology Groups for Incidence Geometries.

2.1 Incidence Geometries. We consider an ordered sequence G = (Go,G1,...,0,=1;%) ol » (> 2)
pairwise disjoint nonempty sets §; (i = 0,...,r— 1) together with a reflexive and symmetric relation

* (called incidence) on their union VG := GoU---UG,_;. A nonempty subset F' of VG is called a flag
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if z is incident with y (that is, zxy) for any z,y € F. The sequence § is called an incidence geometry
defined on I = {0,...,r — 1}, if any flag of G is contained in a maximal flag F' with |[FNG;| =1 for
all i =0,...,r — 1. The number r is called the rank of G. Elements of Gy and G, are usually called
points and lines, respectively.

For a flag F' = (zj,,...,2j;), where 0 < jo < --- < jy <r—1land z;, € G;, (m=0,...,1),
the type of F' is defined to be the subset {jo,...,7;} of I and denoted by T'ype(F). The number
|Type( F)| is called the rank of F. If ¢ # 0 in the above, the j,-th face of F' is defined to be a flag
obtained from F' by deleting z;,, (m =0,...,1). If there are exactly s; + 1 maximal flags containing
each flag of type I — {i} and any ¢ € I, G is called of order (so, ..., s,~1). If 8o is a power of a prime,
say ¢, G is sald to be defined over F.

The full automorphism group Aut(G) is the group of all bijections g on VG such that z? € ¢,
iff £ € G; (i €1) and 2 *y iff 29 y9 for any z,y € V§. A pair (G,G) of an incidence geometry
G and a subgroup G of Aut(G) is called flag-transitive, if G acts transitively on the set of maximal
flags of G. If (G, G) is flag-transitive, there is an element g € G with F'9 = F' for any flag F, F’
with Type(F) = Type(F'). An incidence geometry G is called flag-transitive, if (G, Aut(G)) is flag-
transitive.

The incidence graph of G is defined to be a graph with VG as its set of vertices by declaring that
two vertices form an edge whenever they are incident. Two points of Gy are called collinear if they
are incident with a line of §; in common. The graph defined on G, whose edges are the pairs of
collinear points is called the collinearity graph of G. A geometry (G;,G;;*) of rank 2 obtained from
G by taking vertices of type 1 is called the (1, j)-truncation of G.

As for examples of geometries of rank 2, see §4.

2.2 Homology groups. Let G be an incidence geometry defined on I = {0,...,7 — 1}. The set
A = A(G) of all flags of G can be recognized as an abstract simplicial complex with its set of vertices
VG. Thus we may associate with an incidence geometry G several standard modules in algebraic
topology.

For i € I, we denote by C; = C;(A) the group of i-chains, that is, the free Z-module with basis
A;, where A; denotes the set of flags of G of rank ¢ + 1. The i-th boundary map J; from C; to C;_;
(¢ # 0) is defined by 0;(F) = T, _¢ Fj,. for aflag F with type {Jo,. .., jm} and by extending linearly,
where F;  means the j,-face of F (m =0,...,7). The map &y from Cp to C_; := Z is defined to be
the zero map. We denote by the image and the kernel of 8; by B;(A) = B; (C C;_1) and Z;(A) = Z,
(C C;), respectively (i € I). We also set H;(A) = H; := Z;/Bi41 (1 € I). The Z-modules B;, Z; and
H; are called the i-th group of boundaries, cycles and ¢-th homology group, respectively. By tensoring
with any field K over its prime field, we have K-vector spaces C;(K) :=C;® K, Bi(K) = B;® K,
Z(K):=2; K and H{(K) = H;® K.

If (G, G) is flag-transitive, the group G permutes A; and so acts on C; (i € I). The module C_,
is a trivial G-module. Since G preserves the types of vertices, we may verify that the action of G is
compatible with the boundary maps: (F9)9; = ((F)d;)?, g € G, i € I, F € A;. Thus B;, Z; and H;
are considered as G-modules, and therefore, we have representations B;(K), Z;(X) and H;(K) of G
over any field K (z € I).

2.3 H,_1(K) as a code in C,_1(X). Since B,_; = {0}, the top dimensional homology group
H, 1(K) = Z,—1(K) is a subspace of the vector space C,_;(K) with the specified basis C := A,_,,
the set of maximal flags of G. Thus we may consider H,_;(K) as a linear code in C,_;(K’) for any
field K. From view of coding theory, it is natural and fundamental to ask “what is the dimension,
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the minimum weight and the corresponding support of this code?”, where the support of a vector
z € H,_1(K) (denoted by supp(z)) is defined to be the subset supp(z) := {F € A, | 2 =
Srea,, arF, ap #0 € K} of A._; and the weight of z is |supp(z)|. That is, the minimum number
w of the weights for all nonzero vectors of H,_;(K) and the subsets supp(z) of A,_; with wi(z) = w
are main concern in coding theory, together with dim H,_,(K).

If the geometry G is a natural finite geometry associated with a finite group of Lie type (called
a building), it is rather easy to answer these questions.

2.4 Proposition. Let G be a finite building for a finite group G of Lie type defined over I = Fe
and W the Weyl group of G. Then the code H,—y(K) in C,_(K) affords the Steinberg module of G,
and so its dimension is equal to the highest power of p dividing |G|. The minimum weight is given
by |[W| and for ¢ € H,_1(K) we have wi(z) = |W| if and only if supp(z) forms the set of mazimal
flags in an apartment of G.

The above proposition suggests that the minimum supports of the code H,_1(K) for suitablly
chosen field K are considered as “apartments” of a general geometry G. Thus it is natural to propose
the following problem.

2.5 Problem. For a general incidence geometry G, determine the minimum weight and the corre-
sponding supports of the code H,_1(A(G), K) in C._1(A(G), K).

2.6 Example. The sporadic A;,-geometry. (see e.g. [3] p.392) This geometry (P, L, Q; *) is
known to be the unique example of geometries belonging to diagrams those for finite buildings, but
not a building or its quotient. The sets P and L are the set {1,...,7} and the set of triples of
points, respectively. There are in total 30 ways to choose a subset 7 of £ so that (P,7) forms a
projective plane of order 2 with incidence by natural inclusion, and they are divided into two orbits
of length 15 under the action of the alternating group A; on P. We define Q to be one of these two
orbits and define * by natural inclusion. Thus G belongs to the diagram Cj, that is, the residues
at points (resp. lines and planes) are generalized quadrangles (resp. digons and triangles) (see 4.2).
Note that the building admitting 07(2) =2 Sps(2) or Ug(2) also belongs to the same diagram.

We choose F' = F, as the coefficient field of homologies of A(G). The space Cy of 2-chains of G
has a basis indexed by 315 = 15-7- 3 maximal flags. The code H, is a subspace of C5 of dimension
56, which is a multiple of the highest power of 2 dividing |A7|. As an Ar,-module, H, is projective,
but not irreducible. (This follows from [17] 3.1 and the fact that A(G) is Cohen-Macaulay, that is,
the reduced homology group H; of G and its residues are trivial except those for top dimension.)
The minimum supports are of weight 36 and form one conjugacy class under A; with stabilizers S;.
Note that the minimum support of the code Ha(A(B), F,) is |W| = |2%53| = 48 for the buildings B
belonging to the diagram of type Cs. For the detail, see [26].

3. Embeddings and Codes for Geometries.

In this section, we consider realizations of incidence geometries as configurations of subspaces in
projective spaces, in which incidences are defined by natural inclusion. We formalize this notion as
follows. For simplicity, we restrict ourselves only to the case of rank 2 and try to define any objects
as simple as possible.
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3.1 Embeddings. Assume that a geometry G = (P, £;*) of rank 2 is defined over Fy. A pair
(V, p) of a vector space V over F, with dimV > 2 and a map p : P — V is called a (point-line)
embedding of G, if they satisfy the following conditions:
(1) For each o € P, p(C) is a subspace of V of dimension 1.
(2) Forany! € L and ¢+ 1 points ¢; (1 =0,...,q) through I, the subspace p(l) of V' spanned by
ple;) (1=1,...,9+1) is of dimension 2. Furthermore, {p(e;)|i =0,..., ¢} coincides with the set of
all subspaces of dimension 1 of the 2-dimensional subspace p(!).
(3) The vector space V is spanned by all p(a) for o € P.

The subspace V is called an ambient space. For two embeddings (p,V) and (p', V') of G, a
morphism of (p, V) to (p', V') means an F linear map f of V to V' for which p'(a) = f(p(e)) for
any o € P. If such a morphism f is a bijection, (p, V') and (¢', V') are called isomorphic.

3.2 Universal embeddings. It is known that for any embedding (p,V) of G there is a unique
(up to isomorphism) embedding (3, V) and a morphism # of (5, V) to (p, V) satisfying the following
universal property: [10] For any morphism g of (¢, V') to (p, V), there is a morphism § of (5, V)
to (o', V') such that gj = 5. Such an embedding (5, V) is called a universal embedding of the
embedding (p, V). In general, the universal embeddings of two non-isomorphic embeddings of G
may or may not be isomorphic. However, the situation is quite simple if G is defined over F, (see
2.1). Here we need some terminology about codes.

3.3 Incidence codes for geometries. For a geometry G = (P, L;*) of rank 2 and a field F', we
denote by F'P the vector space over F' with basis e, (o € P) indexed by P. The incidence matriz N
of G is a matrix with rows and columns indexed by £ and P respectively, in which the (/, &)-th entry
(leL,a€P)islifl+a and 0 otherwise. Each row (24)aep of N can be identified with the vector
Yaep Za€a of FP, and the subspace of F'P spanned by all rows of N is denoted by Cr(G) (or simply
C(G)). The dualcode of C(G) is defined to be the subspace C(G)* := {x € FP|x-y = 0(Vy € C(G))}
of FP, where X+ ¥ = Laep Tala 10T X = Y ep 24€q and y = Zaep YaCor

These codes have been discussed by several authors (for example, [5]). From geometric point of
view, these codes are most interesting if G is defined over F, and F' = F,.

3.4 Lemma. For a geometry G = (P, L;*) of rank 2 defined over ¥y, the map from P to V( )=
FoP/C(G) given by p(a) = e, +C(G) for o € P affords the universal embeddsz of G, if V(G) # {0}.
We will call V(G) the universal embedding of G (see [10], Prop. 3).

3.5 Geometric hyperplanes and embeddings. In general, a geometry G defined over F, may
not have any embedding. However, there is a nice criterion for the existence of embeddlngs of a
geometry defined over F» (see [10], §3, Cor.2,4), in terms of a geometric object: A non-empty proper
subset H of P for a geometry G = (P, L; *) of rank 2 is called a geometric hyperplane of G, if H
contains either all the points on ! or exactly one point on [ for any line / € L.

3.6 Lemma. LetG = (P,L;*) be a geometry of rank 2 defined over Fo. Then the map associating
P — supp(x) with a vector X = Y pep kala (ko € Fa) gives a bijection from C(G)* onto the set of
all geometric hyperplanes of G and P, where supp(x) = {& € Plks # 0} is the support of x. In
particular, there is a geometric hyperplane H of G if and only if there is an embedding of G
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The above lemma shows that the support of a non-zero vector x of C* with minimum weight
is a complement in P of a geometric hyperplane of G -of maximum size. Thus it is interesting from
both coding-theoretic and geometric point of view to solve the following problems.

3.7 Problems. For a geometry G defined over Fy, determine the dimension of C+ (= the dimension
of the ambient space of the universal embedding of §) and the minimum supports of C*.

3.8 Remark. The dimensions, minimum weights and supports of the codes Cp(G) and Cr(G)*
for finite field F have been investigated by Bagchi and Sastry [5] when G is a generalized 2d-gon of
order (s,t) (s,t > 2) (see 4.2). However, similar arguments to them (see [5], Theorem 3.6) do not
apply to FF = F,.

4. Generalized Polygons, Regular Near Polygons and truncated Locally
polar spaces of rank 3 over F,.

We consider Problems 3.7 for several important geometries of rank 2 defined over F5; that is, regular
near polygons, generalized polygons and the line-plane truncations of locally polar spaces of rank
3. In this section, these geometries are briefly reviewed. As for general terminology for geometries,
see 2.1. For regular near polygons and generalized polygons, see e.g. [3] 6.4, and for locally polar
geometries, see [9], [23] (in which they are called c.C,-geometries).

As we shall see below, the locally polar geometries of rank 3 defined over F, (exept for that
admitting flag-transitive group 305 (3)) are subgeometries of suitable dual polar spaces of rank 3, in
which point-line truncations form regular near hexagons. (This article seems to be the first literature
referring the fact that the points of the locally polar geometry admitting Og(3) form a geometric
hyperplane of the dual polar space admitting Us(2).) Thus solutions for Problem 3.7 for these
geometries are closely related.

4.1 Regular near polygons. (See [3],6.4 p.198 or [16] p.2. Note that, for example, we exclude
generalized quadrangles from regular near hexagons.) An incidence geometry G = (P, £; *) of order
(s,t) is called a near 2d-gon (resp. (2d + 1)-gon) for a natural number d, if the diameter of the
collinearity graph of G is d (resp. the diameter of the incidence graph IT of G is 2d + 1) and for
any integer 7 with 0 < ¢ < d — 1 and any point o and any line ! at distance 2: + 1 (in IT), there
is a unique point B on [ with 6(«, f) = 2i (resp. furthermore, all points on a line [ at distance (in
IT) 2d + 1 from a point « are at distance 2d from «). A near polygon (2d or (2d + 1)-gon) is called
regular, if its collinearity graph is distance-regular.

4.2 Generalized polygons. (As for generalized quadrangles, see [§8].) A geometry G = (P, L; %)
of rank 2 of order (s,t) is called a generalized n-gon, if the incidence graph of G is of diameter n and
of girth 2n. A (1,t)-sub 2d gon of a generalized 2d-gon G is a subset X of P such that the geometry
(X,Y; ) is a generalized 2d-gon of order (1,t), where Y is the set of lines incident with at least two
distinct points of X.

A generalized 2d-gon G of order (s,1) is a regular near 2d-gon and generalized 3-gons (generalized
triangles) of order (s,t) are nothing more than projective planes of order (s,t). In particular, s = ¢
for generalized triangles. Generalized 4-, 6- and 8-gons are called generalized quadrangles, hexagons
and octagons, and denoted by GQ, GH and GO, respectively. Finite generalized n-gons are (weak)
buildings of rank 2, admitting flag-transitive actions of associated groups of Lie type.
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There are six known infinite families of flag-transitive GQ of order (s,t) with s or ¢t > 2: they are
Q*(3,9), Q4,9), @ (5,9), H(3,¢%), H(4,¢?) and W(q), admitting flag-transitive actions of finite
groups Of (g), Os(q), Og(q), Us(q?), Us(q?) and Sy(q) of Lie type, respectively. They (sometimes
omitting Q% (g) of order (g,1) as in [24]) are called classical GQ (see [8] 3.1 pp.36-37). Note that
except OF (q) & La(g) x La(q), all groups above are simple.

4.3 Generalized polygons defined over F,. We now consider the isomorphism classes of gen-
eralized polygons of order (2,t). Except GOs of order (2,4), the classification is completed, as we
will described below. First, by the remarkable theorem of Feit-Higman (e.g. [3] 6.5.1 p.210), one of
the following holds for a generalized n-gon G = (P, L; *) of order (2,1). .

(1) t=1and n=6,8or 12. There is a generalized n/2-gon G, of order (2,2) such that P and £
the sets of vertices and edges of the incidence graph of Gy and * is the natural inclusion.

(2) n=3andt=2. (3) n=4and1<t<4

(4) n=6andt=20r8 (5)n=8andt=4.

In the case (2), G is isomorphic to the projective plane PG(2, F,) with 7 points and lines. In
the case (3), it follows from [PT] 6.1 pp.122-123 that G is isomorphic to the classical generalized
quadrangle Q%(3,2), Q(4,2) & W(2) or Q~(5,2) for t = 1,2 or 4, respectively (we do not have
t = 3). In the case (4), it follows from theorems 1 and 2 in [CT] that G is isomorphic to the GH
H(2) with the full automorphism group G2(2) and point-stabilizers 4.5, : 2, the dual H(2)* of H(2)
with the full automorphism group G»(2) and point-stabilizers 4% : Dys, or the GH D with the full
automorphism group *D,(2).3 and point-stabilizers 21+8 : L,(8) : 3.

There is a unique known GO of order (2,4), that is, the GO O(2) with the full automorphism
group 2F,(2) and point-stabilizers 2.[28] : 5 : 4. Though it seems to be believed that any GO of order
(2,4) is isomorphic to O(2), no reference of a proof is available, as far as the autor knows.

4.4 Other families of regular near polygons defined over F;. In 4.4-5, we assume that
regular polygons are not generalized polygons. There are three known families H(n,3), Cy(2) &
B4(2) and 2Az4-1(2) of regular near polygons defined over F,. (See [3], Table 6.6 p.206, noticing
that a near polygon is defined over F, iff A = 1. Furthermore, note that there are misprints in Table
6.6 ! We should erase the number d appearing the column for & and rows (R4) (R5) (R6), and then
shift the numbers in the colums for A and ¢; into the columns for £ and A, respectively. As for the
column for ¢;, the quantities in the rows (R4),(R5) and (R6) should be ¢; = ¢ (z < d), ¢y = vyd (for
(R4)), ¢; = ¢ (for (R5)) and ¢; = the g-binomial coefficient for 1 choose 1 (for (R6)).)

The geometry /1(n,3) is a geometry whose incidence graph is the Hamming graph on the n-
dimensional space F} over Fj, that is, the set of points and lines consist of vectors of F} and the
translations of the sets {0, e;,—e;} (¢ = 1,...,n) by vectors of F%, respectively, where we denote by
e; the ¢th natural base of F3.

The other two families are members of dual polar spaces (more precisely, truncations of them)
B4(2) = C4(2) and 2A454-1(2) [3] 9.4. The points of B4(2) (resp. 2A24-1(2)) are totally singular (resp.
isotropic) subspaces of dimension d of a 2d + 1-(resp. 2d-)dimensional vector space over F5 (resp.
F,) with a non-degenerate orthogonal (resp. unitary) form. A triple of points containing a totally
singular (resp. isotopic) subspace of dimension d — 1 in common is called a line. The incidence is
defined by natural inclusion. By taking all singular subspaces as vertices, we get a geometry of rank
d, which is called a dual polar space. Thus our geometries are truncations (see 2.1) of dual polar
spaces on maximal and submaximal singular spaces.
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4.5 Three sporadic examples of primitive regular near n-gons. Besides the families in
4.4, the following three sporadic examples are known to be regular near 2d-gons defined over F,,
admitting primitive actions of automorphism groups on the sets of points. (See [3], Table 6.7 p.207.
Remark that the full automorphism group of (N2) should be 3% : (2M15,), not 3°M1,.) In the below,
we denote by I';(w) the set of points at distance ¢ from a point w in the collinearity graph I'. The
characterizations of these near polygons by parameters are established (see [3], 11.4.1, 11.3.1, 11.6.1
and [19]).

(1) A regular near hexagon M on 759 points of order (2,14) admitting Aut(M) & Moy, in which
the orbits of the stabilizer of a point w on the points are I';(w) (z = 0, 1, 2, 3) of lengths 1, 30, 280, 448,
respectively.

(2) A regular near hexagon N on 729 points of order (2, 11) admitting Aut(N) &£ 3¢ : 2M;5, in which
the orbits of the stabilizer of a point w on the points are I';(w) (1 = 0, 1, 2, 3) of lengths 1, 24, 264, 440,
respectively. ‘

(3) A regular near octagon J on 315 points of order (2,4) admitting Aut(J) & Jo.2, in which the
orbits of the stabilizer of a point w on the points are [';(w) (i = 0,1, 2, 3,4) of lengths 1, 10, 80, 160, 64, .
respectively.

4.6 Flag-transitive classical locally polar spaces of rank 3 defined over F,. [18][23][9][24]
A geometry (P, L, Q; ) of rank 3 is called a classical locally polar geometry if the residue at each
p € P (resp. | € L and 7 € Q) is a classical GQ of order (s,t) with s and t > 2 (see 4.2) (resp. a
generalized 2-gon and the geometry of vertices and edges of a complete graph). In this article, we call
them FECQs (flag-transitive extended classical quadrangles). They are now completely classified
(see e.g. [9],[18],[23]). We consider the plane-line (that is, (2,1)-) truncations (see 2.1) of them.

There are six FECQs with (2,1)-truncations defined over Fy; The FECQ A with 32 points
admitting 2°05(2).2 and its quotient A with 16 points, the FECQ S with 28 points admitting
0#(2).2, a FECQ F with 36 points admitting Og (2).2, and the FECQ O with 378 points admitting
305 (3) and its quotient @ with 126 points. The residues at points are isomorphic to W(2) & Q(4, 2)
for FECQs A, A, S, F and to H(3,2?) for FECQs © and O.

We will observe that, except O, they are subgeometries of the dual polar spaces for near hexagons
B3(2) and 245(2). Let G = (Q, L, P; ) be the dual polar space for B3(2), that is, @, £ and P are
the sets of 135 singular planes, 315 lines and 63 points of a 7-dimensional orthogonal space V. For
any hyperplane H of V and X = P, L or Q, we denote by X'N H the set of members of X lying
completely in H, and set X' = X — X N H. Since singular subspaces containing p € P’ does not lie
in I1, the residue at p of the subgeometry G’ = (P, L', Q') coincides with that of G, and so it is a
classical GQ Q(4,2). Then we may verify that G' is a FECQ. We let v the dimension of maximal
singualr subspaces contained in H. Then v = 6,3 or 2. If v = 6, H = pt for some p.€ P, and
so |QNH|=|9(p)| =15 |LNH|=75and |[PNH|=|{p,g € Plg €l € L(p)} =31, and G’
is isomorphic to A. If v = 3, (QN H,LN H,PN H) is the dual polar space for O*(6,2) and G’
is isomorphic to §. Since any | € LN H is contained in two planes of @ N H, Q' is a geometric
hyperplane of the near hexagon (Q,£). fv =2, QNH =0 and (PN H,L N H) is the classical GQ
Q~(5,2), and so G’ is isomorphic to F.

We may also establish that the the (2, 1)-truncation of the FECQ O is a subgeometry of the near
hexagon ?A5(2), and that the set of planes {forms a geometric hyperplane by an elementary counting
argument. This accounts for the existence of maximal subgroups U,(3) in Us(2), and also gives an
embedding of @ of dimension 21 via the embedding of 2A45(2) into the Leech lattice modulo 2. For
the detail, see [22] [25].
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5. Summary of Results.

In this section (see Tables 1-3 in the last page), we summarize the answers for Problem 3.7 to
regular near polygons, generalized polygons and the plane-line truncations of flag-transitive locally
polar geometries of rank 3 defined over F, described in §4. As far as the author knows, the results
for the following geometries are new: generalized polygons of order (2, 1), the near hexagons H(3,n)
for any n, B3(2), 2As(2), the sporadic near polygons admitting 3°2Mjs, J>.2 and the truncated
FECQ. For some geometries, the answers are left open. (I do not claim that the remaining problems
are difficult, especially for minimum weights.) Apparently, it is most interesting to get answers for
families of geometries B4(2) and 2A5;-1(2) (and related subgeometries). I simply worked with the
smallest cases so far, but suspect that the equalities always hold in the inequalities in Table 3.

In Table 1 and 3 in the last page, the columns for dim and Min.Wt. show the dimension of
the ambient space of the universal embedding of G and the minimum weight of the code C(G)*,
respectively. The supports of minimum weight are briefly described in the last column of Table 1,
if it is a sub n-gon. For the other cases, see below. The generalized hexagon (6) and (7) in Table 1
denote the hexagons H(2) and H(2)* in 4.3, respectively. In Table 2, the weight enumerator of the
code C(G)* (in F,P) means a formal sum §.,- A,2", where 4, is the number of vectors of C(G)*
of weight n. i

It should be mentioned that several values in the tables below have already calculated. Amongst
them, the work by Buekenhout and Lefevre [4] determined the dimensions of embeddings for gen-
eralized quadrangles with s > 2 and ¢ > 2, Mark Ronan and Steve Smith calculated the dimension
of the universal embedding of generalized hexagons for G»(2) ([11] (3.3), [10] Examples 3,4) and the
weight enumerators for the geometries (4),(6),(7) can be read {rom the works by Brooke (See [1]
the column for (4), [2] the columns 14/ in p.391 and in p.398 for (6) and (7), respectively. These
enumerators can also be seen in [13] pp.308-309). The structure of the universal embedding of the
near haxagon for M4 on 579 points is described in [10] Example 2, [15] pp.536-537 as well as an
example of its geometric hyper planes.

Now I describe the method. First, we consider the problem to determine the dimensions of the
universal embeddings. The collinearity graphs of regular near polygons and generalized polygons are
distance regular graphs, and therefore we may calculate the eigenvalues and their multiplicities of the
adjacency matrices A of these graphs ([3] 4.1(B)). Since {N N = A+ (t+ 1)I for the incidence matrix
N of the corresponding geometry G = (P, L; *) of order (2,t), the Q-rank of N' (the Q-dimension
of the subspace of QP (see 3.3) spanned by the rows of N) is given by |P| — m, where m is the
multiplicity of the eigenvalue —(¢ +1) of A. Since the Fo-rank is smaller than the Q-rank in general,
we have dimV(G) > m by Lemma 3.4. (Up to here, exactly the same argument has developed in
the proof of Theorem 3.6 in [5].)

Thus it is crusial to get a nice upper bound of dim V(G). This problem is treated by so called
“geometric spanning argument”, that is, to examine the geometric span of suitable chosen points.
This argument has adopted by several people (see e.g. [11] pp.340-341, [7] for embeddings of locally
Petersen geometries). Here, the geometric span of a subset X of points means the set of points
obtained as the inductive limit of X; (¢ = 0,1,...,) with X¢ = X, where X;4; consists of all the
points lying on lines which contain at least two distint points of X;. This part is of strong geometric
flavor, and requires certain amount of works depending on detailed information on each geometry.
For the regular near octagon admitting J,.2, we consider a graph on suitable imprimitivity blocks
for the subgroup L3(2) of Ja (see [25]). )

For the regular near hexagon B3(2) admitting O7(2), we may argue as follows: To each singular
point p of the associated orthogonal space, the subspace V(p) of the universal embedding V(G)
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spanned by one-dimensional spaces for isotropic planes containing p admits an embedding of the
generalized quadrangle W(2) = Q(4, 2) (the residue at p in the dual polar space for G). Thus either
dim V(p) = 4 or dimV(p) = 5 and V(p) contains the non-zero vector w, fixed by the stabilizer of p
in 07(2). Thus the quotient space V(B3(2))/W by the subspace W of V(B3(2)) spanned by w, for
all singular points p (we take w, = 0 if the former case happens) admitts an embedding of the dual
polar space for G in which singular points, lines and planes correspond to subspaces of dimensions
4, 2 and 1, respectively. Thus this affords the fixed-point presheaf [11] for the spin module for
0+(2) = Sps(2), and we have dim V(G)/W < 2° = 8 by [11] Theorem 4.1. As for the subspace W,
there are one-dimensional subspaces (w,) for singular points p. We may verify that the subspaces
W(l) and W (7) spanned by w, for all p contained in singular lines / and planes 7 are of dimension
2 and 3, respectively. Thus W affords the fixed-point presheaf of the polar space for Ss(2) = 0(2)
for the natural module for Sg(2), and therefore we have dim W < 7 by [11] Theorem 4.1. Hence we
have dim V(B3(2)) = 15, as 15 is the above multiplicity giving the upper bound.

Since FECQ defined over F, are subgeometries of the above dual polar space for B3(2), we may
determine the dimensions of embeddings of these geometries. In particular, we may verify that the
locally polar geometry A for Of(2) & Ag gives a geometric hyperplane of B3(2). Thus we may
give an another proof for the fact dim V(B3(2)) = 15 by first directly showing that dimV(A4) = 14
using geometric spanning argument, which is not so difficult to-establish [22]. The similar situation
occurs when we try to determine dim V (2A5(2)) and dim V(0O), since the locally polar geometry O
admitting Og (3) gives a geometric hyperplane of 2 A(2):

As for minimum weights and supports, it is immediate to observe that a sub (1,%)-gon (see 4.2) of
a generalized polygon G of order (2,1) affords a minimum support, provided it exists (see [5] Lemma
2.4). However, there is no such sub n-gon in the geometries (1),(4),(7),(8),(10). The minimum
supports for (1) are non-degenerated quadrangles in PG(2,F2), those for (4) are I'2(p) @ I'2(q)
(symmetric difference) for non-adjacent distinct points p, g in the collinearity graph I'. On the other
hand, the similar questions for the remaining regular near polygons and locally polar geometries are
left open except for the near octagon on 315 points, in which minimum supports are I'y(p) for points
p (in the collinearity graph I') and the vectors of minimum weight span C(G)* [25].

Finally, we list the dimensions of universal embeddings for FECQs defined over F,: 14, 9, 14,
15, 21, 12 + 21 for the FECQ A4, A, S, F, O and O, respectively. See [22], for the detail and the
dimensions of “group-admissible” embeddings of FECQs not defined over F,.
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Table 1: Generalized n-gons of order (2,¢) (¢ > 1).

n |t | Full Aut. | # Pts. | dim | Min.Wt. | Min.Sup.
(1) |3 | 2] Ls(2) 7 3 4
(2) |4 |1](55x53)2 9 4 4 | (1,1) sub 4-gon
(3) 14 |2|0s(2).2 15 5 6 (1,2) sub 4-gon
(4) |4 |4]05(2).2 21| 6 12
(5) [6 | 1] Ls(2) 21 8 6 {(1,1) sub 6-gon
6) |6 |2]Ga2) 63| 14 16
(7) 16 |2|Ga2) 63 14 14 | (1,2) sub 6-gon
(8) 16 |8]3Dy(3).3 819 | > 26 :
(9) |8 |1]0s(2).2 45 16 8 | (1,1) sub 8-gon
(10) | 8 | 4| 2F4(2) 1755 | > 78
(11) [ 12 | 1| G5(2) 189 64 12 | (1,1) sub 12-gon
(12) [ 12| 1| G4(2) 189 | 64 12 | (1,1) sub 12-gon

Table 2: Weight Enumerators of C(G)* for generalized n-gons (1)-(7) in Table 1.

Enumerator
(1) | 1+72*
(2) | 1492* +62°
(8) | 1+ 102° + 152% + 62%°
(4) | 14 362" +2721°
(5) | 1+ 282° + 212° + 842 + 98212 4 242
6) | 1+ 1262 + 159622 4 2880228 + 7497232 4 40322°% + 25224
(7) | 1+ 362 + 56218 + 252220 + 37822 + 176422% + 1800228 + 1764230
| 43591232 4 403223 4 20442% + 5042% + 126240 + 36242
Table 3: Known primitive near n-gons (not gen.polygons) of order (2,1).

n |t Full Aut. # Pts. dim | Min.Wt.
(Im) |n |n—1 Ss1.Sn, 3" 2" AS
(2.d) | 2d | 2¢—2 PY02441(2) O (2 4+ 1) | >+ 1)(2¢ +1)/3
(2.3) |6 |6 0+(2) 135 15
(3.d) | 2d | (42— 1)/3 =1 | PEU2(2) | 0L, (2271 +1) > 2(2%-1 4+ 1)/3
(33) |6 |20 Us(2).2 891 22
(4) 6 |14 Moy 759 23 < 448
(5) |6 |11 38(2M1,) 729 24 | <440
6) |8 |4 J2.2 315 28 64
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